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ESTIMATION OF A COVARIANCE MATRIX UNDER
STEIN’S LOSS

By Drrak K. DEY! AND C. SRINIVASAN?

Texas Tech University and University of Kentucky

Stein’s general technique for improving upon the best invariant unbiased
and minimax estimators of the normal covariance matrix is described. The
technique is to obtain solutions to a certain differential inequality involving
the eigenvalues of the sample covariance matrix. Several improved estimators
are obtained by solving the differential inequality. These estimators shrink or
expand the sample eigenvalues depending on their magnitude. A scale in-
variant, adaptive minimax estimator is also obtained.

1. Introduction. In this paper we consider the problem of estimating the
covariance matrix ¥, of a multivariate normal population. The usual estimator is
S/k, where S is distributed according to the Wishart distribution VVp(i, k).
James and Stein (1961) obtained a minimax estimator by considering the best
invariant estimator with respect to the triangular group G (the group consisting
of lower triangular matrices with positive diagonal elements). This estimator, of
course, depends on the coordinate system [see also Selliah (1964), Olkin and
Selliah (1977)]. Later on, Takemura (1984) obtained an improved orthogonally
invariant minimax estimator by averaging Stein’s minimax estimator over the
P X p orthogonal matrices with respect to Haar measure. For higher dimensions,
however, his estimator does not have a simple form.

Although S/k is unbiased it is known that the sample eigenvalues of S tend to
be more spread out than the population eigenvalues of ¥. This fact suggests that
one should shrink or expand the sample eigenvalues depending on their magni-
tude. The works along this direction can be found in Stein (1975, 1977a, b), Efron
and Morris (1976), Haff (1977, 1979a, b, 1982), Eaton (1970), and a host of others.

In this paper we consider improved estimators of 3 under a scale invariant
loss function introduced in James and Stein (1961). Suppose I is an estimator of
¥ that is assumed to incur a loss

(1.1) L(% %) = (33 ) - logdet($ ) - p.

Suppose, further, that an estimator’s performance is evaluated by considering the
risk function

(1.2) R($,3) = E(L(E )9).

The constant risk minimax estimator proposed by James and Stein (1961) is of
the form R
(1.3) iM=1TDT!,
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1582 D. K. DEY AND C. SRINIVASAN

where D = diag(d,, d,...,d,), T € G with TT* = S and

(1.4) di=1/(k+p+1-2i), i=12,...,p.
With this choice of d;, the minimax risk is obtained as

. k
(1.5)  R(¥".3)= X [log(k +p+1-2i) - E(log x} i),

i=1
where x}_,,, denotes a chi-square random variable with k& — i + 1 degrees of

freedom. This is uniformly smaller than the risk of ¥,. Later Stein (1975, 1977a,
b) considered the class of orthogonally invariant estimators, i.e., those of the form

(16) I - Ro(L)R,
where S = RLR* with R the matrix of normalized eigenvectors (RR! = R'R = I),
L = diag(l,, l5,...,1,) is the diagonal matrix of corresponding eigenvalues with

Li2l,> -+ 21, and @(L) = diag(e(L), ¢(L),..., ¢,(L)). Thus ¢ (L) =
(1/k)L gives the best invariant and unbiased estimator I, = S/k under (1.1).

For this loss function, Stein (1975) proposed the particular estimator determined
by '

17)  e=l/{(k-p+1)+2L, 3 1/(;-1)|, i=12,...,p,
J*i

which he obtained by an approximate minimization of the unbiased estimator of
the risk function. However, in this case it is not generally true that ¢} > ¢ >

© = @p > 0. Stein (1975, 1977a, b) gave an isotonized modification of his
estimator [cf., Lin (1977), Lin and Perlman (1985)]. The risk function of Stein’s
estimator is very complicated, and it has not been determined that Stein’s
estimator dominates ¥,. However the Monte Carlo simulation results of Lin and
Perlman (1985) indicate that Stein’s modified estimator outperforms not only
¥, but also the minimax estimator (1.3) significantly over a wide range of
$’s. Recently Haff (1982) studied the form of Bayes estimators of ¥ and observed
that a slight modification of Stein’s (1975) estimator emerges as an approxima-
tion of the Bayes rule.

In this paper, we consider the class of orthogonally invariant estimators (1.6).
We apply Stein’s technique, whereby an unbiased estimator of the risk of an
orthogonally invariant estimator is obtained, involving eigenvalue estimators and
their derivatives. The improved estimators are obtained by solving a differential
inequality for these eigenvalue estimators. Several solutions are obtained which
are motivated from Dey, Ghosh, and Srinivasan (1984). In Section 2, we first
illustrate our method by presenting an estimator that has a very simple form and

dominates ¥, in terms of risk. In Section 3, we consider the more important
problem of improving upon the constant risk minimax estimator of James and
Stein (1961). One of the orthogonally invariant minimax estimators in Section 3
shrinks or expands the sample eigenvalues about a point that can be chosen
adaptively.

