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ESTIMATION, FILTERING, AND SMOOTHING IN STATE
SPACE MODELS WITH INCOMPLETELY SPECIFIED
INITIAL CONDITIONS

By CrailG F. ANSLEY AND ROBERT KOHN
University of Chicago

The likelihood is defined for a state space model with incompletely
specified initial conditions by transforming the data to eliminate the depen-
dence on the unspecified conditions. This approach is extended to obtain
estimates of the state vectors and predictors and interpolators for missing
observations. It is then shown that this method is equivalent to placing a
diffuse prior distribution on the unspecified part of the initial state vector,
and modified versions of the Kalman filter and smoothing algorithms are
derived to give exact numerical procedures for diffuse initial conditions. The
results are extended to continuous time models, including smoothing splines
and continuous time autoregressive processes.

1. Introduction. In this paper we consider observations generated by a
multivariate Gaussian state space model observed at discrete points in time. The
initial state vector x(0) will be of the form

x(0) = &9 + ¢,

where ¢ has a well-defined Gaussian distribution, while the distribution of 7 is
unspecified. Although the likelihood of the observations cannot be defined in the
usual sense because the distribution of 5 is unspecified, we show how to define a
likelihood by taking a singular transformation of the data that eliminates the
dependence on 7. This likelihood will be invariant under a large class of transfor-
mations.

We also show how to use the observed data to estimate the unobserved state
vector, how to predict future observations and interpolate missing observations,
and how to obtain the mean-squared errors of all these estimates. Because the
distribution of 7 is unspecified, we cannot simply obtain the above estimates by
taking conditional expectations based on the data. Instead, we extend the
transformation approach, mentioned in relation to the likelihood, to define
estimates of the unobserved state vectors and the unobserved values of the
dependent variables.

Although the definition of the likelihood as described above is conceptually
satisfactory, the resulting expression for the likelihood will not usually be in a
suitable form for efficient computation. This is because transforming the data
will destroy the state space structure of the observations and so we will no longer
be able to use the Kalman filter to efficiently compute the likelihood as in
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Schweppe (1965) and Jones (1980). Similar remarks apply to the estimate of the
state vector, predictors, and interpolators mentioned above.
To obtain efficient algorithms we will take

(1.1) n ~ N(0, kI)

and let £ — oo, making 7 diffuse and hence the initial state vector x(0) partially
diffuse. We show that the likelihood as defined above is equivalent to assuming
(1.1) and considering a suitably normed limit of the likelihood of the (untrans-
formed) observations. We generalize Schweppe’s (1965) approach for computing
the likelihood of a Gaussian state space model by deriving a modified Kalman
filter algorithm that allows the initial state vector to be partially diffuse.
Although for fixed k, we could use the ordinary Kalman filter to compute the
likelihood, what we must do is let 2 — o0, and this is not possible using the
ordinary Kalman filter because filtering and limiting operations are not inter-
changeable. The modified filter shows explicitly how the conditional state covari-
ance matrices and the innovation variances depend on k.

We will also show that the estimates described above of the state vector and
the unobserved values of the dependent variable are limits (as & — oo0) of
conditional expectations based on the observed data under (1.1). Efficient compu-
tation is again done by modified smoothing algorithms, which allow the state
vector to be partially diffuse. In particular, we obtain modified versions of the
fixed interval and fixed point smoothing algorithms. As before, we need modified
smoothing algorithms because smoothing and limiting operations are not inter-
changeable with the usual algorithms.

Although most of our results are derived for a discrete time state space model,
we show how to extend them to a continuous time state space model observed at
discrete points in time.

We have applied the results in this paper to compute the likelihood and
predict and interpolate data in a nonstationary ARIMA model (Kohn and
Ansley, 1984a) and to compute optimal smoothing splines (Kohn and Ansley,
1984b).

Other ways of handling a partially diffuse prior have been suggested in the
literature and are discussed at the end of Section 6. They seem inferior to our
approach.

This paper is structured as follows. Section 2 defines our model and states the
assumptions. In Section 3 we define the likelihood and in Section 4 we show how
to define estimates of the state vector and predict and interpolate missing
observations. In Section 5 we assume, in addition, that (1.1) holds and show that
the normalized likelihood now obtained is equivalent to that in Section 3. In
Section 6 we state the modified Kalman filter and in Section 7 we apply it to
efficiently compute the likelihood. In Section 8 we discuss smoothing algorithms
and in Section 9 we outline how our results can be extended to a continuous time
state space model observed at discrete points in time.

Because the proofs of the results in Sections 6-8 are rather long and require a
number of preliminary results, we have placed both the preliminary results and
the proofs in Section 10 at the end of the paper.
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2. Model and assumptions. We consider the p X 1 vector stochastic pro-
cess (y(t), t = 1) generated by the state space model:

(2.1)  y(t)=H(t 0)x(t) +v(t), x(t+1)=F(t;0)x(t) + u(t).

AssUMPTION 2.1. (i) (x(t), t = 1) is a sequence of g X 1 state vectors.

(ii) For each t: (a) v(¢) and u(¢) are, respectively, p X 1 and ¢ X 1 Gaussian
random disturbances, both having zero mean and with variance-covariance
matrices @Q(¢; ) and R(t; ), respectively; (b) v(¢) and u(t) are independent of
x(s) for all s < ¢ (c) v(¢) and u(s) are independent for all s and ¢ (d) v(t)
(t = 1) is an independent sequence as is u(t) (¢ > 1).

(iii) The matrices H(¢; 8) and F(t; 6) are p X g and g X q, respectively for
t>1.

AssuMPTION 2.2 (Initial Conditions).
(2.2) x(0) = ©(6)n + &,
where .

(i) ®(0)isa g X D (D < q) matrix.

(ii) & ~ N(0, 2(8)) and n is a D X 1 vector having an unspecified distribution.
Both { and 7 are independent of u(0) and (v(¢), u(t); ¢t > 1).

ASSUMPTION 2.3. 0 is a parameter vector belonging to a subset ® of a finite
dimensional Euclidean space.

AsSUMPTION 2.4. We observe y(t,),..., (t,) with 1=¢ <t, < --- <t

= N.
Now let »(0) = { and for ¢ > 1 define

t—1 \
A(t) = (H(t)jl]oF(j))@,

(2.3)

v(t)=F(t—1w(t—1)+u(t-1), w(t) = H(t)v(t) + o(t).
Then
(2.4) ¥(t)=A(t)n+ w(t), t=1.

Define the n X 1 vectors y = (y(t,),..., ¥(¢,)) and w = (w(t,),..., w(t,)),
and let A be the np X D matrix having rows (¢ — 1)p + 1,..., tp given by A(¢).
Then

(2.5) y=An+ w.
We assume that:

ASSUMPTION 2.5. (i) A is independent of 6.
(ii) The variance-covariance matrix of w is nonsingular for all § € ©.

(2.4) and Assumption 2.5(i) together imply that the dependence of y(¢) on 7
does not involve 6, although ®, H(j), and F(j) (j=0,...,t— 1) may depend
on 4.
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We can often check Assumptions 2.5(1) and (ii) from first principles. A
sufficient condition for Assumption 2.5(ii) to hold is that Q(¢; ) is nonsingular
for t>1 and all § € ©. The following lemma gives sufficient conditions for
Assumption 2.5(i) to hold.

LEMMA 2.1. A sufficient condition for Assumption 2.5() to hold is that ®,
FE(t), and H(t) (t = 0) are of the form

2,
d=...
0

where ®, and F,(t) are D X D, H\(t) is p X D, and ®,, F,(t), and H(t)
(t = 0) are independent of 6.

Fll(t) Fl2(t)

0 Fz2(t) ’ H(t) = (Hl(t)’ H2(t)),

o]

The proof is immediate. O

To illustrate our results we apply them throughout the paper to a nonsta-
tionary quarterly ARIMA model. A complete treatment of ARIMA models by
the methods of this paper is given in Kohn and Ansley (1984a), with algorithmic
details set out in Ansley and Kohn (1985).

