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BAYESIAN NONPARAMETRIC ESTIMATION OF THE MEDIAN;
PART II: ASYMPTOTIC PROPERTIES OF THE ESTIMATES

By HaN1 Doss

Florida State University

For data 8 + ¢;, i = 1,..., n where ¢ areii.d. ~ F with the median of F
equal to 0 but F otherwise unknown, it is desired to estimate 6. In Doss
(1985) priors are put on the pair (F, 8), the marginal posterior distribution of
# is computed, and the mean of the posterior is taken as the estimate of 4. In
the present paper a frequentist point of view is adopted. The consistency
properties of the Bayes estimates computed in Doss (1985) are investigated
when the prior on F is of the “Dirichlet-type.” Any F' whose median is 0 is in
the support of these priors. It is shown that if the ¢; are i.i.d. from a discrete
distribution, then the Bayes estimates are consistent. However, if the distri-
bution of the ¢;s is continuous, the Bayes estimates can be inconsistent.

1. Introduction. Fordata X, =6 + ¢, i = 1,..., n where the ¢;s areiid. ~
F with the median of F equal to 0 but F otherwise unknown, it is desired to
estimate #. In Doss (1985) the prior 2* X v is put on the pair (F, 8), where 2}
is the Dirichlet prior with parameter a conditioned on the event {med F' = 0},
and v is an arbitrary prior on 6. Here, «a is any finite nonnull measure on # such
that a(— o0, 0) = a(0, ), and a has no mass at 0. Under the additional condition
that a/(a{Z#)}) has a continuous density, Theorem 1 of Doss (1985) gives
»(df|X), the marginal posterior distribution of § given Xj,..., X,. The Bayes
estimate under squared error as loss is b= [0v(d0|X). For the general perspec-
tive, see the introduction to Doss (1985), which serves as an introduction to this
paper as well.

In this paper the consistency properties of the posterior and of the Bayes
estimate under squared error loss are analyzed. For a proper understanding of the
results, it is necessary to first give a clear notion of what is meant by consistency
in the Bayesian context.

Let {P,; ¢ € II} be a parametric family of distributions, let 7 be a prior on ¥,
and denote by 7(dy|X],..., X,) the posterior distribution of { given X,,..., X,,.

The posterior 7(dy|X,, ..., X,) is called consistent at v, if for
X,, X,,...iid. ~ P, n(dy|X,,..., X,) converges in distribution to the point
mass at ¢, a.s. [P;’]. Let # be a subfamily of (P,; ¢ € II). The posterior is
consistent for the famzly & if it is consistent for all zpo such that P, € #. These
two notions of consistency refer to the posterior, and not to estlmators
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1446 H. DOSS

For a loss function L the corresponding Bayes rule J is consistent at Y, if
XI,XQ, . areiid.~ P, implies that xp(X], , X,) converges to ¢, as. [P’].

y is consistent for the family F if P is cons1stent at ¢, for every ¥, such that
P, € %. The last two notions of consistency can of course be applied to any
estimator ¢ of .

A desirable property for an estimator i is obviously consistency for the entire
parametric family {P;; ¢ € II}.

The main results of this paper can be summarized as follows. Suppose that the
¢;s are ii.d. ~ F, where F is a fixed c.d.f. with median 0 (as opposed to a c.d.f.
randomly chosen from 27). It is found that roughly speaking, if F' is discrete,
then the posterior and the Bayes estimate are both consistent. However, it is
found that when F is continuous, the posterior and the Bayes estimate 6 can be
inconsistent. This inconsistent behavior can occur in three ways. The description
is easiest in terms of the estimator 4.

(a) 9 converges to a wrong value.

(b) 8 oscillates between two wrong values a and b, with @ < 6 < b: [F ]ae,
there exist subsequences {n,} and {n;} such that 6 - a along {n,} and § — b
along {(n}. .

(c) [F] ae, {6;n=1,2...} is dense in #: For all a € #, there exists a
subsequence {n,} such that §, — a.

In all three cases, the posterior »(df|X) behaves in an analogous way.

It is shown that any c.d.f. F whose median is 0 is in the support of 2. Thus,
(a), (b) and (c¢) provide examples of inconsistent Bayes rules.

Doob (1949) has proved that under very general conditions, the posterior
7(dy|X) is consistent at ¢, for [7] a.e. ¥,. Doob’s result raises the question of
what is the 7-null set, and more importantly, when is it empty. LeCam (1953,
1958), Freedman (1963) and Schwartz (1965) have shown that under strong
regularity on II and =, the answer is that

7(dy|X) 1isconsistent at ¢,
if and only if
(1.1) Yo € supp(m).

The assumptions required for the validity of (1.1) sometimes are severe enough to
essentially restrict the result to finite dimensional I1. Indeed, Freedman (1963)
presented a counterexample involving priors on the set of distributions on the
natural numbers. This counterexample is, however, somewhat contrived. Diaconis
and Freedman (1985a, b) considered the “symmetrized Dirichlet” priors intro-
duced by Dalal (1979a, b) as the priors on F. They showed that inconsistent
behavior can occur in that situation; see also Diaconis and Freedman (1982).

