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TWO-STAGE SEQUENTIAL ESTIMATION OF A
MULTIVARIATE NORMAL MEAN UNDER QUADRATIC LOSS!

BY JAYALAKSHMI NATARAJAN AND WILLIAM E. STRAWDERMAN

Fairleigh Dickinson University and Rutgers University

In estimating a multivariate normal mean under quadratic loss, this
paper looks into the existence of two-stage sequential estimators that are
better both in risk (mean square error) and sample size than the usual
estimator of a given fixed sample size. In other words, given any sample size
n, we are looking for two-stage sequential estimators truncated at n, with a
positive probability of stopping earlier and risk lower than that of the sample
mean based on n observations. Sequential versions of James—Stein estimators
are used to produce two-stage sequential estimators better in risk and sample
size than the usual estimator—the sample mean. A lower bound on the
largest possible probability of stopping earlier without losing in the risk is also
obtained.

1. Introduction. Inadmissibility of the usual estimator for the mean of a
multivariate normal distribution of dimension three or more was established by
Stein (1955). Suppose X is a p X 1 random vector having the multivariate
normal distribution with mean 8 and identity covariance matrix, where 6 is to be
estimated under quadratic loss given by L(6,8) = ||8 — 6||%. Stein [10] proved
that the usual estimator §°(x) = x is inadmissible when p > 3. James and Stein
(1960) showed that estimators of the form

a
8*(x)=(1—W)x, where 0<a<2(p-—2)

have lower risks than x. Since then, a considerable amount of work in finding
significant improvements upon 8% x) = x in more general settings and under
various loss functions has been accomplished by a number of authors. (See
References.)

In this study, we are interested in the existence of two-stage sequential
estimators that are better both in sample size and risk (expected loss) than the
usual estimator of a given fixed sample size. In other words, given any sample size
n, we are looking for two-stage sequential estimators truncated at n, with a
positive probability of stopping earlier and risk lower than that of the usual
estimator based on n observations. To achieve this end, we consider sequential
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versions of James—Stein estimators. Similar sequential estimators have been
produced for the cases of simultaneous estimation of several Poisson parameters
and the estimation of the variance of a normal distribution in Natarajan and
Strawderman (1983a, b).

Section 2 deals with the case of identity covariance matrix. Suppose Y; --- Y,
are p X 11i.i.d. N(8, I) where the unknown @ is to be estimated under quadratic
loss given by L(8,8) = |8 — ||%. Let X, = ZJ Y, for i = 1,2,..., n. The usual
estimator based on n observations is X and has a constant rlsk p/n. We
consider stopping rules based on || X,,|| where 1<m<n-1 and sequential
estimators of the form

if | X, < e,

m . ={ - a _
(1.1) 60 (Y, Y,)= X, -—=X, otherwise,
n|| X, |l
where 0 < a < 2(p — 2).
We show that for p>3, n>2,1<m=<n-1,and 0 < a < 2(p — 2), there
exists ¢™(a) > 0 such that for all 0 < ¢ < ¢™(a), the corresponding estimators 8"
have lower risks than X, . Furthermore, we show that when p > 4, if

n(n—m)  p’

m*  (p-2)°

and

n(n—m) p*

aE(p—2)—(p—2)\/1— m (p_ 2

(p—2)+(p—z)\[— nln-m) &

m*  (p-2)°

the maximum possible value for ¢, namely c¢™(a) is such that when 6 = 0, the
probability of stopping earlier than n, P(||X,,|| < ¢™(a)) is at least ;. This result
implies, for example, that when p > 6, the sample size can be reduced by at least
25% of the fixed sample size n, with a probability of more than ; for § near zero,
while still maintaining a lower risk than X,. Modifications of (1 1) replacing X,
by the corresponding James—Stein estimators are also considered. The case of
unknown covariance matrix is dealt with in Remark 3.