ExaMPLE 2.1. Consider the ARIMA model

(2.6) Y(t)=y(t—4) +e(t) +ae(t—1)

with e(t) a sequence of independent N(0, 6%) random variables.
As in Kohn and Ansley (1984a) we can write (2.6) in state space form as

y(t) = Hx(¢), x(t+1) = Fx(t) +g(8)e(t + 1),

where 6 = (a,0%), x(t) is a 4 X 1 state vector with elements x,(t) = y(¢),
xy(2) = y(t = 3) + ae(?), xy(t) = y(t — 2), and x,(¢t) = y(t — 1); H = (1,0,0,0),
g =@1,a,0,0), and F is a 4 X 4 matrix with F,=LF,; ,=1(=1..,3)
and the rest of the elements of F are zero.

We define n = (y(—3),..., ¥(0)) and because y(¢) is nonstationary the distri-
bution of 7 is unspecified. We can write x(0) as in (2.2) with ¢ = (0, ae(0), 0, 0)
and

SO -=O
OO O
HOoO OO
SO O+

It is clear that for any sequence of observations y(¢,),..., ¥(¢,) generated by
(2.6), Assumption 2.5 holds. For example, if we observe

(2.7) ¥y =(»Q1), y(4), ¥(5), ¥(6), ¥(8), ¥(9), ¥(10), ¥(12))’,
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then n = 8 and

(2.8) A=

SO OO O
O OO OOO
SO OO OO O
HOOHOOHO

3. Defining the likelihood. Because the density of 7 is unspecified, so is the
density of y and hence the likelihood of the observations cannot be defined in the
usual way.

To define a likelihood we transform y to eliminate dependence on 7 as follows.
Let D’ (< D) be the rank of A, and let J be an n X n matrix independent of 8
so that det J = 1 and JA has exactly D’ nonzero rows. Because A is indepen-
dent of 6, we can always construct such a matrix oJ. Let o/, consist of those D’
rows of ¢/ corresponding to the nonzero rows of JA and let <J, consist of the other
rows of J, so that J,A = 0. Put w;, = JJ;y and w, = JJ,y. Then

w, = JJAn + Jw, w, = Jyw,

and we will define the likelihood as the density of w,. This likelihood is well
defined because it does not depend on 7. We show in Corollary 5.1 that this
definition of the likelihood is invariant to the choice of «J.

One way of obtaining </ is to note that by Lemma 10.1 of Section 10 we can
factorize AA’ as LAL’ where L is a lower triangular matrix having 1s on the
diagonal and A is a diagonal matrix. Taking J = L~! gives us a suitable JJ.

We motivate our definition of the likelihood by considering Example 2.1.

EXAMPLE 2.1 (ctd). Suppose we observe y(1), (2),..., ¥(n) (n > 4). Let
w(t)=yt)(t=1,...,4)and w(t)=y(t)— y(t —4)(t=5,...,n),and put w, =
(w(),...,w4)) and w, = (w(5),..., w(n)). Then w, = J;y and w, = J,y, where
J, =[1,,0] and J, is the (n — 4) X n matrix

-1 0 0 0 1 0
J2=

0 -1 0 0 0 1
Let J be the n X n matrix J = [J/, J;]’; det J = 1.

We define the likelihood as the density of the n — 4 differenced observations
w, = J, y. Thus, our definition corresponds to that usually adopted for ARIMA
models when there are no missing observations. See, for example, Box and
Jenkins [(1976), Chapter 6].

If the observation vector y is given by (2.7), so that some observations are
missing, we can no longer difference the data to define the likelihood but we can
proceed as above with D’ = 3 because rank A = 3 in (2.8).
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4. Interpolation, extrapolation, and state estimation. In this section we
show how to define estimates of unobserved y(¢) and x(¢) based on the observed
data y, and also obtain the mean-squared estimation errors. Because the density
of 7 is unspecified, so are the densities of y, y(¢), and x(¢) and we cannot obtain
our estimates by simply taking conditional expectations based on the observa-
tions y. Instead we proceed as follows.

4.1. Interpolation and extrapolation. Let Y(t) be a p’ X 1 subvector of y(t).
From (2.4) we can write

Y(¢) = A(t)n + a(¢)

with &(¢) the corresponding p’ X 1 subvector of w(t) and A(¢) the p’' XD
matrix consisting of the corresponding p’ rows of A(%#).

Suppose Y(¢) is unobserved and we want to estimate it using the data y and
obtain the mean-squared estimation error. If ¢ > N we are predicting and if
1 < t < N we are interpolating.

Suppose the rows of A(t) belong to the row space of A. Then thereisa p’ X n
matrix d@(¢) so that

A(t) = a(t)A.

Hence Y(¢) — d@(t)y = &(t) — @(t)w = iw(t) say. Then i(t) and w, (defined in
Section 3) have a proper joint distribution because neither depends on 5. We
define the estimate of Y(#) given y as

(4.1) Y(¢N) = a(t)y + E(aw(t)|w,).

The mean-squared prediction error is

Sy(t|N) = Var(Y(¢) ~ ¥(¢|N))
= Var(@(¢)|w,).

If the rows of A(t) do not belong to the row space of A, then we cannot estimate
Y(t) from y using our approach because we cannot find an @(t) so that
Y(t) — a(t)y is independent of n. To obtain an estimate of Y(¢), and also
its mean-squared estimation error, we would need to impose some additional
(nondiffuse) distributional assumptions on 1.

Although (4.1) and (4.2) give us formulae to estimate Y(¢) and obtain its
mean-squared error, the direct evaluation of E(i(¢)|w,) and Var(@(¢)|w,) will be
computationally inefficient. This is because in transforming y to obtain w,, we
destroy the state space structure of the observations and so we can no longer use
the efficient filtering and smoothing algorithms that are available for state space
models. We overcome this difficulty with modified filtering and smoothing
procedures in Sections 6-8.

To illustrate our definitions we go back to Example 2.1.

(4.2)

EXAMPLE 2.1 (ctd). Let y be given by (2.7) and A by (2.8). We can predict,
for example, y(13) and interpolate y(2) because A(13) = (1,0,0,0) and A(2) =
(0,1,0,0) lie in the row space of A. We cannot predict y(15) or interpolate y(3)
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because A(15) = A(3) = (0,0,1,0) are not in the row space of A as we have no
third quarter observations.

If, in addition, y(15) is observed, then the matrix A will have full rank and we
can predict and interpolate all missing observations.

4.2. Estimating the state vector. Now let »(¢) be defined as in (2.3), and
define B(0) = @,

(4.3) B(t) = ﬁF(j)cp, t> 0.
j=0

Then
x(t) = B(t)n + v(t).
Now let X(¢) be a g’ X 1 subvector of x(¢). Then we can write
X(t) = B(t)n + #(¢),
where #(t) is the corresponding q’ X 1 subvector of »(¢) and B(t) is the g’ X D
matrix consisting of the corresponding q’ rows of B(t). We can define the
estimate of the vector X(¢) based on all the data and the mean-squared error of
the estimate similarly to the way we defined Y(¢|n) and Sy(¢|n) in Section 4.1.
If the rows of B(?) belong to the row space of A, then there exists a ¢’ X n
matrix b(t) such that B(t) = b(t)A and so X(t) — b(t)y = #(t) — b(t)w. Analo-
gously to (4.1) and (4.2), we define the estimate of X(t) given y as
(4.4) X(tin) = b(t)y + E(5(2) - b(¢t)w|w,)
with mean squared error
Sy(tin) = Var(5(t) — b(t)w|w,).

If the rows of B(t) do not belong to the row space of A, then we cannot
estimate X(¢) as in (4.4), although we may be able to estimate some subvector of
it.

5. Model with partially diffuse initial conditions. We now consider the
state space model of Section 2 and, in addition, assume that

AsSUMPTION 5.1. n ~ N(O, kI) (k > 0) and satisfies Assumption 2.2.

To indicate our lack of knowledge about 7, we will let & = co making 7
diffuse and x(0) partially diffuse. For fixed & > 0 the likelihood of y is well
defined, and we show that in the limit as k — oo, this likelihood (suitably
normalized to avoid degeneracy) is equivalent to that given in Section 3.