The studies in Diaconis and Freedman (1985a, b) and in the present paper thus
provide natural examples of inconsistent Bayes rules.

Section 2 provides preliminaries and a heuristic explanation of how consistent
or inconsistent behavior arises. Section 3 gives the results concerning consistency.
In that section there is also a description of some consistency results outside of
the Bayesian and decision-theoretic framework. Section 4 contains the results
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concerning inconsistency, and Section 5 a short summary of the results of the
paper.

2. Preliminaries and heuristics. Consider the space #2** consisting of all
c.d.f.s on # with unique median equal to 0, and let the topology on #** be the
topology of weak convergence. Let I1* = 2** X # have the product topology
and the o field that this topology induces. The measure on IT* is to be 2* X ».

REMARK. If F is a c.d.f. with nonunique median, the median of F can still be
defined as the midpoint of the interval of medians. The theory developed here
can equally well be worked out for the space of c.d.f.s with possibly nonunique
median equal to 0. However, 2** is used instead in order to avoid technical
complications.

In Doss (1985) the posterior »(df|X) is given under the condition that «, be
absolutely continuous, with a continuous density af. This condition is assumed in
the sequel. The following assumptions are introduced.

ASSUMPTIONS.

Al. supp(a) = Z.

A2. supp(v) = Z.

A3. [|0|v(dO) < 0.

PROPOSITION. (1) Under Al, (2} X v)(I1*) = 1. (Thus, the prior 2* X v

can be put on 11*))
(2) Under Al and A2, supp(2F X v) = I1*.

The proof of the proposition is straightforward and is omitted; see Doss
(1983b).
In Doss (1985) the posterior distribution of 8 given X,,..., X, is found to be

(2.1) »(d0)X) = o X)[T*ay(X; — 6)]| M(X, 0)v(d8),
where
(22)  [M(X,8)] " =T(ja() + nF,(8))T(ia(x) + n(1 — F(0))).

F, is the empirical distribution function of X,,..., X,, ¢(X) is a normalizing
constant, and the * indicates that the product is over distinct X;s only.
The Bayes rule under squared error loss is

(2.3) b(x)= [

0

Ov(do|X).

In order to study the asymptotic behavior of »(d8)X) and of O(X), it is
necessary to first understand the asymptotic behavior of the factor M( X, 6). This
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behavior involves the function y defined by

(2.4) Y(t) =tlogt+(1— t)log(l —¢t) for te(0,1).
Note that { is symmetric about ; and has a unique minimum there.
The random variables X, X,,... are assumed ii.d.~ F, where F is any

distribution function on # with a unique median equal to 0. Let B(n) be defined
by

(2.5) B(n) = (27) 'exp[n +(1 — a() — n)log n].

LEMMA. For [F]a.e. {X;}2,,
(2.6) M(X,0) ~ B(n)exp[~ny(F,(0))][F(6)(1 ~ F,(6))]"/* =2
uniformly for 8 in any interval [a, b] such that 0 < F(a) and F(b) < 1.

ProoF. The proof follows computationally from Stirling’s formula and is
omitted. O

A heuristic explanation of the behavior of the posterior can now be given. A
more complete and precise account is given in Sections 3 and 4.

Consider first the parametric model that corresponds to the prior §,, X v on
I1*. In this model, the posterior may be written as

(2.7) v(d8|X) = c(X)eDy(db),
where /,(8) is given by

1
(2.8) 1.(0) = — Zlogao(X - 0).

=1

Let 6% denote the maximum likelihood estimate of 6 in the model where
X,..., X, are iid. with density aj(x — #). For example, if a, is a normal
dlstrlbutlon 6% is the mean of the observations. Assuming sufficient regularity,
1(8) may be expanded around §:

29) exp[nl,(0)] = expn[ln(O“O) +(0 — §)1,(6%)

+1(6 - 9“0)27n(9“0) + terms of smaller order|.
In (2.9), 1 (6) and [ (0) denote the first and second derivatives, respectively, of
1,(8) with respect to 6. The term
(2.10) exp|nl,(6)]

is independent of 6, and may thus be absorbed into the normalizing constant.
Using the fact that [, (%) = 0, and ignoring the smaller order terms, (2.7) may
be written as

(2.11)  w(d81X) = ¢( X )exp|n(8 — 6%)% (8%)|v(d8).

[(2.11) is exact if @, is a normal distribution.] Thus in the parametric model,



BAYESIAN ESTIMATION OF THE MEDIAN 1449

under sufficient regularity, the posterior is sharply peaked around the maximum
likelihood estimate. If § is a consistent estimate of a quantity that is not the
population median, which can happen if the data is generated by a different
parametric model, then the posterior (2.11) is inconsistent. The reader should
keep in mind the example where «a,, is the normal distribution. In this example,
the maximum likelihood estimate, and hence the Bayes estimate are consistent
estimators of the population mean, which may differ from the population
median.

