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ON MODERATE AND LARGE DEVIATIONS
IN MULTINOMIAL DISTRIBUTIONS
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In this paper moderate and large deviation theorems are presented for
the likelihood ratio statistic and Pearson’s chi squared statistic in multi-
nomial distributions. Let % be the number of parameters and n the number
of observations. Moderate and large deviation theorems are available in the
literature only if % is kept fixed when n — oo. Although here attention is
focussed on k = k(n) —» oo as n — oo, explicit inequalities are obtained for
both % and n fixed. These inequalities imply results for the whole scope of
moderate and large deviations both for fixed k£ and for k(n) = o as n — o©.
It turns out that the x2 approximation continues to hold in some sense, even
if £ = oo. The results are applied in studying the influence of the choice of
the number of classes on the power in goodness-of-fit tests, including a
comparison of Pearson’s chi squared test and the likelihood ratio test. Also
the question of combining cells in a contingency table is discussed.

1. Introduction. Let the random k-dimensional vector Y, have a k-dimen-
sional multinomial distribution with parameters n and p = (p,,..., p;), i.e,

n!
(1.1) P,Y, —y)—y np, ,

1° 'kj—l

where y = (y,,-.., ¥,) has nonnegative integer components with sum n, and
where p is any point in the simplex

k
(1.2) S, = {(zl,...,zk): Y z;=1,z;>0for j= 1,...,k}.
j=1

Hoeffding (1965a) has studied asymptotic properties of tests of simple and
composite hypotheses concerning p, when the size a,, of the test tends to zero as
n — oo and k is kept fixed. The likelihood ratio (LR) statistic and Pearson’s chi
squared (x?) statistic are well known test statistics for this kind of testing
problems. It is shown by Tumanyan (1954), Steck (1957), and Morris (1975) that
under some conditions these statistics are asymptotically normal as k2 — oo (and
n — oo0). However, to attack testing problems with level «, tending to zero and

= k(n) - oo as n — o0, these results are inadequate, since Hoeffding’s paper
deals with fixed &, and on the other hand, asymptotic normality can only be
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applied if « is kept fixed. If the level a, tends to zero, the theory of moderate and
large deviations is needed.

It is the purpose of this paper to present moderate and large deviation
theorems for the LR statistic, especially if & = k(n) - o0 as n = oo. The whole
range of probabilities tending to zero very slowly up to the exponentially fast rate
of convergence to zero is considered. By the relation between the LR statistic and
Pearson’s x? statistic, results are also obtained for the latter one.

In fact, the asymptotics are derived from quite explicit inequalities with both
n and k fixed. Although in this paper attention is focussed on k& — oo, these
inequalities also imply some improvements for fixed k. A more detailed compari-
son with Hoeffding’s results is given in Section 2.

The x? statistic and LR statistic for the multinomial distribution can be used
to test goodness-of-fit. One of the major problems in such a case is the choice of
k, the number of classes.

To attack this problem several asymptotic (n — o) approaches can be made.
In Kallenberg et al. (1985) a local approach associated with a fixed « is employed.
Here we discuss the problem from a nonlocal point of view. There is a fairly good
agreement between local and nonlocal theory. However, for some situations the
conclusions are different. Neither of the asymptotic theories is definite. A lot of
Monte Carlo studies shows that local theory is well reflected for moderate sample
size in many examples. Here some Monte Carlo results are presented in situations
where local and nonlocal theory lead to opposite conclusions. As is seen from
these examples, nonlocal theory may be a better predictor of power behaviour.

As a second application x2? and LR tests are compared. For £ > « the LR
test is far more efficient in the sense of Bahadur than the x?2 test. Moreover, for
k — oo the LR test attains the optimal Bahadur slope even within the class of
tests based on nondiscretized observations! This surprising first-order optimality
property asks for second-order investigations. The present large deviation results
enable us to show that for the LR test based on discretized observations the
well-known phenomena of first-order efficiency implies second-order efficiency
does not come true! This relativizes the first-order optimality.

The third application concerns the question of combining cells in a large
contingency table when testing independence. Collapsing cells such that the
number of categories does not tend to infinity leads to a loss of efficiency in the
sense of Bahadur.

Theorems on the multinomial distribution with 2 = k(n) - o0 as n - o©
differ in two ways from those with & fixed: (i) the dimension of the parameter
space tends to infinity and so the number of parameters is growing with n; (ii)
parameter points are not supposed to stay away from the boundary of the
parameter space; for instance, min{p;: 1 <i<k}<k ' -0 as k - oo. For
both reasons standard moderate and large deviation theory cannot be applied.

Both aspects are of interest. A growing number of parameters opens the
possibility for closer approximations; if one uses a discretization, one can apply
with a larger number of observations a finer discretization. The second aspect
leads to investigations, also for fixed &, where small values of the parameters are
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involved, thus extending Hoeffding’s results. Our proofs are based on the follow-
ing approach. First, general inequalities are derived for the binomial distribution,
i.e., & = 2 (Proposition 2.2). Then the proof is by induction on k, using the fact
that the conditional distribution of Y, given one component is again multi-
nomial, but with % replaced by 2 — 1. Further the ideas of exponential centering
(saddle-point method) are employed.

The results are precisely formulated in Section 2, applications are presented in
Section 3, while proofs are given in Section 4.

2. Preliminaries and results. A crucial role in large and moderate devia-
tion theory is played by the Kullback-Leibler information number. In the
present case it is defined by

k
(2.1) I(q,p) = X qlog(q/p)), P,aE€S,
i=1
with the convention r log(r/s) = 0 if r = 0. It is useful to think of it as a kind of
“statistical distance” between the distribution of Y, under ¢ and the distribution
of Y, under p, although symmetry and the triangle inequality generally do not
hold.

The Kullback-Leibler information number appears also in the form of the LR
statistic: the LR test based on Y, for the simple hypothesis {p} against the
alternative hypothesis S, — { p} rejects the null hypothesis for large values of
Ii(Y,, p), possibly with randomization on the set where the statistic assumes its
critical value. [We denote by Y, the vector (Y,,,,...,Y,,) = (n7'Y,,,..., n"'Y,,).]

Therefore the LR statistic plays a natural role in the development of moderate
and large deviation theorems for multinomial distributions. It is well known that
both the LR statistic and Pearson’s x? statistic have an asymptotic x? distribu-
tion with (2 — 1) degrees of freedom when £ is kept fixed and n — co. One might
ask whether or not this x? approximation continues to hold in the tails of the
distribution, maybe even if £ — 0. So it is of interest to derive an expression for
probabilities of moderate and large deviations for the x? distribution itself. This
can be done by direct calculation, even if 2 — co. Let x% have a x? distribution
with %k degrees of freedom. If 2nd, > & then

(2.2) logPr(x%=2nd,) = —nd, + 1(k — 2)log(2end, /k) + O(log k)

as n — oo, irrespective of whether 2 — oo or not.