THEOREM 5.1. Let f(w,; 0) be the density of w,, where w, is defined in
Section 3 and let f(y; 0; k) be the density of y for fixed k > 0. Then

(5.1) ) f(w,y; 0) = cklim KD %f(y; 6; k),

where c is a constant independent of 6.
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ProOF. Let f(wy; 0; k) be the density of w,, where w, is defined in Section 3
and let f(w,|w;; 0; k) be the conditional density of w, given w,. Then it is not
difficult to show that

lim &272f(wy; 0; k) = (27) 7 /*(det J,AAJ}) " "/*

k— o0
and
kli_{r;o f(wylwy; 8; k) = f(w,; ).

Now
kP 2f(y; 05 k) = kP 2f(w; 0; k) f(wy|w; 6; k)
and (5.1) follows because J; AAJ! is independent of 6. O

COROLLARY 5.1. Up to a constant independent of 8, the likelihood f(ws,; 8)
as defined in Section 3 is invariant to the transformation JJ.

ProOF. This follows directly from (5.1). O

Let Y(¢) and X(t) be the subvectors of y(¢) and x(t), respectively, defined in
Section 4. For fixed k>0, let Y(¢|N; k)= E(Y(¢)|y) and Sy(t|N; k)=
Var(y(¢)|y), and define X(¢|N; k) and Sx(¢|N; k) similarly with respect to X(¢).
We show that if the estimate Y(¢|N) defined in Section 4.1 exists, then

(5.2) Y(¢N) = kllm Y(t|N; k), S,(t|N) = khm Sy(t|N; k).

Similarly, if the estimate X(t|N ) defined in Section 4.2 exists, then
(5.3) X(¢N) = klim X(t|N; k),  Sx(tiN) = klim Sx(t|N; k).

THEOREM 5.2. (i) Suppose the rows of A(t) lie in the column space of A. Let
f(@(¢)|wy; 8) be the conditional density of W(t) given w,, and f(Y(t)|y, 0; k) the
conditional density of Y(t) given y. A(t) and ii(t) are defined in Section 4.1.
Then

(5.4) H(@(Dlu 0) = lm f(¥(0)1 65 k)

and (5.2) holds.

(ii) Suppose the rows of B(t) lie in the row space of A. Let f(#(t) — b(t)w|w,)
be the conditional density of ¥(t) — b(t)w given w,, and let f(X(t)|y; 0; k) be the
conditional density of X(t) given y. B(t), #(t), and b(t) are defined in Section
4.2. Then

f(5(2) = b(t)wlwy; 0) = lim [(X(¢)|y; 05 k)

and (5.3) holds.
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ProoFr. (i) In the notation of Sections 3 and 4.1, let

o9 A lgol o [lao o v [l
Then

i 1 w

atn] §A |2 - a0

Let f(w,, @(t); 8) be the joint density of w, and @(¢), and let f(Y,; 8; k) be the
density of Y,. Then similarly to the proof of Theorem 5.1,

F(wn, @(2); 8) =  lim kP72(Y,; 03 &),

where c is a constant independent of 8, and we can show that c is the same as in
(5.1). (5.4) now follows from (5.1), and (5.2) is immediate.
Part (ii) is proved similarly. O

COROLLARY 5.2. (i) Let A, be defined by (5.5) and let D” = rank A,. If
D” > D’ then

(5.6) Jim BDO(Y(2)]; 65 k)

exists and z~s nonzero. 3
(ii) Let B, = (A’, B(t)'Y andlet D" = rank B,. If D"’ > D’ then

lim k(2" =22 (X(t)]y; 6; k)

k— o0

exists and is nonzero.
ProOOF. (i) As in the proof of Theorem 5.1(i) we can show that
0 < lim RP"/%f(Y,; 6; k) < o0
k— o0
and (5.6) now follows from (5.1). Part (ii) is proved similarly. O

If the rows of A(t) do not belong to the row space of A, then we cannot
estimate Y(¢) in the sense of Section 4. By Corollary 5.2(i) this is equivalent to
Y(t) — Y(t|N; k) becoming at least partially diffuse as & — oo. By Corollary
5.2(ii) similar remarks apply to X(?).

For fixed 2 > 0 we can compute f(y; 8; k) using the Kalman filter as in
Schweppe (1965) and Jones (1980). What we need, however, is the limit on the
right side of (5.1) and for this we cannot use the ordinary Kalman filter because
the operations of filtering and taking the limit cannot be interchanged. In the
next section we therefore develop a modification of the Kalman filter to exhibit
explicitly the dependence on k. This will provide us with an efficient algorithm to
compute the likelihood (5.1).
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Similarly, for fixed k& > 0, we can compute the estimates Y(¢|N; k) and
X(t|N; k) and their mean-squared errors Sy(£|N; k) and S, (¢|N; k) using either
the fixed point or fixed interval smoothing algorithms described in Chapter 7 of
Anderson and Moore (1979). But we need the limit as £ — oo of the above
quantities, and for this we cannot use the ordinary smoothing algorithms because
again taking the limit (as 2 — o) and smoothing are not interchangeable
operations. In Section 8 we develop modified smoothing algorithms that make
explicit the dependence on k. This will give us efficient algorithms to compute
(5.2) and (5.3).

6. The modified Kalman filter. For the rest of the paper we assume that
Assumption 5.1 holds. For a given integer j, let [ be the largest integer for which
t, < j, and define

x(8lj; k) = E(x(8)|5(2),..., ¥(t,))

and
S.(t17; k) = Var(x(t) — x(¢|; k)).
We define
x(¢10; k) = E(x(¢)) =0,  S.(¢t0; k) = Var(x(2)),
so that
(6.1) x(0]0; k) = 0, S.(0|0; k) = kO’ + 3.

Therefore x(¢|/; k) is the best estimate of x(¢) given observations until time ¢,
and S(¢|j; k) is its mean-squared error. We define y(¢|j; k) and S(¢|j; k)
similarly.

The proofs of the results in Sections 6-8 are often long and require a large
number of preliminary results. We have therefore placed all the proofs at the end
of the paper in Section 10.

The following lemma makes explicit the dependence of x(¢|j), S.(¢|j), and
S(t|j) on k.

LEMMA 6.1. Fork >0 andt, j >0

(6.2) x(t|j; k) = xO(t1j) + O(1/k),
(6.3) S.(t1j; k) = kSV(t]7) + SO(tj) + O(1/k),
(6.4) y(tljs k) = yO(t1j) + O(1/k),
(6.5) S,(tlj; k) = kS{(tj) + SO(tj) + O(1/k),

where xO(t|7), S{(t|7), SOt17), yO(t)), St )), and S{*((t|j) do not depend
on k.

Let S;, (¢ + 1j¢; k) be the conditional variance of (y(¢t+ 1), x(¢+ 1))
given all observations until time ¢.
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LEMMA 6.2.

@

S,(t+ 1)tk H(t+1)S,(t+ 1t &

(6.6) S, .(t+1t k)= i 1 k) , ( IS 1 &) ,

’ S.(t+ 1t R)H(¢+ 1) S(t+ 1t k)
so that
(6.7)  Sp, (t+ 1t k) = kS() (¢ + 1jt) + S (¢ + 1j¢) + O(1/k).
(i) We can factorize S;,, .1(¢t + 1|t; k) as L(k)A(k)L(k), with L(k) a lower

triangular matrix and A(k) a aiagonal matrix with the expansions
L(k)=LO+(1/k)LC"D +(1/k)L1O(k),
A(k) = RAD + AO + O(1/k),

where the elements of L'"9(k) are bounded in absolute value, and the matrices
LO LELY AW AO gre independent of k. Furthermore,

LELO(R)AD = O(1/k).

LO, L1 AD and A© depend only on S(t + 18), SOt + 1jt), SI(¢ +
1)¢), “”(t + 1|t), and H(t + 1) and can be computed using Corollarjy 10.3.