Return now to the posterior (2.1) for the model where the prior 2* X » is put
on IT*. Assume temporarily that the asymptotic expression for M( X, 8) given by
(2.6) is uniform for # ranging over %. Since B(n) is a constant independent of 6,
it can be completely ignored. The factor

(2.12) [F.(6)(1 = F(6))]'/* TV
is asymptotically negligible relative to
(2.13) exp[ —ni(F,(6))],

and will also be ignored. Thus, heuristically, we can replace M(X, 8) by (2.13).
Replacing the asymptotic equivalence by an equality, »(df|X) is written

214)  w(d81X) = e(X)expl - (E(0))]) | TTat(X, - ) [o(a0).

Since y(¢) has a unique minimum at ¢ = %, y(F,(4)) has a minimum when
F(6)= 3, ie., when 6§ = med{X,,..., X,}. Thus, asymptotically, (2.13) [and
M(X, 0)] is sharply peaked at the empirical median. Letting

1 n
(2.15) 13(0) = — Y *log a( X, = 0),

i=1
(the * indicates that the sum is over distinct X;s only), (2.14) is rewritten
(2.16)  #(d01X) = c( X exp[—ny(F,(9))]exp[nix(8)]»(d8).

The factor (2.13) does not depend on the prior choice of a and is thus “nonpara-
metric.” The factor exp[n/}(6)] may then be called the “parametric component”
of the posterior.

If F is discrete, the sum on the right-hand side of (2.15) contains a small
number of terms, and it turns out that [F] as., /;%(6) — 0 in » probability as
n — . Thus, (2.13) dominates. If the median of F is assumed unique, the
empirical median is a consistent estimator of it, so that the posterior is con-
sistent.

If F is continuous, (2.14) is simply

(217)  (d01X) = e(X)exp[ ~ny(F,(6))]exp[nL,(6)]»(d6).

As was the case for the parametric model, under regularity, (2.17) is approxi-
mately equal to

(2.18)
v(d8|X) = c( X Jexp[ - ny(F,(0))]exp[in(8 — 6%)*1,(§)]»(db).
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Observe that
exp[ —ny(F,(0))]

and
] Aa 2u Aa
exp[in(8 — §0)°1,(§*)]

are of the same order of magnitude. If §* is a consistent estimate of a functional
T(F) that is not the median of F, (2.18) converges weakly to a point mass at
some point strictly between the median of F and T(F). Thus, the posterior is
inconsistent.

The Bayes estimate under squared error as loss is

(2.19) 0(x) = fﬂv(d0|X).

The definition of consistency of the posterior »(df|X) given in Section 1 involves
convergence of »(df|X) to a point mass. The definition of consistency of the
estimator (2.19) is the usual one, i.e., 8( X) is consistent if it converges a.s. to the
true value of 6. The results obtained concerning consistency and inconsistency of
the posterior yield (under Assumption A3) corresponding results for the Bayes
estimator. The Bayes estimator will be inconsistent, not because the prior » has
heavy tails, but because the posterior »(d6|X) is asymptotically a delta function
at an incorrect value.

It is interesting to note that when F is continuous, the data do not “swamp
the prior,” which is unusual.

3. Consistency.

ASSUMPTIONS.

A4. F has a unique median at §,,.

A5. F(6,} = 0.

A6. «aj is bounded above.

A7. For every § € #, Eg|log ay(X — 0)| < 0.

THEOREM 1. Assume A2 and A4-A7. If F is discrete, then the posterior
given by (2.1) is consistent for all 0.

REMARK. Assumption A5 is necessary. The theorem is not true without it.
A6 is not crucial and can be considerably weakened, but at the cost of a
complication of the proof. A7 is roughly the condition that the tails of F not be
very much heavier than the tails of a,.

PROOF OF THEOREM 1. The posterior is
(3.1) v(d8|X) = c(X)M(X, 0)exp[nl*(6)]»(db),
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where 1*(0) is given by (2.15). Our first goal is to show that the factor exp[nl}(0)]
is asymptotically negligible.

Let F be written as F = L7, p;8, . Let 0 € 2 be fixed, and let ¢ > 0. By A7,
there exists K such that

(3.2) Y pllogay(a, - 0)| <e.

Jj=K+1
We have

=

1
l:(0)=; log af(a; — 8)I(X, = a; forsomei=1,...,n)
j=1

(3.3) L
+ ;Z*loga(,(Xi -0)I(X, & {a,,...,ax}).

i1=1

The first sum clearly goes to 0 as n — 0. The absolute value of the second sum is
bounded by

(3.4) )

1 n
- llog ap( X; — 0)I(X, & {ay,..., ax)})]|

i=1
By the strong law of large numbers, for [F'] a.e. {X;};Z,, (3.4) converges to the

left side of (3.2), which is less than e. Thus, for each fixed 8, [X() — 0 as. [F].
In particular,

(3.5) v(0€ R 1X0) > 0as.[F]} =1.
By Fubini’s theorem,
(3.6) F{{X}7Z;12(0) > 0ae. [v]} = 1.

In particular,
(3.7) for [ F] a.e. sequence { X;}=,, [X(6) — 0 in » probability.

Without loss of generality, assume that the median of F is 0. We want to show
that »(d@|X) — §,, and it is sufficient (and necessary) to show that

(3.8) for every e > 0, »{(—o0,—e]U[e,0)|X} >0 asn— oo.