By Theorem 3 of Hoeffding (1965b) it follows that (2.2) indeed holds if x%_, is
replaced by 2nI(Y,, p) provided that (i) % is fixed and (ii) d,, < —log(1 — min{p;:
1 <i<k})— B for some B > 0. The last condition serves to avoid difficulties
that may arise at the boundary of the parameter space (cf. Section 1 and the
discussion below Proposition 2.2). Since min{p;: 1 <i <k} - 0if £ — oo, it is
clear that both conditions do not hold if 2 — o. However, it is yet possible to
derive a moderate and large deviation theorem for the LR statistic when k& — oo,
which has the same flavour as (2.2) (cf. also Corollary 2.5). In other words, the x?2
approximation continues to hold in some sense, even if £ — oo and moderate and
large deviation probabilities are under consideration.



DEVIATIONS IN MULTINOMIAL DISTRIBUTIONS 1557

THEOREM 2.1. Ifp,>a/k (i=1,...,k) for somea >0, and if 0 <d, <
0.15 and 2nd, > k, then forall k = 2,3,..., n=1,2,...

2(k—2)

2end,, \(-2/?
) e " (1 + 400a~"%d}/?)

P(I(Y,, p)>d,) < 2(
(2.3) b 10
fib2)
i=3 l
and if moreover d,, < (a/125)%, then for allk = 2,8,..., n=1,2,...
Pp(Ik(Yn’ p) 2 dn)

2end,, | (k=972
i)

(2.4)

k .
e (1~ 125a7'dy?)" T (1 - —)

> ca(
i=3

for some constant ¢ > 0.

It has to be noted that the bounds are quite explicit [the constant ¢ > 0 in
(2.4) goes back to the binomial case (cf. Proposition 2.2)]. Replacing @~ '/2 in (2.3)
by [k min{p;: 1 < i < k}]™'/2, there is no condition on p for (2.3) to hold (if
p; = 0 for some i we can return to a lower-dimensional multinomial distribution).
This is useful when testing a composite null hypothesis (cf. Remark 2.1). Further,
note that the condition

(2.5) piza/k, i=1,...,k forsomea>0

stated in Theorem 2.1 and also in the following theorem and corollaries, does not
imply that all p;s are of the same order of magnitude. For instance, if p, = (2k) !
(i=1,...,k—1) and p, =1+ (2k)7!, then (2.5) holds with a = }, while
Pr/P, = o as k = co0. On the other hand, the bounds are not intended as direct
numerical approximations for the involved probabilities, in the same way as
Berry-Esseen bounds do not claim to yield sharp numerical bounds. They are
useful because they have the right order of magnitude.

It is even possible to derive an upper bound which does not depend on p.
Following the same method as in Kallenberg [(1978), Section 3.7], one can show
that if 0 < d,, < 0.1 and nd,, > 1, then for all £ > 2

(2.6) P(Ii(Y,, p) 2 d,) < 4*"(nd,)" " %e ",

The upper bound in (2.6), however, does not agree with (2.2) if & > .

The power of nd, in the lower bound (2.4) equals 3(% — 3). This corresponds
to Hoeffding’s (1965b) Theorem 3. The power of nd, in the upper bound is 3
higher. This can be explained by considering the special case 2 = 2—the bi-
nomial distribution.

PROPOSITION 2.2. Foralln=1,2,...,d,> 0 and all p € S, we have
(2.7) P,(I(Y,, p)2d,) < 2e ",
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For each ¢ > 0 there exists a constant ¢ = c(e) > 0 such that
(2'8) Pp(IZ(?n’ p) = dn) 2 cpl(l - pl)e_nd"(n'dn)il/2

forallpe S,, neN, en ! <d, <log2 — e

We make some remarks on (2.7) and (2.8). First, we give a simple example
showing that for a particular choice of p and d, the upper bound in (2.7) is
attained for each n.

ExampPLE 21. Let p=(},}) and d, =log2, then P(IyY,, p)>d,) =
P(Y, = (L,0) + P(Y, = (0,1) =2 (})" = 2 - exp(—nd,).

One might guess that the upper bound in (2.7) is not sharp for moderate
deviations (d,, = 0). The next example shows that the order of magnitude in (2.7)
is the right one.

EXAMPLE 2.2. Let p = p(n) = (py(n), py(n)) with lim,_, p,(n) =0, and
let d, = I,(0,1), p(n)) = —log(l — p(n)), then lim,_ d, = 0 and

P,(I\Y,, p) 2 d,) > P(Y,=(0,1)) = {1 — py(n)}" = exp(—nd,,).

Hoeffding’s condition d,, < —log(l — min{p;: 1 < i < k}) — B for some 8 > 0
ensures that no difficulties arise with respect to the boundary of the parameter
space. There may occur two types of troubles: the first one concerns the fact that
the boundary of the critical region of the LR test overlaps the boundary of the
parameter space. Examples 2.1 and 2.2 are typical for this situation. The price we
have to pay for considering also this type of critical regions is the missing factor
(nd,)"'/% in (2.7) as compared with Hoeffding’s result. The second difficulty
which may arise, concerns the fact that p itself may be very near to the
boundary of the parameter space.

In (2.8) we see which price we have to pay for considering also this type of
parameter points—a factor p,(1 — p,) is inserted at the right-hand side of (2.8).
The following example illustrates the dependence on p,.

EXAMPLE 2.3. Let n=1, p, <e ', and d, = }§, then P(I(Y,, p)>d,) =
P(Y, = (1,0) = p,.

One might guess that for moderate deviations (d,, — 0) the lower bound can
be expressed as a function of nd, alone, independent of p,. The next example
shows that this is not true (cf. Remark 4.1).

ExAMPLE 24. Let p = p(n)= (p,(n), py(n)). Define u,= (a,+n,)n""
with a, € N, a,n"'pi(n) - o, a,n 'log{a,n 'p7'(n)} - 0, and
n,log{a,n " 'p7'(n)} - 0 as n - . Denoting d, = I,((u,,1 — u,), p(n)), we
have lim d, = 0. Moreover, I,((0,1), p(n)) < d, for sufficiently large n and

n—-oon
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hence, writing ¢, = (a, + D)n" !, d* = L,((t,,1 — ¢t,), p(n)) we have in view of
2.7

Pp(I2(?n’ p) 2 dn) = Pp(?nl 2 tn) = Pp(I2(?n’ p) 2 d:) =< 2e~nd,’:‘.

Choosing for instance p(n)=n"! and e, €N, a, > ©, a,n 'loga, - 0 as

n— ow,ora,=1,and p(n)> n 2 such that np,(n) > 0 as n — oo, it is easily
seen that the above conditions are satisfied and

_ 1/2
e "diendn(nd )'* 50 asn - oo,

indicating that we need some extra factor depending on p, in (2.8) to obtain
uniformity in p.

In order to obtain inequalities for all p € S,, even if p is close to the boundary
of the parameter space (and we need that), we have to pay for this uniformity in
p here. But as is seen from Theorem 2.1 if we deal with dimension &, we are
missing only one factor (nd,) '/% and one factor a [corresponding to p,(1 — p,)]
and not such a factor to the power & — 1. Moreover, if % is fixed and Hoeffding’s
condition holds, then it is easy to show by our method of proof that in (2.7) and
hence in (2.3) an upper bound can be obtained with the power of nd, one-half
lower.

For Pearson’s chi squared statistic

k
Qk( Z (?ni ‘Pi)Z/Pn

=1

we have the following result.