(iii) Partition L(k) and A(k) as
L, (k) ’ A(k) = A, (k) O
L,(k) L.(k) 0 A (k)
with L, (k) and A, (k) p X p matrices and the rest of the submatrices in L(k)
and A(k) dimensioned conformally. Then

St + 1t + 1, k) = L (k)A (k)L (k)

L(k) =

so that
(6.8) SO(t+ 1t + 1) = LOAD LY
and

(6.9) SO(t+ 1jt + 1) = LOAQLY + LOAD LC1LY 4 [ LUAD O,

xx xXxTTXxXx

From (i) L), LMY, L), L), AQ, and A, depend only on S{M(t + 1]t),

xx?

SOt + 1j¢), S(¢ + 1[t), S‘O)(t I 1|t), and H(t + 1).
(iv)  E{(x(t+1)—x(¢+ Ue)(¥(t+ 1) —¥(¢t + 1}2)))
= LR LO Y y(t+ 1) — H(t + 1)xO(¢ + 1jt)) + O(1/k),

XYY Ty
where A ,y s a diagonal matrix with ith diagonal element 1 if the ith diagonal
element of A ,, is positive and zero otherwise.
(v) rank SM(¢ + 1]t + 1) = rank SP(¢ + 1|¢) — rank S{(¢ + 1)¢).

Define the innovations &(j; k) (j=1,...,n) as &1; k) = (1) and for j=
2,...,n

8(j; k) = y(tj) - E(y(tj)ly(tl)""’ y(tj—l))‘
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Then
e(J; k) = €9(j) + O(1/k)
with
e@(j) = y(t;) — H(t;)xO(¢)it; — 1)
and

Var(e(j; k)) = S,(t)]t; — 1; k).

We now describe a modification of the ordinary Kalman filter [Anderson and
Moore (1979), Chapter 3] in which the dependence on k is made explicit in the
state estimates and conditional state covariance matrices.

THEOREM 6.1. Steps 0-4 below show how to obtain xO(t|t), SO(t|t),
xO(t + 1|t), SO(t + 1t), and SI(t + 1)t) for t = 0,..., N, and £°(j), S{(¢)¢,
- 1), a’ld S;O)(tjltj - 1) forj = 1,..., n.

Step 0 (Initialization)

(6.10) x©(0]0) =0, S1(0]0) = ¢, S©(0/0) = =.
Steps 1-4 are repeated for t =0,..., N — 1.
Step 1

(6.11) xO(t + 1)) = F()xO(¢2),

SI(t + 1)t) = F(¢)S{P(¢|t)F(¢)',
SO(t + 11t) = F(¢)SO(t|t)F(t) + R(t).

If y(t + 1) is missing.
Step 2

(6.12)

Ot + 1t + 1) = xO(¢ + 1)2),
SOt + 1+ 1) =SP(¢+ 11t),  SO(¢+ 1yt + 1) = SOt + 1)¢).
If y(t + 1) is observed (¢ + 1 = t; for some j).

Step 3

(6.13) eO(7) = y(¢t;) — H(¢;)x (¢ + 1]t).
Now compute L), L), LO), AY),, L(;"Y, and A , as described in Lemma 6.2.
Step 4

(6.14) xO(t+ 1t + 1) = xO(¢ + 1¢) + LA, LY 1eO(5).

SI(t + 1]t + 1) and SO(¢ + 1]t + 1) are given by (6.8) and (6.9).
Furthermore,

(6.15) rank S{(¢ + 1j¢ + 1) = rank S{(¢ + 1j¢) — rank S{(¢ + 1]¢).

If SM(t|t) = 0 for some ¢, then SI(j|j)=SP(j + 1]j) =0 for all j > ¢ from
(6.12) and (6.15).
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From Theorem 6.1 once S{"(¢|¢) becomes zero it stays zero and the modified
Kalman filter reduces to the usual Kalman filter. In applications this will often
happen for small ¢.

The ordinary Kalman filter does not allow a diffuse initial distribution on x(0),
and two ways to overcome this have been suggested in the literature. First, one
can impose the initial distribution n ~ N(0, k') with % a large positive number
and use the ordinary Kalman filter. See, for example, Schweppe [(1973), page 150]
and Harvey and Phillips (1979). This method suffers in practice from numerical
instabilities as we must often subtract a large number from a large number in
order to get a required small number. It is also inexact.

Second, a variant of the Kalman filter known as the information filter [see, for
example, Anderson and Moore (1979), Section 6.3] can be used to handle x(0)
diffuse when the transition matrices F(t) are nonsingular for ¢ > 0. The informa-
tion filter obtains S !(¢|t) and S;'(¢|¢)x(t|t), t =0,1,... and diffuse initial
conditions are imposed by setting S '(0|0) = 0. There are several drawbacks to
the information filter which makes our approach more appealing. First, the
transition matrix F(t) is singular in many cases encountered in practice so its
inverse does not exist. An important example of a singular F(¢) occurs in a state
space representation of an ARIMA ( p, d, ¢) model with p + d < q + 1; see, for
example, Kohn and Ansley (1984a). Moreover, the conditional covariance matrices
S.(t|t) may be singular as in the ARIMA model of Example 2.1 and thus may not
possess the inverses required by the information filter. Finally, even if the
information filter can be used, it is computationally more efficient in many
applications to work with the S (¢|¢) rather than their inverses. This is particu-
larly so if the dimension of the state vector is large [see Mendel (1971)].

7. Computing the likelihood. When x(0) has a proper distribution, we can
use the innovations sequence obtained from the ordinary Kalman filter to
efficiently compute the likelihood of a state space model [see, for example,
Schweppe (1965) and Jones (1980)]. We similarly use the modified Kalman filter
of Section 6 to compute the likelihood (5.1). Note that all quantities in Theorem
7.1 below are readily obtained from the recursions of Theorem 6.1.

THEOREM 7.1. Define K, = (t,, j =1,..., n} so that K , consists of all those
time periods t for which y(t) is observed.

(1) Under the assumptions of Sections 2 and 5, for anyt = t; we can factorize
S,(¢|t — 1) as L(0; k)A (0; k)L (0; k) with

L(6;k)=L"6)+ O0Q1/k)

and
' A[(8; k) = A + AO(8) + O(1/k).
L©(0) is a lower triangular matrix with 1s on the diagonal, L(6) and AD(6)

do not depend on k, and AP does not depend on k or 6. We compute L‘O)(ﬂ),
AD(8), and AP as in Lemma 6. 2(iii).
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(i) Fort € K, lett = t; and define

£(7,8) = (LO(8)) '«(j; 0)
and
Kj={i:1<i<p, A)=0},

where N;) and )\‘0} are the ith diagonal elements of A(8) and AY(8), respec-
tively, and £©(;,0) is defined by (6.13) in Theorem 6 1. Now writing the ith
element of £(j) as §;,, the likelthood (5.1) is equal to

l]’

—1/2
n 1
(7.1) c{ IT 11 }\‘?}} exp{ — -—( DRI 3 NO)) .
Jj=1i€Kj, j=11i€Kj,
(i) If SPO(¢|t — 1) = H()SLO(t|t — DH(tY + Q(t) is a positive definite ma-
trix for all t, then \0)>0 for all j and all i=1,..., p. This happens in
particular if Q(t) is posztwe definite for all t.

8. Modified prediction and smoothing algorithms. In this section we
obtain xO(¢|N), SI(¢N), SOUEN), yO(¢N), SP(¢N), and SO(¢|N) for
t > 1 by extending the smoothing algorithms for the state vector [ Anderson and
Moore (1979), Chapter 7] to allow for a partially diffuse initial state vector. We
will assume throughout that Assumptions 2.1-2.4 and 5.1 hold.

Before giving details of the algorithms we discuss the meaning of our results.
Let y*(¢|N) be the jth element of y(o’(t[N) and let (S{"(¢|N)),; be the jth
dlagonal element of S(l)(th ). Suppose y(t) is not observed. Then y,(¢) can be
estimated from the data y in the sense of Section 5 if and only if A ;(¢) lies in the
row space of A, where A (t) is the jth row of A(#), and A(¢) and A are defined
in Section 2. Although it is tedious to directly check whether A (%) lies in the row
space of A, Theorem 6.1 together with the algorithms below allow us to check it
easily and automatlcally because by Theorem 5.2 and Corollary 5.2, y,(¢) can be
estimated from the data in the sense of Section 5 if and only if (S“)(t|N ) =0.