We will show that

(3.9) for every e > 0, »{[e,0)|X} >0 asn — oo;

the corresponding statement for the set (— o0, —¢] is proved in an identical way.

Let

N, = M(X, 6)exp[nl}(8)]v(db),

[e,00)

(3.10) N
D, = [" M(X,0)ep[nL1(0)]4(d0),

so that »([e, )| X) = N,/D,. N, will be bounded above and D, bounded below.
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By the strong law of large numbers,
(3.11) as. [ F], F,(¢) = F(e) > }.

The inequality in (3.11) is due to the fact that 0 is the unique median of F. It
follows that for large n, med{X,,..., X,} <, and so

(3.12) M(X,0) <M(X,e) foralld € [ ).

Without loss of generality, we may assume that F(e) < 1. By the lemma of
Section 2 and (3.11),

(3.13) M(X,e)~ B(n)exp[ —n¢(Fn(£))] [F(e)(1 — F(e))]1/2-[u(oo)]/2.

Assumption A6 is that af is bounded, and without loss of generality, the bound
may be taken to be 1. Hence

(3.14) N, < C,B(n)exp| - ny(F,(¢))],
where C, is a constant.

Consider now D,. Let 7 > 0. We have
(3.15) D, > [ M(X, 0)exp[ni*(8)]»(db).

(=7,7)

For [F] ae. {X;}2,, for large n, med{X,,..., X,,} € (=7, 7). Hence, for §
(=1, 7) and for large n,
(3.16) M(X,0) > min{M(X,—-7), M(X,7)}.

It is assumed that M(X, ) < M(X, —7). This is done largely for notational
simplicity and is made without loss of generality. Thus, for large n,

(3.17) D, > C2f(_T T)B(n)exp[—n\L(Fn(T))]exp[nl,’:‘(B)]v(d0),

where C, is a constant. Combining this with (3.14) gives

N, _ Cexp[-n[4(Fe) ~9(E(r))]

(3.18) D,~ [ ..exp[nlx(0)]v(d8)

where C,; is a constant.
Since F is assumed to have no atom at 0 by A5, 7 may be chosen so that
3 < F(1) < F(¢). Let n > 0 be so small that

(3.19) L <F(r)+n<F(e) — .
By the strong law of large numbers and (3.18), for large n,

N, Cexpl=n[¢(F(e) =) = 9(F(x) + )]

(3.20) D, = f(‘nf)exp[nl,’,"(o)]”(da)

Let
(3.21) 8 =y(F(e) —n) —¢(F(7) + ).
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By (3.19), § is positive. By (3.7),
(3.22) for[Flae. {X;})2,, V{l,’:‘(ﬂ) > g} >0 asn— .
Since 0 € supp(v),4 there exists a constant C, > 0 such that for all large n,
(3.23) V{ae(—T,T);z;(a)< g} > q,.
Hence, for large n,

(3.24) f

(=,

(3.20), (3.21), and (3.24) combine to give

exp[nl*(0)]v(df) > Ce™ /2,
T)

N
(3.25) - for[Flae. {X;}2,, Fn < e "¥3  forlarge n.

This completes the proof of Theorem 1. O

It should be noted that Theorem 1 is a considerable strengthening of the result
of Doob mentioned in the Introduction.

COROLLARY 1. Under the assumptions of Theorem 1 and A3, the Bayes
estimate
(2.3) 0(X) = j°° 8v(d6|X )

is strongly consistent.

PrOOF. Let £ > 0. We may write

(3.26) é(X)=f s]()v(d()|X)+ f[_

[,

Ov(do|X).
e, ]
The absolute value of the first integral is less than or equal to . From the proof
of Theorem 1, it is immediate that for [ F'] a.e. {X;}%,, there exists § > 0 such
that

(3.27) v(df|X) <e "v(df) on[—e, €]
Hence, the absolute value of the second integral in (3.26) is less than or equal to
(3.28) e-"sfw 16]v(d).

This is enough to prove the corollary. O

Outside the decision-theoretic Bayesian framework, some positive results can
be obtained. Rigorous proofs will not be provided, however.

First, the estimator is consistent if F is equal to «,, “the prior guess at F.”
This is true assuming the usual regularity conditions that ensure consistency of
the maximum likelihood estimate. A proof follows fairly directly from (2.18).
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Second, if —log a} is convex, the estimator is consistent for all symmetric ¥
satisfying A5 and

(3.29) . f— log ay(x — 8) dF(x) < oo for all .

A heuristic argument proceeds as follows. Assume that F' is continuous, so that
v(d0|X) is asymptotically given by (2.17). Let

(3.30) 1(6) = flog a)(x — 8) dF(x).

By convexity of —log af, symmetry of F, and (3.29), /(6) has a unique maximum
at § = 0. By the strong law of large numbers, for fixed 6, [,(8) is close to I(8),
and F,(0) is close to F(8). Assume that this holds uniformly in §. Then by (2.17),
v(d0|X) resembles a delta function at 0, and the estimator is consistent. A
rigorous version of this argument can be obtained from Theorem 2.1 of Freedman
and Diaconis (1982). If F has a discrete component, a combination of the proof of
Theorem 1 and of the above argument yields the consistency.