THEOREM 23. If p,>a/k (i=1,...,k) for some a>0 and if 0<
d,(1+u,+v,) <015 and 2nd,(1 — u,) >k with u,= 32d,a 'k)"/* and
v, = 3d,a 'k, then for allk = 2,3,... andn =1,2,... we have

P(Q¥Y,, p) = 2d,)

2end,, (k272 k-2
32( ) exp[—ndn-l»un(ndn— ——)]

(2.9) k 5
_ 2Ak~2) k 10
(1 + 400a~12d}/?) 1‘[ 1+ 7 ,
and if moreover 8d,, < (a/125)?, then for all k = cee, n=1,2,...
- 2end (k=372
P(QY,, p) > 2d,) > ca( )
k—3
(2.10) .exp[—ndn —(u, + v,,)(nd" - = )]

_ k—3 k 2
(1 - 1250-4(84,)"?)" 2exp[ ( y )49u3] [1(1 - —)
i=3
for some constant ¢ > 0.
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Theorem 2.3 is of interest if d,k is small. This corresponds to the fact that
the distribution of Pearson’s x? statistic and the LR statistic looks similar as
long as small and moderate deviations are considered. However, they behave
differently for large deviations. When £ is fixed this is shown by Hoeffding [see,
for instance, Hoeffding (1965b), page 218]; the case & — o is extensively dis-
cussed in Section 3.

Next we present three corollaries, which make applications easier. We start
with a Chernoff-type large deviation result, i.e., exponentially fast convergence to
zero.

COROLLARY 2.4. (Chernoff-type large deviation; d, = d fixed). Let n — oo
and k = k(n)=o(n)asn - o, andletp, > a/k (i =1,..., k) for some a > 0.
If d, = d < (a/125)?, then

(2.11) lim - n'og P,(I(Y,, p) > d) =d.

REMARK 2.1. The right-hand sides of (2.3) and (2.4) do not depend on p
(only on a). Therefore, if £ = o(n) as n - o and d, = d < (a/125)?, then

lim - n~'logsup P(I(Y,, p)>d)=d,

n=oo PEZy(a)
where
Poa)={p:p;2as/k,i=1,..., k).

This result is useful in testing a composite null hypothesis (cf. Section 3). Note
that the situation where & is fixed and p € int S, is fixed, is covered by the
above corollary. It may be used e.g., in the computation of Bahadur efficiency (cf.
Section 3).

Now we turn to the case d, — 0. The following corollary covers the whole
scope of moderate and large deviations, which do not lead to exponentially fast
convergence to zero. Since 2nl(Y,, p) is asymptotically x2_,-distributed as
n — o« for fixed k and since the x? distribution is asymptotically normal as
k — oo (after suitable standardization), it may be expected that if 2 - oo and
the deviation is not too large, normal tail behaviour appears. That this is true,
may be seen in (2.13). On the other hand, if we are further in the tail the typical
large deviation feature appears (domination of the Kullback-Leibler number d,,
[cf. (2.15)]).

COROLLARY 2.5. (Moderate and large deviation; d, > 0). Let n > oo and
k=k(n)=o0(n) asn— oo, and let p, > a/k (i=1,..., k) for some a > 0. If
lim d, =0 and 2nd, > k then

log B;(Ik(Yn’ p) = dn)

(212) _(k;3)og(2e:d,,

) — nd,, + O(log(nd,) + kd}/?).
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In particular, if x,, — o, x, = o(Vk) then
log P,(2nIy(Y,, p) = k + x,/2k)
= —1x2+ O(x3k "2 + logk + k3 n1/2);
if x, = c//k/2 for some ¢ > O then
log P,(2nI(Y,, p) = k + x,/2k )

(2.13)

(2.14)
= —ik{c—log(1 + c)} + O(log k + k*?n~1/%);
if x,/Vk = o0 and x,k"/*n""' > 0 then
(2.15) log Pp(2nIk(l7n, p) = k+x,2k) = —Lx, 2k (1 + o(1)).
For Pearson’s x? statistic we obtain
COROLLARY 26. Let n— oo and k = k(n) = o(n/?) as n—> o, and

let p,>a/k (i=1,..., k) for some a>0. If lim,_ _kd, =0 and
2nd {1 — 32d,a 'k)"/*} > k then

log P,(QXY,, p) > 2d,)

(2.16) - (k ; k )log( 2e:d”) —nd,

+0(log(nd,,) + kd}/? +(kd,)"*(2nd, — k)).

In particular, if x, > o, x, = o(Vk) and n"/*x k%' > oo then
log P(nQ%(Y,, p) = k + x,3/2k)

= —1x2+ O(x2k™V% + logk + x,k%?n"1/2);
if x, = cyk/2 for some c > 0 then
log B,(nQi(Y,, p) = k + x,/2k)

= —1k{c—log(1 + c)} + O(log & + k*n"1%);
if x,/Vk — o0 and x,k*?/n — 0 then
(2.19) log P,(nQX(Y,, p) = k + x,/2k ) = —1x,/2k (1 + 0(1)).

(2.17)

(2.18)

REMARK 2.2. It is well known that Hoeffding’s result for the multinomial
distribution can be generalized to k-parameter exponential families with fixed &
[cf. Efron and Truax (1968), Kallenberg (1981)]. One may ask whether Theorem
2.1 can be generalized to exponential families. It might be of interest to consider
such exponential families with dimension & = k(n) growing with n. For instance,
if we have a sufficiently smooth density f(x; 6), we may write

o=oo}

f(x; 8) = exp{log f(x; 0)}
0—6,) o

k J
= exp{log f(x; 6y) + X ———— —5log f(x; 9)
, j=1 J:
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thus obtaining a curved exponential family as approximation to the density itself.
By choosing k = k(n) larger a better approximation may be expected.

Whether Theorem 2.1 holds for general exponential families is an open
question. If Y},...,Y, are i.i.d. normal N,(y; I) with p € R* and I the k X &
identity matrix, then the Kullback-Leibler information number I,(x, y) equals ;
times the square of the Euclidean distance ||x — y|| and hence

B (1Y, 1) 2 d,) = B,(}IIY, — ull* > d,,)
= R(n|Y,|* = 2nd,,)
= Pr(x? > 2nd,)

and so we can apply (2.2).

3. Applications. In this section some statistical applications of the the-
orems of Section 2 are presented. Especially, we discuss the choice of the number
of classes in goodness of fit tests, Bahadur efficiency and deficiency of LR and x?
tests, and the question of combining cells in a large contingency table.

Let Z,,..., Z, be ii.d. real-valued random variables with an absolutely con-
tinuous distribution. To test the simple hypothesis H,, that the Z;s have given
density A, we consider the classical Pearson x? test. Let the range of the Z;s be
divided into k disjoint intervals A,,..., A,, let Y,,= #{Z, € A;}, and put
p,=Py(Z, € A), i=1,..., k, where P, denotes the distribution under H,. Then
H, is rejected for large values of the test statistic

k
(3.1) Q%(Ym P) = Z (?ni "pi)2/pi~
i=1

In applications of this test one of the major problems is the choice of the

intervals A,,..., A,. We investigate the effect on the power of the x? test of

letting £ = k(n) tend to infinity (as n — o) under the restrictions

k=o0(n"?) asn - o,

(3.2) ( )
p;, = a/k, i=1,...,k forsome0 <a < oo,

and

max p, > 0 ask — .
l<i<k

To study the power for a given alternative density g consider the contamination
family

(3.3) g8=01-0)rh+0g, 0<0<1.