Similar remarks apply to the estimation of x(¢) from the data.

8.1. Prediction. For t > N we can use Steps 1 and 2 of Theorem 6.1 to obtain
Ot N), S(¢|N), and SO(¢|N), as follows.
THEOREM 8.1. Fort=N,N +1...
x@(t+1N) = F(t)xO(¢{N),  SM(¢t+ 1IN) = F(t)S{(¢|N)F(¢)’,
SO(t + 1N ) = F(t)SO(¢|N)F(t)" + R(¢t).

The modified fixed interval, fixed point and fixed lag smoothing algorithms
described below apply to ¢ < N.

8.2. Modlified fixed interval smoothing. Let Si,., ,;(k) be the conditional
variance—covariance matrix of (x(¢ + 1), x(¢)’)’ given all available observations
until time ¢.
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LEMMA 8.1.

(@)
_[ste+usr) RS )
(&1 Stenal®) = | s (s mFCeY 801t )
(i) We can factorize S, , (k) as L(k)A(k)L(k), where L(k) is a lower

triangular matrix and A(k) a diagonal matrix. L(k) and A(k) can be expanded
as

L(k)=L®+Q/k)LCEY +(1/k)LELO(R),
A(k) = EAD + AO + O(1/k)
with the elements of L~ "%(k) bounded in absolute value, and the matrices L',
LYY AW and A9 independent of k. Furthermore,
| LEVO(R)AD = O(1/k).

LO, LD AD and A® depend only on SM(¢t + 1)t), SU(¢|t), SO(¢|t), and
F(t), and can be computed from (8.1) using Corollary 10.3.
(iii) Partition L(k) and A(k) as

L,(k) © AL(k) O
L(k)=[L2l(k) Lm(k)]’ A(k)=[o Azz(k)]

with L (k) and A, (k) q X q matrices and the rest of the submatrices parti-
tioned conformally. Then,

E{(x(t) — x(t|t; k)| (x(t + 1) — x(¢ + 1|t; k))}

(8.2)

=C(t k) (x(t+ 1) —x(t+ 1t k),
where
(8.3) C(t k) = L21(k)]\11L1_11(k)~

~

A, is a diagonal matrix with ith element 1 if the ith element of A, (k) is positive
and zero otherwise.
We can write
C(t; k) = CO(t) +(1/R)CEEI(E) +(1/R)CELO(8; k) + O(1/k?),

where CO(t) and C~V(¢) are independent of k and C~19(¢; k) has elements
that are bounded in absolute value. Furthermore,

(8.4) CO(t) = LYA,(LY) ",
(8.5) COMD(e) = L PRy (LR) ™ - LRAL(LY) 'L (LY) ™,
©6) CLO(t k) = La;“’i(k)ﬁu(fa‘? N _
— LR, (LY) LT HO(R)(LY)
and

(8.7) CLO(8; k)SO(¢ + 1¢) = O(1/k).
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THEOREM 8.2 (Modified fixed interval smoothing). We consider the state
space model (2.1) with Assumptions 2.1-2.4 and 5.1 holding.
Fort=N-1,...,1

(8.8) xO(tN) = xO(¢)t) + CO>¢)(xO(t + YN) — xO(¢ + 12)),
(89)  SO(#N) = SN(#|t) — CO)(SM(t + 1)) — SD(¢ + 1IN))CO(¢),
SO(2N) = SO(#)t) — CO()(SO(t + 1)) — SO(¢ + 1IN))CO(¢)’
(8.10) — CO>t)(SD(¢t + 1)) — SP(t + 1IN))C1D(¢)
—CERD(E)(SO(t + 1t) — SD(¢ + UN))CO(2)'.

St + 1)8), SOt + 1)8), SU(t|t), and SO (¢|t) are computed by Theorem 6.1,
CO(t) is obtained from (8.4) and C~VV(¢) is obtained from (8.5).

8.3. Fixed point smoothing. The fixed interval smoothing algorithm sys-
tematically obtains xO(¢|N), S{V(¢|N), and SO(¢|N) for t = N — 1,...,1. If we
need these quantities for just a small number of values of ¢, then using fixed point
smoothing may be faster. For a detailed implementation of this algorithm in the
scalar observation case ( p = 1) see Kohn and Ansley (1984a).

The fixed point smoothing algorithm [Anderson and Moore (1979), Section 7.2]
obtains x(¢|N) and S (¢|N) by recursively updating x(¢|t + j) and S,(¢|¢ + j) for
J=0,..., N — t, with starting values x(¢|¢t) and S (¢|t) at j = O being obtained
from the Kalman filter.

Following Anderson and Moore [(1979), Section 7.2], we use the augmented
state vector z(t + j) = (x(t + j)’, x(t)’) for j > 0 to obtain an augmented set of
state space equations

(8.11) y(t+j) = (H(t +j),002(t + j) + v(¢ + ),
(8:12) e+ )= [P Oy jy o [[ule+)]

We can apply Theorem 6.1 to (8.11) and (8.12) to obtain z©O(¢ + j|t + ),
St + j|t + j), and SO(¢ + j|t + j) and so in particular xO(¢|t + j), SO(¢|t + J),
and SOttt + j) for j=1,..., N — t. Starting values for j = 0 are given by
2O¢t), SP(¢|t), and SO(t|t), which are obtained immediately from x©(¢|¢),
SM(¢t|t), and SO(¢|t).

8.4. Fixed lag smoothing. Fixed lag smoothing is a recursive procedure for
obtaining x(¢|t + I) and S,(¢|¢ + I) for fixed [ > 0. To derive the algorithm we
augment the state vector as in Anderson and Moore [(1979), Section 7.3], and
then apply the modified Kalman filter (Theorem 6.1).

8.5. Prediction and interpolation of the dependent variable. The following
lemma shows that in two special but important cases the algorithms described in
Sections 8.1-8.4 above enable us to obtain immediately the expectation of any
missing y(¢) conditional on y, and also the mean-squared error of the estimate.



1302 ANSLEY AND KOHN

LEMMA 82. (i) If y(t) is a subvector of x(t) for all t, then y"(t|N),
S{U(¢|N), and S{°(t|N) are obtained automatically from Sections 8.1-8.4 above.
(ii) If v(t) is identically zero, then

y(t|N) = H(t)x(¢|N) and S/(t|N)= H(t)S(t|N)H(t)"
The proof is immediate. O

One particularly important application of Lemma 8.2 is to the ARIMA model
because here y(t) is a subvector of x(¢); in Example 2.1, for instance, y(t) is the
first element of x(¢).

We now present a more general approach for obtaining y(#|N) and s (¢|N) for
missing y(t). For each t, define the augmented state vector z(¢) = (y(t), x(t)’),
so that y(¢) = (1,0)z(t), and

0 H(t+1)F(2) H(t+ 1u(t) +o(2)
A SO

become our new state equations. We can now apply the modified Kalman filter
and the algorithms in Sections 8.1-8.4 to obtain z({|N) and S,(¢{|N) and so in
particular y(¢|N) and S,(¢|N) for the missing ¥(¢). Because in many applications
the dimension of x(¢) will be much greater than that of y(¢), using the aug-
mented state vector will not increase computing time significantly.

z(t+1)=[

8.6. Partially missing or aggregated observations. So far we have assumed
(Assumption 2.4) that for each ¢ we either observe all of y(¢) or none of it. More
generally, all our results continue to hold if for each ¢ we observe not y(t) but
z(t) = T(t)y(t) where T(t) is known for each #. Thus z(¢) may consist of just
some of the elements of y(¢) or an aggregate of the elements of y(t). See Kohn
and Ansley (1983a,b) for details.

9. Continuous time state space models observed at discrete time points.
We now briefly describe how our results continue to hold when the state vector
x(t) is generated by the continuous time state transition equation

(9.1) dx(t)/dt = F(¢t; 0)x(¢t) + g(¢t; 0) dW(¢)/dt, ¢=0,
and the observation equation
y(¢;) = H(t; 0)x(¢;) + o(i), i=1,...,n.