Third, if a, is the double-exponential distribution i.e., ay(X)= e !, then
the estimator is consistent for all continuous F with a unique median. This is
because for the double-exponential density, roughly speaking, the maximum
likelihood estimate is the sample median. Consistency is then clear from (2.17).

4. Inconsistency. In this section it is proved that the posterior given by
(2.1) and the corresponding estimator § given by (2.3) can be inconsistent. This
inconsistent behavior can occur in three ways. The description is easiest in terms
of the estimator 4.

(a) ] converges to a wrong value, a.e. [ F']. Roughly speaking, this happens
when the mle based on the parametric model X,,..., X, ii.d. with density
al(x — @) consistently estimates a functional T(F) that is not equal to the
median of F. Here F is not symmetric about its median.

(b) 8 oscillates between two wrong values a and b, with @ < med(F) < b: [F]
a.e., there exist subsequences {n,} and {n;} such that 6 - a along {n,} and
6 — b along {n;}. This happens when F has an atom at its median. F may be
taken to have bounded support, and may be taken symmetric about its median.

(c) [F] a.e, {9,,; n=12,...} is dense in #%; for all a € #, there exists a
subsequence {n,} such that 9,,k — a. This may happen if the tails of F’ are much
bigger than the tails of a,. F' may be taken symmetric about its median.

In all three cases, the posterior »(df|X ) behaves in an analogous way.

Rather than prove general results giving exact conditions under which the
estimator is inconsistent, rigorous proofs will be provided only for three special
cases. However, the special cases and the proofs give enough of an indication as to
what sort of conditions yield general results.

(a) Inconsistency: 6 converges to a wrong value.

THEOREM 2. Let o, be the standard normal distribution, and assume A2.
Let F be a distribution with density f and a unique median m. Assume that F has
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a finite mean p and that p # m. Let

(4.1) h(6) = 3(6 — u)* + $(F(8)) forb e 2,
and let
(4.2) S = {0; h assumes its minimum at 0} .

Then, S lies between m and p, and is bounded away from m. The asymptotic
support of the posterior v(df|X) is S in the sense that for any open set O
containing S, [F] a.e., v(0|X) — 1. Thus, the posterior is inconsistent at F.

PROOF. Assume without loss of generality that m < p. It is clear that A is
strictly decreasing on (— o0, m] and strictly increasing on [, o). Also, since 4 is
continuous, inf{A(0); § € [m, p]} is achieved on [m, p]. Thus, S is not empty,
and is contained in [m, p]. Let us now see that S is bounded away from m. A
computation gives that A’(m) = m — pu, which is negative. This fact, together
with the definition of the derivative implies that there exists an ¢ > 0 such that
for all § € (m, m + ¢), h(8) < h(m). Thus S is bounded away from m.

Let O be any open set containing S. To show that [F'] a.e., »(O¢|X) — 0, we
will show that

(4.3) [Flae., »(O°N(—o0,m)|X) >0,

(4.4) [Flae., v(O°N[m,p+1]|X) -0,

and

(4.5) [Flae., »(O‘Nn(p+1,0)X)—0.

Let N,,, Ny,, N;,, and D, be defined by

(4.6) Ny, = | exp|—n(8 — X)*/2| M(X, 0)v(d6),
O‘N(—o0,m)

(4.7) N,, = [ exp[—n(8 — X)*/2] M(X, 0)v(d6),
0 A[m,u+1]

(4.8) N, = [ exp| —n(8 — X)*/2] M(X, 0)v(db),
O°N(p+1,00)

and

(4.9) D,= [~ exp[—n(6 - X)*/2] M(X, 6)v(df).

Then, to show (4.3), (4.4), and (4.5), we need to show that [F'] a.e., N,,/D, — 0
for i = 1,2,3. As in the proof of Theorem 1, D, will be bounded from below and
the N, will be bounded above.
Consider first D,. Let s € S. For 7 > 0,
s+T —
(4.10) D> [ exp[-n(6- X)*/2| M(X,0)v(df).

n =

Take 7 to be small enough so that F(s — ) and F(s + 7) are both strictly
between 0 and 1. Then, by the lemma, [ F'] a.e., for large n, the integrand in (4.10)
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is greater than
(4.11) K exp| —n(6 — X)?/2| B(n)exp[ —ny(F,(6))]»(d8)

for § € (s — 7,5+ 7). In (4.11), K is a constant. By the strong law of large
numbers applied to X, and by the Glivenko-Cantelli theorem, it foliows that

s+T
(4.12) D,z ™ [ 'B(n)e ""®y(df).

§—

Consider now N,,. For § € (— o0, m) and all large n,
(4.13) exp[—n(0 - 5(—)2/2] M(X,0) < exp[—n(m - )?)2/2] M(X,M,),
where M, = med{X,,..., X,,}. By the lemma, the right side of (4.13) is less than
(414) 2(3)* 7V B(n)exp| ~n(m ~ X)"/2]exp[ - ny(F,(M,))].