The general phenomenon we are studying is the possibility of trading off some
of the potential savings in risk of an inadmissible estimator for savings in sample
size. Our papers investigating the possibility of similar trade-offs in the classical
problems of estimating several Poisson parameters or of estimating a normal
variance indicate that such trade-offs are possible in some generality. Our
procedures would most likely be useful in a setting where there was a reasonably
good prior guess as to the value of 8 and where observations are costly.
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2. Results for the case of identity covariance matrix. We consider
estimators given by (1.1). The following theorem proves, for all possible values of
p, n, m, and a, the existence of an interval of values of ¢ for which §* has a
lower risk than X,. This insures us of the existence of sequential estimators we
are looking for.

THEOREM 2.1. For p>3, n>2, 1<m<n-1, and 0 <a<2(p—2),
there exists c™(a) > 0 such that for all 0 < ¢ < ¢c™(a), 8" has a lower risk than
X

n*

Proor. If 85 denotes the corresponding James—Stein estimator based n
observations, it is easy to note that

R(6,87) < By(IX,ll < ¢)(1l6]l + ¢)* + R(6, 8°)

2a(p — 2) — a?
n(p—2+nlo?)’
Since (n||6]|2 + p — 2)(|10]] + ¢)?Py(|| X,,|| < c¢) tends to zero as ||f] tends to

infinity, it is possible to select a ||8||,, such that for all ¢ less than or equal to a
preassigned number M and for all § with ||6| > ||6]|,,

2a(p — 2) — a*
<0
n(p -2+ n)o)?)

(2.1)

D —
<—+ BIX,ll < e)(1Ifll + ¢)° -

(22) Py(I1X,.ll < )11l + ¢)* —

Since Py(||X,,|| < ¢)(||8]| + ¢)? tends to zero as c¢ tends to zero, we can select
c*(a) such that for all § with ||0] <||0||, and for 0 < ¢ < ¢*(a), we have

_ 2a(p - 2) - a®
&mxm<®WW+”?“m;fzf%wﬂ
(2.3) 2a(p-2) - a’

< P(IX,ll < )(I18llo + ¢)* —

n(p—2+n)6)2)

<0.
Let ¢™(a) = min(M, c*(a)). Combining (2.1), (2.2), and (2.3) we get that for all
0 < ¢ < c™a), 8" has a lower risk than X,. O

Thus, Theorem 2.1 assures us of the existence of a class of two-stage sequential
estimators better both in risk and sample size than X,. The most interesting
among the class of estimators (1.1) are the ones that not only have a lower risk
than X, but also give a high probability of estimating § with as small a number
of observations as possible, thus permitting the highest possible reduction in the
expected number of observations and hence in the expected cost of taking
observations. Of course, the reduction in the sample size is better measured by
the ratio of m to n rather than the absolute value of m. In selecting a subclass of
the estimators (1.1), two points of view can be taken. First, we can decide on a
probability of stopping with m observations and see how small a ratio m/n is
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possible, while maintaining a risk lower than p/n. Since the probability of
stopping earlier than n observations is maximum when ||§|| = 0 and tends to zero
as ||0|| tends to infinity, we are more interested in the probability of stopping
with m observations only for small values of ||6||. It seems reasonable to expect to
stop approximately 50% of the time for values of ||| near zero. This situation is
dealt with in Theorem 2.4. On the other hand, we can fix the ratio m/n and find
out the maximum possible probability of stopping such that 6" has a risk lower
than p/n. One of the interesting situations will be when m/n = 3. Theorem 2.5
looks into this situation.

Before we proceed any further, we need the following two lemmas. The first,
Lemma 2.1, expresses the risk of §™ as the expectation of a function of a Poisson
variable with parameter n||6||2/2. Lemma 2.2 obtains a uniform bound for the
coefficients of (n||0))%/2)//j'(p + 2j — 2) for all j > 0 in the Poisson expansion
of the risk of 8. The proofs of both lemmas are technical in nature and
lengthy. We outline the proofs in the Appendix. Detailed proofs can be found in
Natarajan (1983).

LEMMA 2.1. The risk of 8" can be written as

1 = (in)6)2)’
—5n|10n2]2 -

o —B"(h),
j<oJi(p+2j-2) (&)

(2.4) R(6,8") = % + exp

where h = mc? and B™(h) is a function of j, h, m, and n such that nB"(h)
depends on m and n only through m/n. The exact expression for B™(h) is very
long and hence given in Appendix (A.1).