We assume that,

AsSUMPTION 9.1. (i) The observation times are ordered as 0 < ¢, < ¢, < -+
<t,
(ii) The observations y(t;) are p X 1 and the state vector x(¢) is g X 1.

(iii) W(¢) is a zero mean Wiener process with W(0) = 0 and Var(W(1)) = 1.

(iv) o(J) (j=1,...,n) is a p X 1 sequence of independent N(O, Q(j; 0))
random variables which is independent of W(¢).
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(v) F(t; 0) and g(t; 0) are g X q and g X 1, respectively, and are continuous
functions of ¢ for each § € ©. H(¢; 0)is p X q.
(vi) The initial conditions are given by Assumption 2.2.

To use the results in Sections 2-8, we rewrite (9.1) in integral form. Let x(¢; 6)
be the ¢ X g matrix solution of dx(¢)/dt= F(t)x(t) with x(0)=1,. By
Hochstadt [(1964), page 79], x(t) exists and is unique. Following Hochstadt
[(1964), Section 2.7], let ¢(¢, s; 8) = x(¢t; 0)x(s; 8) . For convenience we often
omit to indicate dependence on 6 below. Then for s < ¢ we can rewrite (9.1) as

(9.2) x(t) = ¢(t, s)x(s) + u(t,s),
where

u(t,s) =ft¢(t, t)b(t) dW(t’).
Let R(t,s; 8) = Var(u(t, s)). Taking s = ¢, and ¢ = ¢, , in (9.2) we obtain
’ x(ti1) = &8y, t)x(t) + u(tig, t,),
which corresponds to the state transition equation in (2.1).
Now let A(t) = H(t)¢(t,0)®, v(t) = ¢(¢,0) + u(t,0), and w(t,) = H(¢)v(t,)
+o(i)(i=1,...,n). Then y(t,) = A(¢;)n + w(t;) and
y=An+w

with y, w, and A being defined as in Section 2. If we assume that A(?) is
independent of @ for all ¢, then we can define the likelihood of y as in Section 3.
Now let B(t) = ¢(t,0)® so that

x(2) = B(t)n + »(¢),

and we can define estimates of the elements of x(¢) as in Section 4.

Efficient algorithms for computing the likelihood and the estimates of the
state vectors at the observation times ¢,..., ¢, are again obtained by taking
17 ~ N(O, kI) and obtaining analogues of the filtering and smoothing algorithms
of Sections 6-8. To obtain estimates of x(¢) for ¢, <t <t ,, some further
modification of the fixed interval smoothing algorithm is required, as described in
Weinert et al. (1980) and Kohn and Ansley (1984b). We omit details.

We conclude by giving examples of two applications of the results sketched out
above.

ExaMPLE 9.1. We consider estimation of a continuous time second-order
autoregressive process observed at discrete points in time. An application of such
models is given in Jones (1983).

Suppose we have the scalar observations y(¢;) = f(t;,) with f(¢) generated by
the second-order differential equations

(9.3) d%f(t)/dt? = b, df(t)/dt + byf(t) + cdW(t)/dt, t=0,

so that the unknown parameters are 6 = (b,, b,, 02). Then we can rewrite the
observation equation and (9.3) in state space form as

y(t,) = Hx(t;),  dx(t)/dt = F(6)x(t) + g(6) dW(¢)/dt
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with x(¢) = (f(2), df(¢)/dty, H = (1,0), g(8) = (0, 0), and

F(6) - [l?o 1}1}'

If we take the distribution of x(0) as unknown, then we can form the
likelihood of our observations and obtain estimates of unobserved f(t) as out-
lined above.

ExAMPLE 9.2. Cubic spline smoothing. Consider the scalar model

(94) y(t) = 1(t;) +o(i),
(9.5) d?f(t)/dt? = oyn dW(t)/dt,

where v(i) is an N(0, 02) independent sequence and is independent of W(t);
p > 0. As in Example 9.1, we can write (9.4) and (9.5) in state space form. If we
take x(0) ~ N(O, kI) then for given p and o2 we have by Wahba (1978) that

(9.6) Jim E(x,(¢)]y)

is the optimal cubic spline smoothing the data y(¢,),..., y(¢,) with smoothness
parameter 1/p. (9.6) can be computed efficiently using our modified filtering and
smoothing algorithms.

A general treatment of smoothing and interpolating splines using our modified
algorithms is given by Kohn and Ansley (1984b).

10. Proofs

10.1. Preliminary Results. We set out a number of results on the Cholesky
factorization of a positive semidefinite matrix indexed by a scale parameter k,
and characterize conditional variances and expectations of Gaussian random
vectors whose unconditional covariance matrices take this form. These results are
needed to prove the results in Sections 6-8.

Much of our work involves matrices satisfying the following condition:

ConDITION I. (k) is a ¢ X q matrix of the form
Q(k) = QDY + QO

where &£ > 0, and @ and Q© are positive semidefinite matrices independent
of k.

The following result will be used frequently. For a proof see Kohn and Ansley
(1983a).

LEMMA 10.1. Suppose Q is a positive semidefinite matrix. Then there exists a
lower triangular matrix L with 1s on the diagonal and a diagonal matrix A with
nonnegative elements such that @ = LAL’. Further, if the ith diagonal element
of A is zero, then the ith column of L is zero except for the unit diagonal
element. The number of nonzero elements of A is equal to the rank of .
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We now extend Lemma 10.1 to characterize the factorization of matrices
satisfying Condition 1.

THEOREM 10.1. Suppose that Q(k) is a ¢ X q matrix satisfying Condition I.
Then for k > 0, Q(k) is a positive semidefinite matrix and can be factorized as

(10.1) Q(k)=L(k)A(R)L(R),
where
(i) A(k) is a diagonal matrix and L(k) a lower triangular matrix with 1s on

the diagonal.
(ii)) We can write

L(k) = L +(1/k)L (k)
A(k) = kAD + A® 4+ (1/k)A-D(E),

where L©, AV, and A© do not depend on k, and the elements of L'~ "(k) and
A Y(k) are bounded in absolute value.

(i) Let the ith diagonal elements of AV, A, and A~V (k) be NP, X, and
A V(k), respectively. Then N > 0 and X? > 0 if NP = 0; N (k) = 0 whenever
both NP = 0 and XY = 0.

(iv) Let the ijth element of L(k) be l; (k). Then if )\(}) > 0 we can write

L(k) = (1/R)IGD + O(1/k?),

where I{; " does not depend on k.
(v) The elements of AV depend on Q1 but not Q.

Proor. It is immediate that (%) is positive semidefinite for all £ > 0. The
factorization (10.1) now follows directly from Lemma 10.1.

Let o, w be the ijth elements of Q™ and Q©, respectively. We first
consider the case Q) diagonal and show that:

() Fori=1,...,q
(10.2) A (R) = XD + X9 4+ (1/k)A D(k),

where AP and X? do not depend on %k, AP >0, and X? > 0 if AP =0, and
A" D(k)| is bounded. If AP = X? = 0 then A V(%) = 0.
@iij) Fori>1land j=1,...,i—-1

where [{? is independent of k. If A}’ > 0, then [{Y = 0 and
(10.4) 1, (k) = (L/R)IG + O(1/8%),

where /{; ¥ does not depend on k.
Note first that

M(R) = Rl + o,

so that AP = o), A\ = &}, and A V(%) = 0. Hence (10.3) holds for i = 1.
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We now proceed by induction. For convenience of notation, we omit the
dependence on k.

Assume (10.2)-(104) hold for i < r, j<i,andfori=1r, j<s<r.

Define Hi(s) = {h: 1 < h <s,X})> 0} and Hy(s)= {h: 1 < h <s,X}) =0).
If A, = 0 then /,, = 0 by Lemma 10.1. Otherwise, we can construct /,, by

l,= [w,s— Y (/R + 0(1/k))((1/k)IGD + O(1/k))

Hy(s)
x (kXD + AD + O(1/k))

- X (IR +0(1/k)(1Q + O(1/k)) (XD + O(1/k))

Hy(s)

/k)\‘s” + A9 + O(1/k)).