By the strong law of large numbers, this is equal to

(4.15) ’ B(n)exp[—n(h(m) + o(1))].
Thus,
(4.16) N,, < e®™B(n)e "hm),

Using the fact that A(m) > h(s), together with Assumption A2,  in (4.12) may
- be taken small enough to show that there exists § > 0 such that N,,/D, < e "®
for large n.

Consider now N,,. By the strong law of large numbers, the lemma, and the
Glivenko-Cantelli theorem,

(4.17) exp[—n(ﬂ - )?)2/2] M(X,0)=exp[—n(h(8) + o(1))] B(n)
uniformly for 8 € [m, p + 1]. [Without loss of generality, we may assume that
F(p + 1) < 1.] Observe that

(4.18) : min{h(0); 06 € O°N[m,p + 1]} > h(s).

We can combine (4.18), (4.17), and (4.12) to show that there exists § > 0 such that
N,,/D, < e~ " for large n.
Finally, consider N;,. For 8 € (p + 1, ), we have

(4.19)
exp[—n(O - }7)2/2]M(X,0) < exp[—n(p +1-— )—()2/2]M(X,p +1).

By the lemma and the strong law of large numbers, the right side of (4.19) is
equal to

(4.20) B(n)exp[—n(h(p + 1) +0(1))].
Thus, .
(4.21) N,, < B(n)exp[—n(h(p + 1) + o(1))].

Using the fact that h(p + 1) > A(s), (4.21), (4.12), and Assumption A2 may be
combined to show that there exists § > 0 such that N,,/D, < e "® for large n.
This completes the proof of Theorem 2. O
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Note that if S consists of one point s € (m, p], the posterior converges to the
point mass at s. Examples where S consists of only one point abound, and in fact,
it is difficult to construct a distribution F such that the corresponding S contains
more than one point.

COROLLARY 2. Under the assumptions of Theorem 2 and under A3, the
estimator 0 given by (2.3) is inconsistent:

P > m} =o.

If the set S given by (4.2) consists of a unique point s, then 8 converges to s [F]
a.e.

ProoF. The proof is similar to the proof of Corollary 1, and is omitted. O

Recall that §* denotes the maximum likelihood estimator of # under the
model X,,..., X, iid. with density aj(x — 8). If a, is a normal distribution, ho
is X, the mean of the observations, which is a consistent estimate of the
population mean when the latter is finite.

Suppose «, is another distribution that is symmetric about 0. The log
likelihood of 6 based on a sample of size n is

(4.22) nl(6) = Y logajy(X,—0).
i=1
The following discussion is informal. Suppose that X,, X,,... are i.i.d. ~ F, and
let
(4.23) k() = E logajy( X, — 0).

Assume that £ has a unique minimum, which is achieved at T(F). Under
suitable regularity (see for example Huber, 1967), §% converges to T(F), a.s. [ F].
The results for the posterior »(d6|X) given by (2.1) and the Bayes estimate 6
given by (2.3) are analogous to those given by Theorem 2, where «,, is the normal
distribution: If T(F)+ m(F) [m(F) is the median of F], then »(df|X) is
asymptotically supported by a set S lying between m and T(F'), and bounded
away from m. Both »(d8|X) and 6 are inconsistent.

ExAMPLES. Let
ap(x) = cexp(—|x|*) a>1.

The convexity of —log aj insures that 6 is always unique. It is easy to show
that there exist distributions F' with m(F') unique, and such that T(F') is unique
and not equal to m(F).

(b) Inconsistency: b oscillates between two wrong values. In the following
theorem, the measure a that parameterizes 2} plays no essential role.
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THEOREM 3. Assume that v is continuous and satisfies A2, and assume that
a, has an everywhere positive density that is bounded above. Let X, X,,... be
i.i.d. ~ F, where F is given by
(4.24) F=1(6_,+68,+38).

Let v_and v + be the two probability measures given by

v_(d) = c_(X)aj(1 + 0)ay()ag(1 — 6)I(6 € [-1,0])»(d8),
(4.25)
v, (d) = c. (X)ay(1 + 0)ay(6)ay(1 — 6)I(8 € [0,1])»(dB).

Then,
(1) For [F] a.e. {X;}%,, there exist subsequences {n,} and {n;}, such that
v(d0|X ) converges in absolute deviation norm to v along {n,} and to v_ along

{n}.
(2) For every 0 <& < 3,
P{ sup [»(A|X)—-v_(A)] < e} - 4,
Aca
(4.26) ©
P{ sup [»(A|X) — v, (A)| < a} -1
AeRB

asn — oo.

Proor. We will show that [ F'] a.e., there exists a subsequence {n,} such that
r(d0|X) converges to v, in absolute deviation norm along {n,}. The correspond-
ing statement concerning v _ is proved in the same way.

Let the measure » be defined by

(4.27) 7(dB) = af(1 + 0)ay(8)ay(1 — 6)r(db).
Then [ F] a.e., for large n,
(4.28) v(d8|X)=c(X)M(X,0)r(d0).