In line with applications, we assume that the support of P, is a possibly infinite
interval S; i.e., A > 0 a.e.(A)on S and h = 0 outside S where A is the Lebesgue
measure. It is also assumed that g = 0 outside S; this involves no loss of
generality since goodness-of-fit tests are always performed conditional on the
event that no observations lie outside S. The general idea is that the power of a
test at g, i.e, at 6 =1, for moderate sample sizes will be reflected in the
asymptotic power of the test for n » oo and 6 = 4, — 0. This approach has
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proved to be very effective in parametric models. Complementary to Kallenberg
et al. (1985), where strictly local theory (n6? bounded away from 0 and o) is
developed, here we consider nonlocal alternatives for which lim,_, n8? = co.
For such nonlocal alternatives and a fixed significance level a, many tests will
have limiting power one and a problem of comparison arises. To overcome this
difficulty levels a,, are considered tending to zero at a rate such that

(3.4) (—loga,)/n6? is bounded away from 0 and .

Note that this extends the strictly local case where n6? is bounded away from 0
and oo and a, = « is fixed. In its most extreme form, when 6, is fixed, this
approach is at the basis of the concept of Bahadur efficiency; in that case «,
tends to zero exponentially fast. Here we take an intermediate position assuming
limsup, _, n6;} < co.

For smaller a,s than given by (3.4), the limiting power of the x? tests will be
zero, for larger a,s it will be one for all choices of £ = k(n) not increasing too
fast. Considering a fixed sequence {,}, there is still a whole range of sequences
{a,} satisfying (3.4). By an appropriate choice of &, we may try to maximize the
range of levels a, for which a limiting power one is achieved.

Denoting by B,(8; @7) the power of the size-a x? test at 6, and writing

k 2
(35) A,=A4,(A,,...,A,)= Zpgl{fAde} with f = g/h — 1,
=1 i

the following proposition describes the influence of the choice of & = k(n) on the
power of the x? tests.

PropoSITION 3.1. Let n — o, k = k(n) = o(n'/?) (k may remain bounded)
and let min,_;_,kp; > a for some 0 <a < oo. Let {6,} satisfy both
lim, ,  nb? = oo and limsup,_, nb; < co and let loga, = —bnb? for some

n — oo

0<bd< oo
() If k(n) = o(nb?) then
1 if lim Ay, > 2b,
lim B, (6,; Q%) = n=o
nTo’oB"n( wi Qi) 0 if Lim Ay, < 2b.
(ii) If k(n) = dn6?, 0 < d < o then

1 ifff2dH>cd,
lim B, (6, QFny) =
noe 0 ifff?dH<cd,

where ¢ > 0 is determined by 2b = d{c — log(1 + c)}.
The proof of Proposition 3.1 is in Section 4. Here we comment on its

implications and relationships with the conclusions of the local theory developed
in Kallenberg et al. (1985).
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First of all it has to be noted that increasing k£ has two opposite effects:

—an increase of the local noncentralities n§?A, since A, tends to become
larger as k increases, which has a positive effect on the power;
—an increase of the variance of nQ}, which has a negative effect on the power.

Strictly local theory (n8? bounded) leads to the conclusion that an improve-
ment of the power by sending & to infinity is only obtained if the increase of A B
with k is quite strong to beat the negative effect of an increasing variance. It is
shown in Kallenberg et al. (1985) that & — oo improves the asymptotic local
power of the x? testif A,/ V& — oo and pushes it down if A +/ VE = 0.

For nonlocal alternatives the positive effect dominates the negative one if %
increases slowly (cf. the proof of Proposition 3.1). Noting that lim koo =
Jf2dH < oo [cf. Lemma A in Kallenberg et al. (1985)], Proposition 3.1 leads to
the following conclusions:

(a) if A, grows fast, i.e., A,/ VE — 0, both local and nonlocal theories state
that £ — oo improves the asymptotic power;

() if Ay > oo, ie, [f?dH = oo, but A,/ Vk — 0 local theory suggests to
take & bounded while by nonlocal theory & — oo is preferred;

(c) if A, converges to a finite limit, i.e., [f2dH < oo, local theory prefers a
bounded k; nonlocal theory then states that a slow increase of k(n) to infinity is
better than a fixed k [see (i)], while a fast increase of k(n) to infinity is worse
than a slowly increasing k(n) [see (ii), cd is growing with d and lim d—xCd = 0];
moreover, if A, does not increase much, the range of levels a, for which the
limiting power can be improved by a slow increase of %, is small; so in this case
both theories suggest to take k£ not too large.

Here we have considered a fixed sequence {6,} and variable sequence {a,}. In
view of (3.4), Proposition 3.1 can equivalently be interpreted in terms of a fixed
sequence {a,} and a whole range of alternatives 6,.

REMARK 3.1. Nonlocal theory suggests taking £ = k(n) — oo at not too fast
a rate. This is in sharp contrast to the criterion A,/k - o derived from
Shirahata (1976) which is also based on a — 0. Note that Shirahata’s criterion is
never satisfied if min, _;_,kp, > a for some 0 < a < o since in that case
A, = o(k).

In two examples we confront the conclusions of the local and nonlocal theory
with some Monte Carlo results for sample size n = 50.

ExamMpLE 3.1. Let A be the standard normal density ¢ and g =
(1/V3)¢(x/ V3) i.e., a normal distribution with variance 3.

EXAMPLE 3.2. Let A be the uniform distribution on (0,1) and g the Beta
B(0.4,0.4) distribution.

In both examples we take equiprobable classes under the null hypothesis. By
routine calculations we have lim,,_, ,A, = o and lim, , A,/ Vk = 0. Hence in
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- power - power
.81 .81
.61 6
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F1G. 1. Power of x? tests estimated by Monte Carlo from 10,000 samples. n = 50, a = 0.05.

both examples local theory suggests a bounded &, while nonlocal theory indicates
k — oo as the beter choice. The Monte Carlo results presented in Figure 1
indicate that nonlocal theory gives a better explanation of the power behaviour
for these examples.

Proposition 3.1. deals with moderate deviations of the x? statistic. Next we
present an application where large deviations of both the x? statistic and the LR
test are applied. It is well known that the LR test beats the x? test asymptoti-
cally at fixed alternatives. For instance, in the sense that for fixed £ the Bahadur
efficiency of the x2 test relative to the LR test is less than or equal to 1 and
equals 1 only on a small set of alternatives [Bahadur (1971), pages 31-32]. The
difference between the Bahadur slopes generally increases with k. Under strong
moment conditions, Quine and Robinson (1985) show that if k(n) = O(n) - o,
the Bahadur efficiency of the x? test relative to the LR test indeed equals O.
Their moment conditions can be weakened to [f 2dH < oo (cf. Lemma 4.1). Here
we discuss Bahadur efficiency in light of the theorems of Section 2. Let k(n) =
o(n) > oo and consider a fixed § in (3.3) such that [gylog(g,/h)dx < (125)" 2.
Further assume [f2dH < o and take p,= k™' (i=1,..., k). It now easily
follows from Corollary 2.4 and Bahadur’s (1971) Theorem 7.2 that the slope of
the LR test based on the discretized observations Y,,,...,Y,,,, has exact
Bahadur slope 2 [g,log(g,/h) dx. By Theorem 7.5 of Bahadur (1971) this implies
the remarkable fact that the LR test basedon Y, ..., Y, ,, is Bahadur efficient
at g, even within the class of all tests based on the original observations
Z,...,Z,! Forinstance,if Z,,..., Z, are normally N(u, 1)-distributed and we are
testing Hj: p = 0, the LR test based on the discretized observations Y,,, ..., Y, 4,
is Bahadur efficient if k(n) = O(n) — oo! This surprising first-order optimality
property demands second-order investigations. In regular cases, a test which is
Bahadur efficient has Bahadur deficiency of order O(log n)—first-order efficiency
implies second-order efficiency [cf. Kallenberg (1983)]. To obtain the Bahadur
slope a first-order large deviation result as in Quine and Robinson (1985) suffices.
To study Bahadur deficiency second-order large deviation theorems are needed.
By Theorem 2.1 we have