If XD > 0 we can write

(106)  (RXD + X0+ O(1/R)) " = (1/RXD)(1 — XO/(RXY) + O(1/k?))
and obtain (10.4) with

(10.5)

1= (- £ ) e
Ho(s)
Similarly, if A¥ = 0 (10.5) holds with

) _ 0) _ 0)7(0)) (0 0
19 = (w0- T ) /A

Ho(s)
Now
A= ko®+ 0@ — Y ((1/R)GD + O(1/k)) (XD + XQ + O(1/k))
H](")
- ¥ (19+ 0(/k)) (A + 0(1/k))
Ho(")
— kefd + (2= T (9]0 + 0/,
Ho(")

so that (10.3) holds with A?) = «{) and
NP == L (1),
Ho(" )

Note that A (k) > 0 for k£ > 0, so that A > 0 and A > 0 if A} = 0.

As shown in Lemma 10.2 below, Condition I implies that A,V = 0 if AP = AD
= 0. Finally, the rank of Q@ is equal to the number of nonzero w® elements and
hence to the number of nonzero X} elements.

Part (v) follows because A} = wﬁlr) for all r.

Now suppose 2O is not diagonal. From Lemma 10.1 we can write Q¥ = BDB’,
where D is diagonal and B is a lower triangular matrix with 1s on the diagonal.

Note that the number of positive diagonal elements of D equals the rank of Q.
The results proved above hold for B~ !Q(%)(B~!Y and hence for £(k) also. O
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LEMMA 10.2. Suppose the conditions of Theorem 10.1 hold. Then, for all i
ATD(k)=0 if XP=XD=0.

Proor. By Theorem 10.1, (k) is a positive semidefinite matrix so that we
can regard it as the variance covariance matrix of a ¢ dimensional zero mean
vector random variable z. Let M(k) = L~'(k). Then it is not difficult to check
that we can write

1
M(k) = M© + M "(k)

with the elements of M~ V(&) bounded in absolute value, and M‘? independent
of k. Furthermore, M? is lower triangular with 1s on the diagonal and M~ V(k)
is lower triangular with diagonal elements zero. If we put ¢ = M(k)z, then the
elements of ¢ are the innovations of z and A,(k) = Var(e;), where ¢, is the ith
element of e.

Let a(k), B’, and y(k) be the ith rows of M(k), M® and M U(k),
respectively. Then

A (k) =a(k)QE)a(k) = kB'QVB + 2820y + B'QOB + O(1/k).

If AP =0 it follows that B’Q™8 = 0 and hence B’QVy = 0. If, in addition,
A9 = 0 then B'QYB = 0, so that B’Q(k)B = 0. Now B’z = —y(k)'z/k + ¢, and
because elements i, + 1,..., g of y(k) are zero and ¢, is an innovation, y(k)z is
independent of ¢;. Thus

A, (k) = Var(e;) = Var(B’z) — Var(y(k)'z)/k* < Var(B’z) = 0.
The result follows. O

REMARK 10.1. In the applications below z is a vector random variable with a
variance—covariance matrix satisfying Condition I. Then for each i, A (&) is the
ith innovation variance, and Lemma 10.2 tells us that either liminf A;(2) > 0 or
A,(k) =0 for all £ > 0. That is, either the ith innovation variance is bounded
away from zero for all 2 > 0, or the ith innovation is identically zero.

REMARK 10.2. In Theorem 10.1 it is possible to show that X’ > 0 for all i,
including values of i for which A > 0. Because we do not need this property for
subsequent results, and its proof is quite long, we have chosen to omit it.

COROLLARY 10.1. Suppose the conditions of Theorem 10.1 hold, and that in
addition, Q© is positive definite. Then, in the notation of Theorem 10.1, XY > 0
fori=1toq.

PROOF. Suppose first that Q) is diagonal. Then, from the proof of Theorem
10.1, XD = & > 0.

For i =2,...,q, let Q® and Q" be, respectively, the upper left (i — 1) X
(i — 1) submatrices of Q© and Q®. Let a(k) be the column vector consisting of
the first (i — 1) elements of the ith row of Q(k). Then a(k) consists of the first
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(i — 1) elements of the ith row of Q© because Q) is diagonal. We define the
random vectors z and ¢ as in Lemma 10.2.
Then for i > 2,

Ni(k) = Var(e;) = ke + o = o(20 + ) o,
and because AP = o},
AO = 0@ — o(RQ® + 950))—101 + 0(1/k) 2 o — o{Q0) a+ O(1L/R) > 0

for large k. The inequality »® — &’{Q®}'a > 0 holds because 2© is positive
definite.

To complete the proof we note that we can reduce the case of general 2V to
the diagonal case as in the proof of Theorem 10.1. O

The results of Theorem 10.1 are now restated in a more detailed form in the
following corollary, which can be used to form an efficient computational al-
gorithm.

COROLLARY 10.2. The elements of the factorization established by Theorem
10.1 are given in general by the following formulae:

(10.7) AD = D), AO = O,
Fori>1
i—1
(10.8) AD = o — ¥ (l’(g))"’}\(}ll)’
h=1
-1
(10.9) NP = o — B (2005 NP +(19)AD).
h=1

If AV > 0 then

J—1
(10.10) 19 = (wgy - zgg)l;gw})) / AD,

1 - —
15 = @ {wg}) -y [(l,(?.)l}hl) e 1)11(2));\91)]
J H(j)

(10.11) ‘

Jj-1

0)7(0)%\(0 0)3(0
— T IQIQXD — IO )},
h=1

and if NP =0, XY > 0 then

1 J-1
(10.12) 152>=W{ws<;>— = [(19050 + 15009)p - zzzv;m’]}
> J h=1
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Proor. (10.7) follows from the proof of Theorem 10.1. Defining H,(j) and
H(j) as in the proof of Theorem 10.1, we can write for i > j and A; > 0

L= {ka) + o + 001/k)

- ¥ [ +/e)G + 0(1/k%)) (1 +(1/R)GD + O(1/E?))
Hy())

(10.13) X (BN + X9 + O(l/k))]

— ¥ (19 + 0(1/R) (19 + 0(1/R)) (XD + O(l/k))}/

Hy())
(EXD + X9 + O(1/k)).

If X} > 0 we can write {kX}’ + X + O(1/k)} " as in (10.6), and (10.10) and
(10.11) follow by substitution in (10.13).
If AP = 0 we can substitute in (10.13) to obtain

1 07O\ | /3@
iy = 2 LRI, ] / A
Hy(j)

L.

L2

=k

0 07(~1 ~17(0)) A1
+e® = X (I + LG L)Y

Hy())

> zgg)z;gwg)] /)\‘}”+ O(1/k).
Hy())

The first term on the right-hand side is zero by Part (ii) of Theorem 10.1, and the
second term gives (10.12).
(10.8) and (10.9) follow similarly. O

COROLLARY 10.3. Suppose Q(k) satisfies Condition I, and has the factoriza-
tion

Q(k) = L(k)A(k)L(k)
with L(k) and A(k) described as in Theorem 10.1. Then we can write
LEY(k) = LCUD 4+ LELO(R),
where L™V does not depend on k, and L"9(R)A® = O(1/k).
PrROOF. Suppose first that Q@ is diagonal with ith diagonal element ().

Then, as in the proof of Theorem 10.1, when () > 0 we can write the ith
element of L(k) as

L= Q/kR);P+ O(1/k?), i>],
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where /{; " does not depend on k. Define L{""" to be the lower triangular

matrix with 4th element /{; " given by
ISWD =G ifi>) and @) > 0
=0 otherwise.
Define
LEVO(k) = LUD(k) — LCND,
Denoting the ith element of L'~ "%(k) by I{;"*(k) we have
IVO(k) = O(1/k) if e}’ >0
=0(1) if ) =0.
Thus L H9A® = O(1/k) as required.

To complete the proof note that we can again reduce the case of general Q" to
the diagonal case as in the proof of Theorem 10.1. O

Let Q(k) be a g X g matrix satisfying Condition I, so that by Theorem 10.1
we can factorize it as L(k)A(k)L(k)'. Now partition L(k) and A(k) as

L(k) © Ay(k) O
L(k)=[Lm(k) Lzz(k)]’ A(k)=[o Am(k)]’

where L, (k) and A (k) are g, X g, matrices, and the other matrices in L(k)
and A(k) are dimensioned conformally; 0 < q, < q.