Recall that M(X,6) is constant between observations. A simple calculation
shows that for 8, € [-1,1]¢, 8, € (—1,1), and any & > 0, for large n,

M(X’ 01)
(4.29) M(X,6,) < exp[-n(y(}) —¢)].
It is then easy to see that [F] a.e.,
(4.30) r([-1,11°X) < exp[~n(y(3) —¢)]
for large n.
By (4.30),

Ji-1,0M(X, 6)v(db)

(4.31) v([-1,0]1X) ~ J 1y M(X,0)5(d8) "
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By (4.31) and the lemma,

f[ 10]exP[ n‘P 0))]”(d0)
Ji-1,yexp[ —ny Fn(f)))]"(dﬁ’)

Consider now (4.32). If we could replace F,(6) by F(6), we would have that
Y(F,(0)) = ¢(3) for all 6 such that 0 < || < 1. The result would be that
v([—1,0]|X) - »([—1,0]). However, F,(8) fluctuates about F(#) enough to
make a big difference.

By the law of the iterated logarithm for multinomial random vectors (see
Lemma 3 of Finkelstein, 1971) [ F'] a.e., the set of limit points of the sequence of
random vectors

(4.32) v([-1,0]1X) ~

(4.33) ( W1} = 5 L0} — 5, F{1) - 3)

2loglog n
is

3 3
(4.34) S = {(xl,x2,x3); Y x,=0and Y x?< l,}

i=1 i=1

The point (—1/v6,0,1/V6) is an element of S. Let {n,} be a subsequence along
which (4.33) converges to (—1/v6,0,1/V6). Then, for all large ,

n -1
[ —— F - — -_—
|/ 2loglog n ( A(61) 3) = viz'’
n P 2 1
— — — < — —
V 2loglog n ( (6:) 3) - V12

for all 6, € (—1,0) and all 6, € (0,1). (The subscript %2 has been suppressed.) By

(4.32) and (4.35),
1 loglog n
/[_lo]exp{—nnp(g - o )}v( df)

2 loglog n
-/[o,l]exp{_n¢(§ - o )}v( 0)

By Taylor’s theorem, the right side of (4.36) is less than

[oprlols) o515 ron

(4.35)

(4.36) »([-1,0]|X) <

12

(4.37) /[O,l]exp{_mp(;) np( ) /lo—**glogn}v( »

Since ¥(3) = ¢¥(2), ¢¥(3) <0, and ¢'(2) > 0, (4.37) goes to 0 as k — oo. This,
together with (4.30) yields the first part of the theorem.
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Let us now prove (4.26). By (4.32), for large n, with probability arbitrarily
close to 1,

v([-1,0]1X) ~ #([-1,0])[#([ - 1,0]) + #([0,1])
(4.38)

-1
rexpn{y(F(-1)) = ¥(F(0)}]
By Taylor’s theorem and a little algebra, the right side of (4.38) is equal to

#([-1,0)[#([-1,0]) +#([0,1]) |
exp(Vay(3) (V (F(-1) = 3) + Ve (F,(0) - 3)} + 0,(1))]

The random variables
(4.40) n(F(-1) = §) + Vn (F,(0) - 3)

are asymptotically normally distributed with mean 0. Let the events I, be
defined by

441) L= {(¥n(F(-1) =) +Vn(F0) - 3) < —n" V).

We have P(I,) —» § as n — oo. For the purpose of this discussion, the 0O,(1) term
in (4.39) can be ignored. Thus, by (4.39), on I,, »((—1,0]|X) > 0 as n - .
Hence,

|—

(4.42) limian{ sup [»(A|X) —v (A)| < s} > 1 foreverye > 0.
n—oo AeZ

Similarly,

0 |~

(4.43) limian{ sup [»(A|1X) —v_(A)| < 8} > 1 forevery e > 0.
n—oo A€z

By considering the sets [0,1] and [ — 1, 0], we note that
if sup |v(A|X)—-v,.(A)| <e, then sup|r(A|X)-—r_(A)|>1-c.
AeZ AeRB

This observation, together with (4.42), (4.43), and the assumption that ¢ < },
now gives (4.26). O

COROLLARY 3. Assume A3 and the conditions of Theorem 3. Let 6 _ and 0,
be given by

§_= / ov_(db),
[_lvO]
(4.44)
9, = f[o,l]o"*(da)’
Then, 6_<0< 6., and

(1) For [F] a.e. {X;},, there exist subsequences {n,} and {n;} such that
the estimate 6 converges to 0, along {n,} and to 6 _ along {n}.
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(2) Forevery 0 <e< §,asn — o0

PI6-06_|<¢) > 1,

(4.45)
Pl0-6,<¢) > 1.

PrOOF. The proof is similar to the proof of Corollary 1, and is omitted. O

(c) Inconsistency: 0 is dense in ®#. Let C, denote the Cauchy distribution
with median 0 and scale parameter o:

(4.46) C,(x) = f

—wm(o?+ t2)

[of

THEOREM 4. Let a, be the standard normal distribution and assume A2.
For all o sufficiently large, if X, X,,... arei.i.d.~ C,, then [C,] a.e. {X,}2,,
for every a € R, there exists a subsequence {(n,} such that along {n,} v(df|X)
converges in distribution to the point mass at a.