— 12 n
(3.6) —n og B(I(Y,,p) 2d)=d - Ezlog;(l + o(1)).
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Application of Theorem 5.2 in Morris (1975) yields
(387 {L(F. p) - L ps, p) + O(kn ")}a; 'n/* = , N(0,1),

where p; = (pgy, ..., Pop) With py, = Py(Z, € A,) (i = 1,..., k) and where

o = fgo{log(go/h)— fgolog(go/h)}2dx-

Note that

(38) I(ps, ) = [gilog(gs/h) dx ask — .

It is seen from (3.6) and (3.7) that the Bahadur deficiency of the LR test based on
the discretized observations depends on the rate of convergence of 2 = k(n) to
infinity in two ways—both by the convergence of the “Riemann-Stieltjes sum”
I(py, p) in (3.8) to the Kullback-Leibler information number (g,log(g,/h) dx,
and by the term 1kn 'log(n/k) in (3.6). So the well known phenomena of
first-order (Bahadur) efficiency implies second-order (Bahadur) efficiency does
not hold here! The relativity of the earlier obtained first-order Bahadur optimal-
ity is clear from the lack of second-order efficiency.

Now we return to the comparison of LR and x? tests. Choose 7,,,..., ¥,, € N
with X% . 5,=n and -1<5, —nk {1+ (k- 1)VdV?} <1, -1<3, -
nk™1 - (k—1)"V2d"Y? <1 (i=2,..., k) [cf. Hoeffding (1965a), page 389].
Define y,, =¥y + k-1, %, =5%:—1(i=2,...,k), then £*_|y,. = n and

k
Yyi= [nk“{l +(k—1)"2dV?) + k- 2]2

+(k = 1)[nk {1 - (k- 1)""d'2) - 2|’
>n%k Y(d+1)

for n (and hence k) sufficiently large; therefore
k (nly, - 1/k)°

2( — — nt -
Qk( Yns p) Z l/k

i=1

k
kn2Y y2—-1/k>d
i=1
for n sufficiently large, and thus, applying Stirling’s formula,
- n"'log P(Q%(Y,, p) > d)
(39) ’
< —n Nog P (Y, = yp,--., Yy = Ypp) = 0(1)

as n — oo. Since

(3.10) QUY,, p) > 5, [(8s/h — 1)’ hdx = 62 [ 2dH < oo,

the exact Bahadur slope at g, of the x2 test equals 0, which implies that the
Bahadur efficiency at g, of the x? test relative to the LR test equals 0.
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REMARK 3.2. In case [f2dH < o the following curious situation for
Pearson’s x? test may occur:

—for fixed a and bounded n6? local theory states that a bounded % is
preferable [Proposition 4.1 in Kallenberg et al. (1985)];

—for a, = 0, n6? —» o, and nd,' bounded such that (3.4) holds, there may be
a small range of ,s for which £ — oo at not too fast a rate has to be preferred
(Proposition 3.1);

—for a, - 0 at an exponential rate and a fixed § again bounded % is
preferable [(3.9) and (3.10) imply a Bahadur slope equal to 0 if 2 — oo, while for
a fixed %k a positive Bahadur slope is obtained].

As a third application we investigate the question of combining cells in a large
contingency table. Let N = (Nj,..., N,y Nopy ooy Nogy oo, Nypy oo, N =
(Y,,...,Y,;,) with & = rc be multinomial distributed with parameters n and

D =(DPir--+» Pro» Po1s+++» Pocr-+s Pris--+s Pre)- Write p, =% p,; and p ;=
L, p;;- We only consider tables with

(3.11) irl;fpi; a/r and ir}fp_j > a/c forsome fixed a € (0, ).
Consider the null hypothesis of independence
(3.12) Hy: pi=p,.p,, i=1,...,rj=1,...,c
Define for ¢ = (¢14,---,9,c)
Iq, Ho) = inf L(q,p) = inf ?jqi,{log a:,;/(pi.p;)},
then
I(q, Hy) = I,(q,q°) where q) =99, i=1,...,r; j=1,...,c.

Take a sequence of alternatives {g,} satisfying
(313) X ailog{q;/(9:9,)} ~ v (0,a(125) %) ifr,c— 0.
i J
(This éorresponds to a “fixed” alternative; for instance, if
q,;= ‘/Ai,-g()(x’ y) dxdy
with
go(x, ¥) = (1= 0) [h(x, y) dy [h(x, y) dx + 8(x, ¥)

for some densities h and g, and suitable classes 4;; in R?2, then (3.13) holds in
general with

v= fautx, yogletx. ) feulx, ) [z, 3) x| asay
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By Remark 2.1 we have for each 0 < d < a(125) 2
(3.14) n~'log sup P,(I(Y,, Hy) > d) < n"'log sup P,(I(Y,, p) > d)

PEH, PEH,
- —d.
Let r = r(n), c = ¢(n) = o0 as n - oo. Assume
(3.15) 1(Y,, H,) apquciglwlk(q,qo) =7

In view of (the proofs of) Theorem 7.2 and 7.5 in Bahadur (1971), (3.14) and (3.15)
imply that the exact Bahadur slope of the LR test equals 2y. So one might say
that again the LR test is Bahadur efficient. Applying the inequality

qn 92 9t Qqi2

+ g;5log > (gy + qpp)log————,

049, 7 dide P (g. + g,)

it is easily seen that for bounded r = r(n) and/or ¢ = ¢(n) the Bahadur slope is
in general less than 2y. Therefore from a nonlocal point of view combining cells in
such a way that r(n) and/or ¢(n) remains bounded results in a loss of (Bahadur)
efficiency.

g, log

4. Proofs. The main part of this section is devoted to the proof of (2.3).
Before doing that we first prove Proposition 2.2.