In Section 4, we briefly mention simulation results for the risk behavior of the
proposed minimax estimators. It is observed that these estimators have uni-
formly smaller risk than the minimax risk, for those p, &, and ¥ chosen in the
design.
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2. Estimators which dominate 3}0 We first observe that for an estimator
¥ of the form (1.6)

e1) L33 =a(35") - Llogg (L) + logdet($) -

Clearly the last two terms are constant with respect to 3. Thus we define
R R p
e2) Re(h3) - B[u(B2) - £ or oyt
i=1

From (2.1) and (2.2) it follows that the difference in risk between i and ﬁlo is

«(%) = B*(1, 3) - R*(30, 3)

29) -Elu(f2 ' - 37" - El og~

)
°(L)

Now we will state the following lemma due to Stein and Haff which is needed
to evaluate a(¥). The proof is given in Stein (1977a) and Haff (1982).

LEMMA 2.1. The unbiased estimator of R*(ﬁ: 32) is given as

(3-8 XNy 0

(24) i=11¢t>1 i lt i=1 alt

P; i
+(k-p-1) Z 7 Y log ;.
i=1

i i=1

From Lemma 2.1, it follows that IAZ*(XAI, ¥) depends only on the sample
eigenvalues of S. Let us define a(L) as an unbiased estimator of a(¥) [see (2.9)].
We now need the following two lemmas to obtain an upper bound for a(L).

LEMMA 2.2. For |x|<u <1,
2.5 log(1 + x) Su e

. + 22X - —F—Xx".
(2.5) og x)zx-c -0 x

ProoF. From the series expansion of log(l + x), it follows that
3 4

2 x
10g(1+x)—x—?+?—7+
x|z |x)t
2 _— e — — e ———— s e e
2 3 4
x? |xl3(1 )
> _——— —— —
>x 5 3 [x]|
x? ux? (8 — u)x?
>Xx——— ——— = ,
=T T 31 -0 6(1 - u)

which completes the proof. O
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LEmMa 23. Ifx, >xy> -+ >x,, then
p p
(2.6) (p+1) Y x,22) ix;
= i=1

ProOOF. The proof follows by induction on p. O
The improved estimator of 3‘:0 will be given in the following theorem.

THEOREM 2.1. Consider an estimator XAJ of ¥ as given in (1.6). Then I will
dominate 3, in terms of risk if p > 3 and ¢;(L) is given as

(li10g I)r(u)
b+ u

’

l.
2.7) (L)=-—
en 7(L)=
where u = ¥P_ log?l,, and b is a constant, b > 144(p — 2)2/25k2, and 7(u) is a
function satisfying

(2.8) (i) 0 <7(u)<2(p— 2)/k*, k* = 5k%/6;

(ii) () monotone nondecreasinginuand E|[7'(u)] < .

PrROOF. Define ¢,(L) = (L) + v,(L), where ¢/(L) = 1,/k,i=1,2,..., p,
and v,(L) will be appropriately chosen. Using Lemma 2.1, it follows that

vi(L) - Yt(L) P BY,(L)
a(L)_2LZI tgl li_lt g z
(2.9)
+(k— p—l)Z Yl(' ) ‘ilog(1+kyil('L)).

It is sufficient to find a solution (v,(L), v5(L),..., v,(L)) to the differential
inequality a(L) < 0, with strict inequality for some set of [ with positive
measure. For notational convenience let us define

(2.10) v,(L)=1¢&(1)/B(L), 1=1,2,...,p,

where £(/;) =logl;,,i=1,2,..., p,and B (L) = —1(u)/(b + u). We will show
that (2.10) is a solution of a(L) < 0.
Now it is easy to observe that

Yi(L) k“'(u)
A I iareven

l

log [j]

kr(u) 2k(p—2)_6(p—2) 1

< = < .
= 2/b Vb k* 5kVb 2
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Hence using Lemma 2.2, with u =

1
29
R

one gets

log|1 +

Thus from (2.9) it follows that

P (L) —y,(L
a(L)<2Y Z%

i=1t>1 4 t 2

Now using (2.10) it follows that

2 L£(1) - tg(lt) (p+1) 2

(L) < g5 & L D) 2

£(L) d [ &) 5k* P £%(1,)
B(L) o (B(L) } % L B(L)
l,f(l,-) - tg(lt) + lt(g(li) - g(lt))

I

i=1t>i t_lt

£(1,)
“TB(D) | EW) 2;1"5(3@)

(2.11)

Let us define

2 L g(li)(li - lt) + lt(g(li) - g(lz))
(L) =31 Z— L -1,
(p-1
B(L gs(li)
and
£(1,) | 5k 2 £(1)
el L) = 22"3!(3@) & E B

We will show that a;(L) < 0 and a,(L) < 0.