LEMMA 2.2. Following the notations in Lemma 2.1, for p > 4 and for all
J=0,

(2.5) B (h) < t,(h),

where
(2.6)

1[n(n—m)

tn(h) = 5 PhEl 2~ (2a(p — 2) —a®)(1 - Bz ) |-

n

Before we proceed with results on the probabilities of stopping earlier, we give
the following theorem which compares the risks of 0" for different pairs of values
of (n, m) where n/m is a constant. To avoid the confusion caused in the

notation, we denote (in the following theorem only) the estimators given in (1.1)
by 87" rather than just §™.

THEOREM 2.2. Let (n;, m,) and (n,, m,) be two sets of positive integers
such thatn,/m, = n,/m,. For any h > 0, define c, and ¢, by h = m,c? = m,cZ.
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Then forp > 3, 8™ has a risk lower than p/n, if and only if 8-> " has a risk
lower than p/n,.

PROOF. Let [ be such that n, = n,! and m, = m,l For 8 = (|||,0,...,0),
define 6, = (||6,]1,0,...,0) by ||6,]|2 = l||0||2 By Lemma 2.1, nB™"(h) depends
only on n/m. Hence we have that n,B™ ™ (h) = n,B> "2(h). From (2.4),

P exp[—inol012] & (ny012/2)
)-—= )Y

R(6, 87007 g B
( 2 n, n, O]'(p+2] 2) ( )
_ exp[ —1n,2)10)1?] i (n11||0||2/2) n,Bmm(h)

n,l o Ji(p+2j- 2)
_ el imlli’] <nmmwvw n B ()

1
=7 R(6,, 8 ™) "

and the result follows. O

The above theorem implies that the largest possible probability of stopping
earlier without losing in the risk is the same for all values of (m, n) such that
n/m is a constant.

The following theorem gives a sufficient condition for the risk of §™ to be
lower than p/n. This sufficient condition is used in subsequent theorems that
involve the largest possible probability of stopping earlier.

THEOREM 2.3. Let t,(h) be defined as in (2.6). Then t,(h,) <0 for some
ho > 0 implies that 87" has a lower risk than X, for all ¢ such that mc? < h,,.

PRrROOF. t,(h)is a continuous increasing function of & with ¢,,(0) < 0. Hence
t,(hy) < 0 for some A, > 0 implies, by way of Lemma 2.2, that B™(h) < t,(h)
< t,(hy) for all j>0 and all & < h, and Eq. (2.4) helps us conclude that
R(6,8™) — R(6, X,)) = R(6,8™) — p/n < 0 for all ¢ such that mc? < hy. O

Now we go into theorems involving the probability of stopping earlier. Given
pand n,foranyl <m<n-1and0 <a <2(p— 2), let

=hg(p,n)

(2.7) ) m . —
= max{h = mc*® such that 6" has a lower risk than Xn}.

h7 corresponds to the estimator of the form (1.1) with the largest possible
probability of stopping earlier than n, without losing in the risk. Suppose we are
interested in stopping with m observations in at least 50% of the times, when
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6 = 0. Given p and n, we are interested in m and a such that the corresponding
value of A7} gives for 6 = 0 at least 50% probability of stopping with m
observations, that is P(xf, < h7) > ;. Theorem 2.4 gives for p > 4, a sufficient
condition on the ratio n/m and an interval of values for a in order to achieve
P(xf, < h7') > ;. This theorem implies that when p > 6, the number of observa-
tions can be reduced by at least 25% with a probability of greater than or equal
to one-half for 4 = 0.