PrOOF OF PROPOSITION 2.2. The inequality (2.7) is implied by the more
general lemma 2.3.1 of Kallenberg (1978) and the remark following it.
Inequality (2.7) is also a special case of Theorem 1 in Fu (1983). It remains to
prove (2.8). Without loss of generality assume 0 < p, < ;. Define u, > p, by
I,(u,,1 - u,), p)=d,; then we have

Pp(I2(?n’ p) = dn) 2 Pp(?n = un)

L (?)P{(l _pl)n_je—nd"(ﬁ)nun( 1- un)n—nu"

(4.1) Jj=nu, D, 1-p,
, . (p 1-u Jj—nu,
- £ (Fut - ur | B ) e
Jj=nu, J u,(1-p;)
Hence, with nt, the smallest integer greater than or equal to nu,,,
nd,

n_ntnpl(l - un)e-
un(l _pl)

(42) P(I(Y,,p)=d,)> (n':n)u;;tn(l -u,)

Using Stirling’s formula it is seen that the right-hand side of (4.2) is greater than
or equal to ¢, p,e”"(nt,) /% for some constant ¢, > 0. If u,/d, - ¢, € [0, x0)
the result is established. So from now on assume u,/d, = o0. Denote by ¢ the
standard normal density and let v, = {nu,(1 — u,)}'/%. Returning to (4.1) we
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have by the Berry—Esseen theorem
P,(I(Y,, p) 2 d,)

> ) (7 Juia = w)™

0<i<0.1v,—1 (j—nu,)/v,€((10i/v,),[10(i+1)] /v,)

\%

(P—uw) )
(4.3) u,(1-p,)
‘ 2
.y pl(l—u»)‘“‘“’e_ndn 10(1) w;+(1-u,)
0<i<0.lp,— 1 uy(1-py) U Uy
10(i+1)
—nd, 1

u}l/2n1/2 :

> Z (pl(1 B un)

0<i<0.1p,—1 u,(l —p,)

Since u,/d, —» o implies p,/u, - 1 and (u, — p,)*/{2p,d,(1 — p,)} = 1 the
right-hand side of (4.3) is greater than or equal to cy(nd,) /2 for some c, > 0.
This completes the proof. O

REMARK 4.1. From the above proof we see that we do not need the extra
factor p,(1 — p,) in (2.8) if u,/d, = . If u,/d, is bounded and nu, € N, we
can estimate the sum in (4.1) by the first term, i.e., the term with j — nu, = 0,
implying that also in this case the extra factor p,(1 — p,) in (2.8) can be omitted.
However, in the remaining case, u,/d, is bounded and nu, ¢ N, we may need
some extra factor depending on p, in (2.8) as is seen form Example 2.4.

PRroOF oF THEOREM 2.1. Since the method of the proof of (2.4) is similar to
that of (2.3) and since the proof is rather long, we only will give the proof of (2.3)
(cf. also Remark 4.2).

The proof is by induction on k. For k& = 2 the inequality (2.3) reduces to (2.7)
in Proposition 2.2 which already has been proved. Suppose that (2.3) is true for
k>2, and let Y,=(Y,,...,Y,,,;) have a (k + 1)-dimensional multinomial
distribution. Without loss of generality, assume that a(k + 1) < p, < 1/(k + 1).
Define

I*(r,s) = rlog(g) +(1- r)log{i—:—g}
=Iz((r,1—r),(s,'1—s)) (r,1-r),(s,1—5s)€S,,

k
{Osjsn: I*(%,pl) <d, - —}

J
4 2n

and

b;
1-p, '
Note that I*(1, p,) = —log p, > log(k + 1) > d,, and hence n ¢ J,. By Lemma

P, =
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2.3.1. of Kallenberg (1978) and the remark following it we have
k
I* >d — — 2 —nd,,+k/2.
( ( nl’ ) = "n 2 n) = ze

Therefore

Pp(Ik+1(?n’ p) = dn)

p|I* )>d, k
< >
( (nl’pl 2 )

k+1 Y.
- 5 o[ S v 2]+

jed, i=2 i

/n
_log{J/ } 2 dna Ynl )
D,

<2e ndtk/Z 4 N P(Y, =J)

(4.4) jed,
k1l p  _ n Y, n J
.P ——,Ynilog{ - }2 ,{dn—I*(—,p)} Y, =J
”( Eg n—j n—jpi.| n-j n U
=2e "4tk 2+ ¥ P(Yu=1J)
JE€d,
k Z, n
log{ =21 > d,—I* ,
(E: _”Og{ )2 } n- !{ (n ‘)}

where Z, neji=Zp_j/(n—Jj)and Z,_ ;= (Z, i n_jk) has a k-dimensional
multinomial distribution with parameters n—j and P =(Py..., Dp). Now the

induction hypothesis can be applied, since for j € J,
(n - ')—"—{d -1*(1 )}>k/2
.I n— j n n ’ p 1 .

Because p,_,=p,/1—-p)=>ak+1) /1 —-ak+1)"Y)=a/k with a=
a/(1 + k71 — a)), application of the induction hypothesis yields

k zZ _. n
P\ Y Z .logl — )} > {d —I*( )}
”(El ’ g{ b } n-j n P

— (i (k-2)/2
(4.5) < 2( 2en{d, - I*(j/n, p,)} ) o~ n(da=I"Gi/n, p))
- k

_o F 10
-[1 + 400021 + k7Y (1 - a)}l/zd,‘lﬂ]z(k 2)]'] (1 + —-—).
i=3 l

Forx >0and0<acx<1

[1 + x{l + k7M1 - a)}l/2 ]2(k~2)

<1+x,
1+x
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implying that the right-hand side of (4.5) is less than or equal to
2end, \ k=22
=)

- . 7 - 2k—2)+1
P e nda—1 (J/n,pl)}(l + 400a 1/2d;1/2) ( +

{1 - =)

Next we investigate P,(Y,; = j). Here we use the method of exponential center-
ing. Let X, have a binomial distribution with parameters n and j/n; then we
have

(4.7) P,(Y, =Jj) = Pr(X;, = j)exp{ —nI*(j/n, p,)}.
(Note that EX;, = j: centering!) The inequality
jn
(27)*nn+1/2%e7n < pl < (27)*nn* 1% (1 +(4n)7")

yields the upper bound

(4.6)
(k—2)/2

(4.8) Pr(Xj,,=j)s 1+(n) { .

V2r \j(n—J)

1/2
} , i<j<n-1.

Now define

i k
a, = sup{O <J<np;: I*(%,pl) >d, - E}’

] k
a; = inf{np1 <j<n: I*(i,pl) >d, - —}
n 2n

with the convention a, = 0if I*(0, p,) = —log(1 — p,) < d, — k/(2n). In view
of (4.5), (4.6), (4.7), and (4.8) it holds that

. A Zn—ji n J
L BV =)B| L2, g 54 > —{d, - r(£.p,)]
i=1

JjE€d, i n-—j
a1 9end, \(k-2/2
RES
J=a, +1 k
_3f & 10
-~ (1 + 4000 1/2d /%)™ 3{ I'1 (1 + —)}
=3 l

(k=22
(4.9)

)

.(1 +(4n)_1)(2w)_1/2{1 - _____I*(j/n, pl)}

d

n

+

k
max(O, d,+log(l1-p,) - E)]

2en{d, + log(1 — p,)} |<-272
.2 e_ndn

k
[ & 10
(1 + 400a-12d}/%)** 3{ I (1 + —)}

=3 l
The term 2 exp{ —nd, + k/2} in (4.4) will be estimated later on. Our next aim is
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to derive an upper bound for the first term in the right-hand side of (4.9). As a
result we then obtain inequality (4.21).
Since (1 — x)log(l1 —x) > —x for0 <x < 1,wehavefor0 < p,z/(1 —p,) <1

I*(Pl + D2, p])

z
=p,(1 + 2)log(1 + 2) +(1 — p, —plz)log(l - lplp )

(4.10) — P
> py(1 + 2)log(1 + z) — p,2
=p,{(1 + 2)log(1 + z) — z}.