1585
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Now it follows that

(p-1) 2
a(L) = B(L)Z Y L) - B(I) iZI (%)

i=1t>i

P (&%) - &)},
El tgi L=1
? , (p-1 2
=_T—§ —i)¢(1,) - BL) E%UJ
Ld {£(l,) _g(lt)}lt
i=11¢>i li - l‘
=_l7 p+n§am—2iﬁu)
2 Ld {£(l) g(lt)}lt
B(L) i=11¢t>1 l‘ l‘

Now using Lemma 2.3 and the definition of B(L) it is easy that a (L) <.
Now consider a,(L). It is easy to observe, using the definition of B(L), that

€| _prw) 2w er(w)
B(L) btu btu. (bta)

(2.12) f (

Thus from (2.12), it follows that

2pr(u)  4r'(w)u  Ar(w)u 5 r*(uw)u
) =y T v T bt w)  6F (bt w)
A=) |

b+u (b+u)2

(since k* = ikz)
6

(u)

b+ u

(2(p —2) — k*(u)} <0 (by2.8).

Thus it follows that a(L) < 0, which completes the proof of the theorem. O

REMARK 2.1. Instead of shrinking or expanding the eigenvalues towards or
away from the origin as in {2.7), one can replace the origin by an arbitrary fixed
point p = (g, py,--., 1p)°, Where p; > py> --- >p . In this case one can
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define ¢,(L) as

I I~ logl — u.

where u = XP_ (logl; — 1,)% b > 144(p — 2)*/25k>, and 7(u) is a function
satisfying (2.8).

s 1=1,2,...,p,

REMARK 2.2. The estimator developed in (2.7) corrects I, positively if /; < 1
and negatively if /, > 1, which leads to a shrinking or expanding dependent on
the magnitude of the sample eigenvalues.

A recommended way of finding an improved estimator is to choose the point
towards which the estimator shrinks or expands, adaptively. The following
theorem gives an adaptive estimator of 3.

THEOREM 2.2. Suppose ﬁ:a = Ro%L)R"' where ¢*(L) is defined component-
wise as

L, lim(u L
(p?(L)=é_ ( )(logli_p_IZIOgli)’ i=1,2""’p’

b+u iz1
(2.14) a4 3)2 ) ) \
p—
> —_— u=y logli—p‘lz:logli) ,

and t(u) is an absolutely continuous function satisfying

i) 0 < < — 3)/k*, k* = 5k%/6

o1p 0= <(p-3) /
(ii) 7(u) monotone nondecreasinginu,  E[r(u)] < .

Then ﬁ)a will dominate I, in terms of risk if p > 4.

PrOOF. The proof is omitted because of its similarity to that of Theorem 2.1.
O

3. Orthogonally invariant minimax estimators. In this section we will
derive estimators and show that they are minimax by showing that the risk of
the estimators is smaller than the minimax risk. The following theorem gives a
simple orthogonally invariant minimax estimator that is expressible in closed
form for any dimension. It has been brought to our attention by the editor that
this result was also obtained by Charles Stein and presented in a series of lectures
given at the University of Washington, Seattle in 1982.

THEOREM 3.1. Consider the estimator ﬁ:m = Ro™(L)R' where ¢™(L) is
given componentwise as
(3.1) (pin(L)=l,dl, i= 1,2,...,p.

m . ..
Then 3™ is minimax.
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PrRoOOF. From Stein (1977a, b), it follows that the risk of im is given as

o D ST ) 3.

L1t>ll_l i=1 i

- Z log ¢} + log|¥| — p}

i=1

L(d: - d) 2fzd+zzd+(k p-l)zd

i t i=11¢t>1i

P
—E[2Z Z
- Z logl, — Z logd; + log|¥| —
i=1 i=1

[22 Y (d, - d)+22 Yd,+(k - p+1)2d

i=1¢t>1 i=1t>1i

(3.2)

l;
_log(E)—Zlogdi—p](sincedi<d and - l>1)

i=1

2Z(p—z)d+(k p+1)2d—log(m) f‘,logd -p

i=1 i=1

mn_

i

(k—p+1+2p-2i)d, —E210g(xk+1 Q) - Zlogd,«—p
i=1 i=1
p p

=p— Y E(logx},,_;)— Xlogd,—p
i=1 i=1

p

p
= - Ylogd,— Y Elog(x%,,_.)

i=1 i=1
This completes the proof of the theorem. O

Here we develop a minimax estimator of the form (2.7) by improving the
estimator developed in (3.1). We will show that this new estimator is better than
(in terms of risk) that given in (3.1) and hence minimax.