THEOREM 24. Forp>4,n>3,1<m<n— 1 such that
2

(2.8) %(%-1)“)+2)2<1

e T2

p2etp-ayi- M2 )

h as defined by (2.7) is such that P(x% < h7) > }.

and

(2.9)

PROOF. Let A, be the median of x2 distribution. Then A, < p. From the
definition of ¢,(k) given in (2.6),

t.(h, )——n{wph —(2a(p -2) —a® )}
oM atp - ) - a2 )

Whlch is less than or equal to zero if a lies between the roots of the equation
a’®—2a(p — 2)+(n(n— m)/m?)p? =0, that is, if a belongs to the interval
specified in (2.9), and this interval is nonempty if and only if (2.8) is satisfied.
Hence if (2.8) and (2.9) are satisfied, we have that ¢,(k,) < 0, which in turn
(usmg Theorem 2.3) implies that 8" has a risk lower than p/n for all ¢ such that
me? < h,. The deﬁnltlon of A7 allows us to conclude that A7 > h, or P(x2 <
h7) 2 P(x% < hg) =}

On the other hand given the ratio n/m, the question of how large a
probability of stopping is possible without making the risk larger than p/n is
answered partially in the following theorem. We show that for large p, we can
reduce the number of observations by 50% with a probability of at least 0.3 when
0=0.0

Before we state the theorem, we define 4, ,, to be a real number such that

hmaxEl(xp<hmx) (p - 2)

I—Elx,,<h 2p

(2.10)

max )
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Si.r‘:fle hE1 2 < pmax)/(1 = El,: .4, is a continuous, increasing function of A
wi

hE1,. _, hE1, .,
—(X"._)__,O and ¢)TOO as h1oo,
1- El(xf,<h) h—0 1- El(Xf;<h)

h ax s well defined and unique.

THEOREM 2.5. For p>4, n/m=2, and a=p — 2, we have h™ > h
where h_,, is defined by (2.10). Also, we have

(p - 2)°/2p
P(x% < ) = P
1+(p—-2)°/2p

max

ProOF. When p > 4, n/m = 2, and a = p — 2, from (2.6), we have,

. 1
t, ()= ;[2pi:€1<x§<h) ~(p-2(1 - Elg ).

By definition of A _,,, we have that ¢,(h,,,,) = 0 and hence by Theorem 2.3, we
can conclude that 3" has a risk lower than p/n for all 0 < ¢ < (h,,,./m)"/?,
which implies that A7 > A ..

To prove the rest of the theorem, we observe that when A = p,

2phEl<x§<h) _ 2phE1(X,z,<p)
1-Ele., 1-El

Xp<P)

> 2p?
>(p-2)°
= (by definition Of hmax) P > hmax

Elog<hw  (p-2)
= =
1-E1

(x,z,< Ronax) 2phmax

> (p-2)°/2p?
(p—2)°/2p°
> 3 ,
1+(p—-2)/2p°

= FE1

(xf; < Pmay)
which concludes the theorem. O
In the following remarks, we consider various modifications of estimators (1.1).

REMARK 1. Estimators (1.1) can be modified by replacing X,, by James-Stein
estimators based on m observations. For p>3, n>2, 1<m<n-—1, we
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consider estimators of the form

_ b _ —
_—_‘_X ) .f X < )
b e 1Kl <
(211) 6cm(Yl Yn) = _ b _
X ————X otherwise,

"o X
where0 <a<2(p—2)and0<b<2(p-2).0

In a proof analogous to that of Theorem 2.1, it can be shown that for all
possible values of p, n, m, a, and b, there exists an interval of values for ¢ such
that §°™ is better than X,,.

REMARK 2. The estimators 8™ of (1.1) are considerably better than X, in
both risk and the probability of stopping earlier than n, only for small values of
[|6]|. If we have reason to believe that the true parameter value is near 6*, we
could consider the following translations of the original estimators, namely,

X, if | X,, — 6% <c,

(2.12) 87 =1{ o a(X,—6%) .
n m, otherwise.
All the results of this section, with suitable modifications, work just as well for
these estimators.

REMARK 3 (unknown covariance matrix X).

(a) When = = o%I where o? is unknown. Suppose the loss in estimating 6 is
given by

L((6,0%)) =18 — 6]|°/a>.

For i =1,2,..., n, as before, let Xi denote the sample mean based on the first i
observations. For each =1,2,..., n, we also have a random variable S? distrib-
uted as 6°x2;_,,, independent of X;. For p > 3, n > 3 we consider estimators of
the form

X, if | X,l12/S2 < c?,

(2.13) y(Y, - YV,)={ % a 7 .
! X, - WX,H otherwise,

where2<m<n-1and0<a<2(p-2)/(p(n—1)+2).