Proor. Let S, =X, + X, + --- +X,. [C,] ae, the sequence (S, /n;
n=12,...} is dense in %. Intuitively, this is because the random variables
S,,S,/2, 83/3, ... all have the distribution [C,]. If they were in addition indepen-
dent, the result would follow immediately. They are of course not independent.
However, for sufficiently large n,, S, and S, /n2 are “nearly independent”; for
sufficiently large n;, S,, S, /n,, S, /n, are “nearly independent”, etc. Thus, a
subsequence {n,} can be chosen so that Sl, S, /n2, S,,/ns,. are nearly ii.d. ~
[C,]. Consequently, {S, /s k=12,...}1s dense in 9? The above argument

can be made rigorous. A Yess transparent but quicker proof may be obtained from
the Hewitt-Savage 0-1 law.

Let p € #, and let {n,} be a subsequence such that S, /N, = B Attention is
restricted to the subsequence {n,}, and the subscript & is henceforth suppressed.
As was seen in the proof of Theorem 2, the asymptotic support of »(d#|X) is the
set S defined through (4.1) and (4.2). Our goal is to show that

(a) S consists of a unique point, call it S(p), and

(b) by varying u, S(p) can be made to equal any preassigned value a.

For h defined by (4.1), we have

G,(8)

(4.47) h'(0) = Co'(ﬂ)logl:l—:-cm

]+(0—u)

and

o o))’ . C(6)
(4.48) h"(0)=1+ C.(O)[1 = C8)] + G (0)10g[w)‘].
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Consider the third term on the right side of (4.48). We have

(4.49 C()1 G0) | _ 1 A 2
. ) o( )Og 1_C0(0) _02 l(o)og (0)
‘ 1-C| -
o
It is easy to see that
(4.50) sup C”(t)log[—ﬁ(i} <
. teR ! 1- Cl(t) '

Note that the second term in (4.48) is always positive. This observation, together
with (4.49) and (4.50) shows that o can be chosen so that A/(6) is always
positive.

Assume p > 0. The set S is contained in (0, n]. Since A(0) < 0 < h’(p), the
equation A’(6) = 0 has a root in (0, p), and since A"(0) is always positive, this
root is unique. Call it S(p). A has a unique minimum at S(), and as was seen in
the proof of Theorem 2, »(df|X) converges in distribution to the point mass at
S(p). Let a € # be given, and assume that a > 0. Let u be given by

(4.51 C/a)l Cola) +

N ) p‘_ o(a) Og 1 _ Co(a) a.

Then, a solves h’(8) = 0, and is the unique solution. This completes the proof of
Theorem 4. O

COROLLARY 4. Assume A3 and te conditions of Theorem 4. Then, [C,] a.e.
{X.}32,, for every a € X, there exists a subsequence {n,} such that along {n,},
6 - a.

Proor. The proof is similar to the proof of Corollary 1, and is omitted. O

5. Summary. For the problem of estimating the location of a distribution
function the shape of which is only partially known, the approach used by Dalal,
Diaconis and Freedman and in the present work was to put a prior on the
unknown c.d.f. Dalal and Diaconis and Freedman considered the “symmetrized
Dirichlet priors,” which give probability one to the set of symmetric c.d.f.s.
Diaconis and Freedman (1985a, b) showed that the estimates obtained from these
priors can be inconsistent, while Doss (1984) showed that they are extremely
sensitive to the symmetry assumption.

In Doss (1985) the priors 2} were considered for the more general problem of
estimating the median of a distribution. If «, was chosen symmetric, the prior
2% was “centered” at a,, but put all its mass on asymmetric distributions. For
these priors, the results are mixed. Only the basic question of consistency has
been studied in detail.

On the positive side, the estimator is consistent if F is equal to the prior guess
a,, and remains consistent if F' deviates from «, as long as F' is discrete. For
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almost any choice of «,, the mle 6 does not have this property. Also, as was
indicated by the comments at the end of Section 3, there are certain choices of a,
which will yield an estimator that is consistent for a subset of Z** that is large
enough to include, for example, the continuous distributions.

On the negative side, Theorem 3 states the following. There exists a set E of
distributions, E C #**, such that for any «, (including the double-exponential
distribution), the estimator based on 2* is inconsistent for all F € E. Theorem
2 states that if a, is a normal distribution, there is a set E ¢ #** such that E is
dense in #**, and the estimator based on 2* is inconsistent for all F € E.
Thus, the estimator is not even consistent in a neighborhood of «,,.

The results obtained by Diaconis and Freedman and in the present work give
some information on the behavior of estimators of location obtained by putting a
prior on an unknown c.d.f. However, the following problem still remains un-
solved. Find a class € of priors such that

(i) For any symmetric c.d.f. «, there is a member of % that is in some
suitable sense “centered” at a,.
(ii) The class yields estimators 0 . of the median which are tractable.
(iii) The estimator 0 is
(a) efficient at ao,
(b) robust under small, possibly asymmetric perturbations of «,,
(o) still a consistent estimator of the median if the true distribution is
distant from a,,.
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