THEOREM 3.2. Consider the estimator ﬁ:s = RoS(L)R'. If ¢5(L) is given
componentwise as

(Zlogl)7(u)
. S(L) = o™ = 1 =1,2,...
(3 3) q)l( ) q)l (L) bl + u b l )2’ )p’

where ¢(L) = ld;, i =1,2,..., p, u=YP_ |log?l,, b, > 144(p — 2)2/25(k + p
- 12 and 7(u) is a functzon satisfying

34) D 0<r(w)<12(p-2)/5(k+p—1),

(ii) 7(x) monotone nondecreasinginuand E[r'(u)] < oo;
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then
R(¥" %) <R(E",3) < R(F".3)
and hence ﬁls is minimax.
Proor. Define (p,(L) = ¢ (L) +v(L) and y(L) = I;n,(L), where n,(L) =

[—dogl)T(u)]/(b, + u), i =1,2,..., p. By using (2.9) and Lemma 2.2 with u

=}, one finds that the unbiased estlmator of the difference in risk between

i and $ is a*(L), where
liTli(L) - ltnt(L)

a*(L)s2§: Z =,
(3.5) Hh=p+ ) Em(L) = ¥ (k+p+1-20)m(L)

i=1 i=1
+2leal'q(L)+—Z(k+p+1—2l)2nz(L)

Let us define

af(l)=2% ¥

i=1t>1

+(k - p+1)Zn(L)~Z(k+p+1—2l)n(L)

i=1 i=1

lTI(L) z"lt(L)
-1,

and

Z (E+p+1- 21)2772(L)

i=1

wi(L) =2 % lgn(L)+

By arguments similar to those in the proof of Theorem 2.1, it can be shown
using condition (3.4) that a%(L) < 0. Furthermore,

l"l(L) t"h(L) 2

() =2 £ ¥ O 4 F (- p L)
—2% S f I L8y
~2 8 (p-in(ny e £ g MTIDL L ()

Lin(L)—n,(L)]
) <0

[by similar argument as given in (2.12)]. Thus a*(L) < 0, which completes the
proof of the theorem. O

—2¥ T

i=1¢t>i

13
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In practice we often prefer a scale invariant estimator. A recommended way of
finding a scale invariant minimax estimator is to choose the point towards which
the estimator shrinks or expands adaptively. The following theorem, which is
analogous to Theorem 2.2, gives an adaptive minimax estimator of J.

THEOREM 3.3. Consider the estimator XAIA = Rep*(L)R where ¢*(L) is de-
fined componentwise as

lir(u p
(36) oA(L)=1d, - i) logl,»—p‘IZlogl,«), i=1,2,...,p,
by +u iz

u=

144(p - 3)° P
> —,
25(k +p —1) i=1

p 2
(logli -p 'Y logli) ,
i=1

and t(u) is an absolutely continuous function satisfying

(3.7) (i) 0 <(u) < (p - 3)/k*, * = 5k2/6

(ii) 7(u) is monotone nondecreasing in u, and E[r'(u)] < .

Then ﬁlA is minimax if p > 4.

Proor. The proof is again omitted because of its similarity to that of
Theorem 3.2. O

REMARK 3.1. The estimators given in (3.3) and (3.6) are very simple minimax
estimators; however ¢fs and ¢{'s are not order preserving. Following Barlow
et al. (1972) one can address this problem by performing an isotonic regression
technique over ¢fs and ¢{s. See Lin and Perlman (1985) for a complete descrip-
tion of this modification.

4. Risk simulation study. A Monte Carlo simulation study was performed
to compute the risks of our minimax estimator given in (3.3) and to compare the
performances with the risk of the standard estimator ¥, for p = 3, 5, and 6 and

various values of k. The covariance matrix I was chosen to be diagonal in such a
way that they gave a wide spectrum of eigenvalues. See for details in Dey and
Srinivasan (1984) for the choice of I. In this study, we considered the minimax
estimator (3.3) with b, = 5.8(p — 2)2/(k + p — 1)? and 7(u) a constant ¢ with
c=6(p — 2)/5(k + p — 1)%. Then we computed the percentage improvements in
risk of our minimax estimator (3.3) over the minimax risk.

The numerical studies indicated that the percentage improvements over the
risk of 3, and over the minimax risk are both significant, except for very large k.
It is observed that as % increased, the percentage improvements decreased. For
3 = I, the identity matrix, the percentage improvements were over 50%. It is also
observed that most of the improvement in risk (over the minimax risk) is
obtained by the estimator (3.1); the additional improvement offered by (3.3) over
(3.1) is relatively small. Also, both Stein’s (1975) estimator and Haff’s (1982)
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modification offer substantially greater improvement in risk than (3.1) or (3.3)
when ¥ is approximately scalar multiple of identity matrix.
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