The proof of Theorem 2.1 can be modified slightly to show the existence of an
interval of values for ¢ such that 7' has a lower risk than X,,.

(b) General, unknown X. Suppose the loss involved in estimating 8 by § is
given by

L((8,%),8) = (5 — 8)S"'(5 — 6).
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2.00} Risk

1.80

1.60F

140} . | |

0.0 2.0 4.0 6.0 ol
Fic. 1. Risk of 8™ whenp=6,n=3, m=2,a=4, h=p.

For each i =1,2,...,n, let Xi denote the sample mean based on the first i
observations. For each i = 1,2,..., n, we also have a p X p Wishart matrix S,

independent of X; with E(S,) = (i — 1).
Forp>3, n>p+2,and p+ 1 <m < n— 1 we consider estimators of the
form

- if X,S,'X,, < c?,
*m PR = j— a X
(2.14) y¥r(Y, Y,) X, - _}:TS”—_X"’ otherwise,
n n—n

n

where0 <a <2(p—-2)/(n—p + 2). _
Existence of an interval of values for ¢ such that *™ has a lower risk than X,
can be shown in a manner similar to the proof of Theorem 2.1.

REMARK 4. The choice of a preliminary sample size m affects the probability
of early stopping as well as the mean squared error. If such a procedure were to
be used in practice it wouid seem desirable to choose ¢ (for any given m) as large
as possible, such that the mean squared error stays bounded by that of the
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0.80

Risk

0.70

0.60

0.50

0.45 M i | |
0.0 2.0 4.0 6.0 ol

F16. 2. Risk of 87" whenp =8, n=10,m=5,a=6, h=p — 05/2p = 6.

classical procedure. A reasonable way to choose m would then be to minimize the
expected sample size for 6 = 0.

3. Numerical results. Appearing in Figures 1 and 2 are the graphs of the
risks of 8 for two sets of values of p, n, m, a, and h not covered by the
theorems of Section 2. By using Eq. (A.5) of the Appendix, the expression for
B™(h) given by (A.l) can be reduced to expectations involving functions of
binomial variables only. Given h, m, p, n, and a, B/"(h) were computed for a
number of values of ;j and then expression (2.4) for the risk was used to calculate
the same for various values of ||0]|.

The graph in Figure 1 represents the risk of 8 for various values of ||¢|| when
p=6,n=3 m=2 h=p,and a = p — 2. The graph indicates that the risk of
0 stays below the value of p/n and hence, by Theorem 2.2, the result holds for
all pairs (m, n) such that m/n = 2. Note that for this set of values of p, n, and
m, the condition (2.8) of Theorem 2.4 is not satisfied but yet the result of
Theorem 2.4 holds.

Figure 2 deals with the situation when m = n/2. Forp =8and a=p - 2, A
is taken to be equal to p — 0.5\/5 . The graph shows that the risk of §* when
n = 10 and m = 5 stays below the value of p/n. Even though this case is covered
by Theorem 2.5, the probability of stopping earlier when A =p — 05/2_p is
much higher than the value given by the theorem.
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APPENDIX

The outlines of the proofs of Lemmas 2.1 and 2.2 are given in this Appendix.
Detailed proofs can be found in Natarajan (1983). Lemma 2.1 is restated here to
include the expression for B/*(h).

LEMMA 2.1. The risk of 8 can be written in the form given by (2.4) where
h = mc? and forj > 0,

Br(h) = (p+ 21’—2)[é AR

k=0 k n n
pln—m n?— m?
’{‘l—*)El(ﬁ« <h)+ _2_)
nm p+2k im
e_h/z(h/2)17/2+k~1 o
(A.1) T(p/2 + k) (2k—-h)+—;<ELx%u<h}
a’?+4aj\(n— m\p/2+i-1 )
i wjm—l,kEl 0(2(p_2)_a)
. k=0 k! (X12)+2k<hn/(n_m)) — -
with
(A2)
. ) . o |
wj'":lk= (P+21—2)(p+21)...(p+2]+2k_4)(%) , _——

1, if k=0

and for any given h, nB(h) depends on n and m only through n/m.