Furthermore,

(4.11) I(p, — pz, p,) > I*(p, + P2, P))

forz>0and 0 <p, < 1. Let a(j) =|j/n — p,|p; ', then we have,

il

Wl Ume) |t
d

n

+
a,—-1

L [1-2Ha s a) togt + al4)) ~a()

J=a,+1

(k=2)/2
] j—1/2.

For j > 0.9p,n the terms of the last series are decreasing or increasing—decreas-
ing (in j). Therefore we can estimate the sum by

/"_"“‘[1 - ZH(+ a()))

J=b,

(k—2)/2
(4.13) log(1 + a(j)) - a(j)}] i+ (09mpy)
09p,n j (k—2)/2
+ Y |1- 7 {(1 +0.1)log(1 + 0.1) — 0.1} Jj V2,
J=a,+1 n

where b, = max(a,+ 1,0.9p,n).
First consider

Jo =Bt ety

Lo
(4.14) (k-2)/2

log(1 + a(j)) —a(J))} JjV2dj.
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Substitute z = (j/n — p,)p; !, resulting in
(k=2)/2
{(ai =D~ =py)pi! P,
1 - —{(1+2)log(1 +2z2) -2z}
(4.15) fo [ d,
(np)(1 + 2) " de.
Next substitute y2 = (1 + 2)log(l + z) — z. Note that 2 ydy = log(1 + z) dz and
2y < 2V2(1 + z)?log(1 + z).
Hence the integral (4.14) is less than or equal to [cf. (4.15)]
/(dn/pl)l/z{l _ &yz}(k—2)/2
0 d,

= (2nd,)* [((1 = )P .
0

(2np,)"* dy
(4.16)

Let k > 5. Substituting u = (1 + t)/2 we arrive at
(2nd )1/2f1 uk/2-1(1 - u)k/2-12k—1 du
" 1/2

T(k/2)T(k/2)

= (2nd,)""2*? TR

1 k-1 1 2
< (2ndn)1/22k_2‘/2_772-(k-1)(1 - m) e(k — 1)_1/2(1 + Y 4)

12 1 ~12
< (2nd,)"%2-1am (k + 1) (1+k+1).

By direct computation of [}(1 — ¢2)*~2/2dt for k = 2,3,4 it follows that for all
k > 2 the integral (4.14) is less than or equal to

(4.17) (2nd,)"*2" V2w (k + 1)“/2(1 + T )

Next consider

(k-2)/2

w18 [ 20+ a() ok + a) -} |

Substitute z = (p, — j/n)p; !, resulting in
T (k=2)/2
[t DPi 1[1 ~ P+ 2)log(1 + 2) —z}]
0 d,
(np) (1 - 2) .

Next substitute y2 = (1 + z)log(1l + z) — 2. Note that 2 ydy = log(1 + z) dz and
for0 <z <01

(4.19)

2y < {21/2(1 — 2)"log(1 + z)}(l + 21%y).



1574 W. C. M. KALLENBERG

Hence the integral (4.18) is less than or equal to [cf. (4.19)]

f(d"/p‘)l/z{]_ 3 D, }(k—2)/2
0 d, 4.’

- (2ndn)1/2f1(1 ~ t2)"*‘2’/2{1 +
0

(2np,)"*(1 + 2'2y) dy

2d \?
") t} dt
P,

172 (1 aN(k—=2)/2 . 1/24 -1 2dn 172
= (2nd,) f(l - t?) dt +(2nd, )2k 1| =2
0 Py

(4.20)

1/26 -1 -1/2
< (2nd,)*2"V2m (k + 1) (1+k+1)

+(2nd,) " (k + 1) *(2a 'd,) (1 + &)

[cf. (4.16) and (4.17)].
In view of (4.4), (4.9), (4.12), (4.13), (4.17), and (4.20) we obtain

Pp(Ik+l(?n’ p) = dn)
k
< 2e ndntk/2 +{max(0, d,+ log(1-p,) - 2—)}
n

2[ 2en{d, + log(1 — p,)} ]‘k"2>/2
' k

10
e " (1 + 400a/2dy?)™" 3]‘[( )

(k—2)/2
+2( 2e:d") e "dn(1 + 4000 /2d}/2)*°
(4.21) 10 2 1)
e
i=3

.[(2ndn)l/2\/2_w(k + 1)‘1/2(1 + ) +(2nd,) X (k+1)""

k+1

~(2a_1d,,)1/2(1 + k1) +(09np,)

0.9p;n (k—2)/2
+ Y 1—d—{1 110g11—01}] ‘1/2]
Jj=a, +1 n
Now we investigate some of the terms in the right-hand side of (4.21) a little bit
closer. The obtained results will then be used to establish (4.28). Since the
right-hand side of (2.3) is greater than 1 if 2nd, < k + (3k)'/2 (and k > 3), we

may assume in the sequel that
2nd, > k+1+(3(k+1)}"?  kx2
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Hence

35 [2end, \(kt1-2/2 k 10
4.22 2e ndnth/2 < " —nd, TT(1+ —|.
(4.22) ¢ E+1\k+1 € IJ, i

Because (1 — Ax~1)*~2/2x~=1/2 jg maximal on x > A > 0 if x = (k — 1)A, and
—log(1 — p,) > a/(k + 1), we have
(k-2)/2

d— 1/2

k log(1 —
max(o, d, +log(1 - p,) - E){l . _g(?_pl_)}

n

(1) A )

(k-1)) ~°
moreover,
2éndn 20k 4+ 1\ (k=272 1 \E-2/2/ p 4+ 1\1/2
e I by B ey B e B
implying that the second term on the right-hand side of (4.21) is less than or

equal to
dn\/2\2k73 k 10
1+ 400(—) ) H(1 + —,).
a i=3 l

2end. \(k+1-2/2 dn\1/2
(4.23) 2( ”) e—"dn( )
k+1

a

We proceed by deriving an upper bound for a, . If p, > d, then, by (4.10),
I*(p, + py(e — 1), p;) > d, and hence a, < np.e. If p, <d, then, again by
(4.10),

dn dn dn
I*(p, +(e - 1)d,, p,) >p1{ 1+(e-— 1)—)log 1+(e- 1)—) —(e - 1)—}
Py Dy Dy
d,
>pl_ =dn’
Py

since {1 + (e — 1)x}log(1 + (e — 1)x) > ex for x > 1. So in this case a, < np,
+ nd (e — 1). Because (1 — x) /2 <1+ x for 0 < x < (/5 — 1)/2, we have

n n kE+1

The next term is (0.9np,) " '/%; we have the following inequalities

(0.9np,)* < (09) "V ’n "2 2k + 1)/*

af -1\ a, — -1 e
(4.24) {1 - } <l+ —— <1+ +(e—1)d,.

(4.25)
< (0.9)_1/2a‘1/2d,1,/2(2ndn)1/2(k + 1)_1/221/2.