ProOF oF LEMMA 2.1. The expression (2.4) for the risk of 8 can be obtained
by first separating the terms involved into two groups, one with the terms
involving X, only and the other containing terms involving both X, and X,.
Terms 1nvolv1ng X, only can be handled using the fact that || X,,||? is noncentral
x with noncentrahty parameter m||d||?/2. The terms involving both X, and X,
can be dealt with by considering first the condltlonal expectation of X, given X
and then using the fact that || X,,||? is noncentral x? » With noncentrahty parame-
ter n||6|| / 2. A change of the order of summation yields the required expression
(2.4).
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PROOF OF LEMMA 2.2. Py(||X,,||> < h/m) can be expressed as an expectation
of a function of a Poisson variable with parameter n||0||>/2 in two different ways.
First, using the fact that X, |X, ~ N(X,,(n — m)/nm)I), and X, ~
N(6,(1/N)I), we get that

-, h -
By 1K, < — | = EoE{1 gz, < /ml 1 5,1}

p/2+j
(A3) = exp[ - §nl|6]*] Z Lin " L ) ( " )
.hZO k! El(x,,+z<hﬂ/(n—m))’

where w;; is given by (A.2). On the other hand, X, ~ N(8,1/m)I) gives

(sm u n)

P0(||Xm||2 < h/m) = exP[ sm||9|] ] Z El(X,27+2k<h)
=0
(A4) = exp[ n”0”2] Z (2 “ ” )
Jo(j\(n—m\ik
. J 2
hgo(k)( n ) El(xp+2k<h)-

Comparing the corresponding coefficients in (A.3) and (A.4), we get

n—m\p/2t) 2wy hn
( ) > P(Xf;+2k < n )

n o k! _—
(A5) e
=k§0(2)(;)( n ) P(x23124 < h).

Also, for each j > 0,

{(n— )p/2+1 1w 1k}
n k! k=0,1,2,...

can be considered as the probability densities of a discrete random variable since

oo(n_ )p/2+j lw lk _

z 0

k=0 n
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and, with j as a parameter, this family is MLR. Hence we have for all j > 0,

n—m\p/2+ -1 @ " lkP( . hn
—_— op <
( n ) ico k! .X””k n—m)
(A.6)
n—m\p/2+ 2 wm p hn
> —_ .
_( n ) = k! (Xp+2k<n_m)

Given h >0, let k, be the smallest integer such that 2k, — A > 0. Let A
denote (n — m)p/nm. Define a function g(k) on the set of nonnegative integers
as follows:

AEl(x2 2 <h)s if 2 =0,
AEl(x,,+2k<hv ifl <k <k,
(A7) g(k) = (AEL e . p+ (2k = h)
L—)% (h), ifk>k
n m p+2k = 0°

where f,,,4(h) is the p.d.f. of a x? distribution with p + 2k d.f. Using (A.5),
(A.6), and (A.7) in the expression (A.1) for B"(h) and denoting expectatlons with
regard to binomial ( j, m/n) distribution by E(-), we have for all j > 0,

B™h)<(p+2j-2)Eg(k)+ a(p_n2)_a (El(xz<h) 1)
(A8) s%;g(jz1)(%)k(";m)j+l_k(p—4+2k)g(k—1)

2a(p — 2) — a?
+

n

(El(xf,<h) - 1)'

If we define A = (n — m)p/nm and s(k) by

AEl(x§<h)’ if k=1,
BEL s b i<my if2<k<k,
(A.9) s(k)=(AEl,z ,, ,<nm+ (2(k—1)—-h)
n2 _ m2 .
( nim )2fp+2k—4(h)7 ifk>Fky+1,

it can be verified in a straightforward way that s(k) is a decreasing function of %
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and
(p+2k—4)g(k—1) < hs(k)

< hs(1), forall k> 1.

(A.10)

Using (A.10) in (A.8), we get

o 2w £ 12 (52

n n
2a(p — 2) — a?
(A.11) + . (Elgg<m—1)
n 2a(p —2) — a?
< —hs(1) - (1- El,ecn)
= tn(h)

as defined in (2.6), completing the proof.
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