For 0 < x < ¢~ ! it holds that
(‘k -2

log(1 1 P2 o1 = 2 + 1052
)og( —cx)+ ogx_<_( 5 )og( —k)+ g
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Writing ¢ = 1.1log1.1 — 0.1 this implies

0.9p,n (k—2)/2

Y 11— &{1.110g1.1 - 0.1} j V2
J=a, +1 dn
(k—2)/2 0.9p,n
k ck p, jo1
2\(k-2/2 2 d, 1/2
<|1--— ——2(0.9
(4.26) ( k) & p, (0.9p,n)

< (2nd,)*(k + 1) a2}/

2\ (k=22 E+1
1= = 3/2:-1(0). 1/2( )
( k) 23/2¢71(0.9) 5

N R P T

Finally note that I*(0.61,1/3) > 0.15 and hence I*(0.61, p,) > d,, implying
a} < 0.61n and thus

af —1]-12
(4.27) [1 - = ] < 16l1.

Combining (4.21), (4.22), (4.23), (4.24), (4.25), (4.26), and (4.27) yields
Pp( Ik+l(?n7 p) = dn)

2end. \(k+1-2)/2 _ k 10
< 2( ") e (1 + 400a‘1/2d,‘,/2)2k 3{ 11 (1 + —)}

E+1 i=3 [/

35 Qend \ - V2 k + 1|22
. Y 1V I bidant] 1 +(4n)""
[k+1+a dy (k+1) ( k ) {1+(n)7)

e
.(277)_1/2min(1 * T +(e - 1)d,,,1.61)

(4.28)

3
1/2 —1/2
: k+1 +
[ e 01+
+(2nd, )2 (k +1) "X (2a7'd,) "1 + k)
+(2nd,)*(k +1)7%(09) ' *a"12d} /22

stana e 22



DEVIATIONS IN MULTINOMIAL DISTRIBUTIONS 1577

2end (k+1-2)/2
<2 u
[757)

2k-3f & 10
e "4 (1 + 400a~1/%d}/?) I (1 + ‘—)}

i=3 l
35 kE+1\k22 d
A +a 12d1/2 4 o172 1+ 2
|25 v e 2T
e
~min(1 + T 1 + (e — l)dn,1.61)
. —1/2,71/2 172 ifk=>3
Lt argte 7 {333 if k=2
2end (k+1-2)/2 k 10
< 2( ”) e ndn(1 + 400a‘1/2d,1/2)2k ’T1 (1 + ——)
kE+1 i=3

{1+ 1 (1 + 400a~2d}/?)
k+1 n
which completes the proof of (2.3). O

REMARK 4.2. To prove (2.4) it is easier to condition on that component Y, ; of
(Y,,,...,Y,,) for which p; = max{p;: 1 <i < k + 1}; then we have
p; a/(k+1 a i
— > / )_1=—, i=1,...,k+1
1-p, 1-(k+1) k
Theorem 2.3 is proved as follows: first the statistics @* and I are related;
application of Theorem 2.1 then yields the results.

PROOF OF THEOREM 2.3. Since xlog(x/p;) > x —p,+ 3(x —p,)°p; ' —
Lx —p;)®/p} forall x > 0and i = 1,..., k, it holds that for all y € S,

L(y,p)= X y,log( ;)

=1
2 1 & 3 —2
> ng(y,p) 5 E -p)’p

If Q(y, p) = 2d, then (y, — p;)* < 2p;d,, for all i=1,..., k; hence

1k 1 ly, - b 2d,

_ —p.I3pT2 <« — ! <——- 2d

g &% T PlpT < g max QY. p) 6 122k | P, n
<u,d,.

Noting that min{I,(y, p): Qi(y, p) = 2d,} = min{I,(y, p): Qi(y,p) =2d,} it
follows that

{7 Q¥y, p)=2d,} c {y: I(y, p) = d,(1 —u,)}.

Because log(l — u,) < —u, and 1 + 400a™'/2d}*(1 — u,)"/? <1 +
400a~'/2d}/?, application of (2.3) yields (2.8).
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Sincelog(l + x) < x — }x% + {x®for —1 < x < oo, it holds that forall y € S,
Yi — DP;
I(y.p)= log(l + — )

k
.Z
k 1(y,—p\2 1/(/y,—p.\3
S, { P _(yl pl) +_(yl pt)}
i=1 pi 2 b; 3 b;

1 k
= —Qk ¥, p)— = Z (3 -p)’pi%+ 32 (% -p)'p?
i=1

IA

In a similar way as above apphcatlon of (2.4) yields (2.9). O

The proofs of Corollary 2.4, 2.5, and 2.6 are straightforward and therefore
omitted.

Proor oF ProPOSITION 3.1. By straightforward calculus it is seen that for
k = k(n)=0(n6?) and né, bounded the expectation and variance of nQ;
satisfy
EonQ%~k—1+nf2A,

and

3
var, (nQ;) ~ 2k — 2 + 4n0,,2Ak{1 + 0nA;IZp[2(/‘;Vde) - 0,,2Ak}

as n - oo. (As usual a, ~ b, stands for lim, _, .a,/b, = 1.) Since
3 k 2
A,:‘Ep;2( / de) < —A;IZp;I( / de) = k/a,
i A; a : A

it is easily seen that (n62A,)” vara(an) - 0 as n > oo if k= O(nf?). Let
k + x,/2k be the critical value of the' size-a,, x* test, when we use nQ%(Y,, p) as
test statistic.

If £ = o(n6?), application of (2.19) yields x,/2k ~ 2bn?. Since to first order
x,V2k does not depend on % the effect of an “increasing variance” is negligible
under the restriction k = o(n6?). By Chebyshev’s inequality, if lim, A k) >
2b,

Py (nQY(TY,, p) < k + x,/2k) < vary(nQ})/{k + x,/2k — E,nQ}}"

~ vary (nQ3)/{(2b — Ak)nﬂ,;"}2 -0

as n — oo. Hence B,(6,; nQ,f(n)) - 1if lim,_ A, > 2b. The other part of (i)
may be proved similarly.

If k = dn8?, application of (2.18) yields x,/2k ~ ck and since lim ol =
Jf?dH < o, another application of Chebyshev’s inequality completes the proof
of part (ii). Note that x,V2k ~ ck = cdnf? and so here the effect of an “increas-
ing variance” reappears. Because 2b = d{c — log(1 + ¢)}, we have cd > 2b;
moreover, cd is growing when d becomes larger and cd |26 if d | 0. O
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LEMMA 4.1. Let Y, be mult (n, p,,..., p,) distributed. Assume that

k
limsupk Y, p? <o and k=k(n)=o0(n) asn - oo,

k— o0 i=1

then

k k
YY:-E, Y Y2
i=1 i=1

d PO.

n/k »

PROOF. Let € > 0. We have

k k
‘gl Y,,“),- } Ep i§1 Y,,2,~ 1
F N

P n?/k

ptni

E,|¥L(Y% - E,Y?)

n?/k

SENE-EY:  L{var,¥2}"* VT L {1 +(np)"?)

i

<

<
en®/k - en’/k en’/k

Holder’s inequality yields
3/4
Epa/z {Z( ?/2)4/3} (Z )1/4 (Zl’;) vy
i i

implying

L)) . #(zer)

i < — 4+ ——— 50 asn— . O

n2/k n2 (n/k)1/2
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