LEMMA 10.3. Let the matrices L(k) and A(k) be partitioned as above, let
Q,,(k) be the upper left q, X q, submatrix of Q(k), and let

82.1(k) = Lzz(k)A 22(k)L22(k ),'

Then
(i) We can write S, (k) as

S,1(k) = kS{Y + S +(1/k)S{ 1 V(k),

where
(10.14)

SiY = LYARLY, S = LYAYLY + LYAQ LG Y + LOVPAG LYY,
and S{;V(k) has elements that are bounded in absolute value.

(ii) Write (k) = kQY + QO. Then
(10.15) rank(S§Y)) = rank(Q®") — rank(Q(})
and, in particular if

rank(Q®) = rank(Q{),

then
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ProoOF. Part (i) follows from Theorem 10.1, Corollary 10.3, and some simple
algebra. To obtain Part (ii), note that

rank(2®) = rank(A{)) + rank(AY}),
and that Q) = LOANLY', so that rank(2{}) = rank(A{}). (10.15) follows. O

Many of the matrices we deal with in this paper are conditional covariance
matrices and they satisfy the following condition.

CoNDITION II. A matrix S(&) satisfies condition II if it is constructed in the
same way as the matrix S,;(k) of Lemma 10.3.

We now obtain the following basic theorem, which also motivated Lemma
10.3.

THEOREM 10.2. Let z be a zero mean q dimensional normal vector random
variable, having variance—covariance matrix Q(k) satisfying Condition I. Let z,
consist of the first q, elements of z, and z, consist of the last q, elements of z,
with q, + q, = q. Then,

(1) Var(z,|z,) = S,,(k), where S, (k) is defined in Lemma 10.3.

(ii) Let Q,,(k) = Var(z,). Then rank(S§Y) = rank(Q®") — rank(Q{)). In par-
ticular S§Y) = 0 if rank(2®) = rank(Q).

(iii) Suppose that we know a priori that rank(2M) < m for some m < q. If
rank(Q{)) = m, then S{}) = 0.

PrROOF. Put e = L '(k)z, and let ¢ and e, be the first ¢, and last g,
elements of ¢, respectively. Then the elements of ¢ are independent with vari-
ance—covariance matrix A(k), and

2z, = Ly¢, 29 = Ly + Ly,
so that
Var(z,|z,) = Var(z,le,) = Var(Lyye,) = Loy Agy Ly = S, (k).

This proves Part (i). Part (ii) is just Lemma 10.3(ii), and Part (iii) follows from
Part (ii)). O

We now repartition the submatrices (L,,;, L,,) and A,, above as
Ly(k)  Ly(k) 0 }
Lo(k), Lop(k)) = | > x
(Ealh), Lak) [L“(k) La(k) Li(k)
and
Aglk) 0 ]
Ay(k) = ,
22( ) |'0 A44(k)

where Lj, is g3 X @y, Lysis g3 X g4, Ly, is g4 X q4, A3 is g3 X @4, and A, is
q4 X q4. The other submatrices are dimensioned conformally, and g, = ¢, + q,.
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Now define the g, X ¢, diagonal matrix A as having jth diagonal element 1 if
the jth diagonal element of A ,, is not identically zero, and zero otherwise.

Let z; and z, consist of the first g, and the last g, elements, respectively, of
z,, where the vector z, is defined above.

THEOREM 10.3. Let the vector random variables z, z,, z,, z;, and z, be
defined as above. Then

E[{Z4 - E(z4|21)}|{z3 - E(z3|21)}] = Lg]‘\&%u:s%)_l{zs - E(z3|21)} +O0(1/k),
where A 4, is a diagonal matrix with ith diagonal element 1 if the ith diagonal
element of A 5, is positive and zero otherwise.
Proor. From Theorem 10.1(i),
Var([z3, 24]’|31) = Var(z,|z,) = S;,(k),
where S, (%) is defined in Lemma 10.3 above, and
S, (k)= [L33(k> 0 ][A33(k) 0 HLas(k)’ L43(k)']
2'1 Ly(k) LL(k)||0 A (k) [0 L(k)
Thus,
COV[(24 — E(z42,))(25 - E(z3|21))] = L;3A55L5,
Var[ZSIZI] = Ly ALy,
and therefore
E[(z4 - E(z4|31))|(23 - E(z3|zl))] = (LA 33L53)(LyyAgsLis) (25 — E(z)2,))
= L43./~\33L3’31(z3 - E(23|Z1))
= L&‘?;A33L‘3%)_‘(z3 — E(2y)2,)) + O(1/k),

where (Lj3A 33L%3)" denotes any pseudoinverse of LggA 5L%;.
10.2. Proof of results in Section 6.

Proor or LEmMMA 6.1. From (2.4), (2.5), (4.3), and Assumption 5.1, any
collection of y(¢;), ¥(¢), and x(¢) has a variance—covariance matrix satisfying
Condition I above. (6.2) is obtained from Theorem 10.3 if we take z, as the null
vector and identify x(¢) with z, and (¥(¢,),..., ¥(¢;)’) with z;. (6.4) is obtained
similarly. (6.3) is obtained from Theorem 10.2(i) and Lemma 10.3(i) if we identify
x(¢t) with z, and ()(¢,),..., ¥(t;)’) with z,. (6.5) is obtained similarly. O

ProoOF OoF LEMMA 6.2.
(10.16)

y(t+1)—y(e+ Ut k) =H(t+ 1)(x(t+ 1) —x(t + 1t; k) + o(t+ 1)
and (6.6) follows. (6.7) follows from (6.6) and Lemma 6.1.
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Let [ be the largest integer such that ¢, < ¢£. In Theorem 10.2(i) identify z,
with (y(¢,),..., ¥(t,))Y and z, with (y(¢t + 1), x(¢ + 1)’)’. Then (ii) follows from
Theorem 10.2(i) and Corollary 10.3.

(6.8) and (6.9) are obtained similarly to the way (10.16) is obtained in Lemma
10.3(1).

If we identify z, with x(¢ + 1) and z; with y(¢ + 1), then (iv) follows from
Theorem 10.3.

To obtain (v) note that from (10.16)

(10.17) SIM(t + 1)) = H(t + 1)SI(t + 1jt)H(¢t + 1),
so that from (6.6), (10.16), and (10.17)

[y x]

S (e +1)t) = [IILI(H 1)] D(t + 1e)[H(t + 1), I].

Therefore,

rank S{}) (¢ + 1jt) = rank S{(¢ + 1]t)

= rank A() + rank AQ)
= rank S{"(¢ + 1|t) + rank S{)(¢ + 1j¢ + 1)

and this gives (v). O

ProOF OF THEOREM 6.1. (6.10) follows from (6.1). By the ordinary Kalman
filter (Anderson and Moore, Chapter 3), x(¢ + 1|t) = F(¢)x(t|t) and S (¢ + 1jt) =
F()S(t|t)F(t) + R(t) and (6.11) and (6.12) follow from Lemma 6.1. Step 2 is
immediate.

(6.14) follows from Lemma 6.2(iv), and (6.15) from Lemma 6.2(v). O

10.3. Proof of Theorem 7.1. Part (i) follows from Lemma 6.2(1) except that
we need to show that A is independent of 6. From (2.5) and Assumption 2.5,
Var(y) = kRAA’ + Q(0) where A is independent of § and Q(6) is nonsingular.
Therefore, by Theorem 10.1 we can factorize Var(y) as L(0 k)A(6; k)L(0 kY,
with L(6; k) = L) + O(1/k) and A(6; k) = kAV + A® + O(1/k). L is a
lower triangular matrix having ones on the diagonal and A is a diagonal matrix.
By Theorem 10.1(v) AV is independent of 8 because A is independent of 6.

Let Lj(0 k) and AH(H k) be the jith p X p block submatrices of L(8; k)
and A(6; k), respectively. Then from Theorem 10.2(i) and Lemma 10.3,

Sy(tjltj— 1;0; k)= (0 k)A (0; k) (05 k),
so that for ¢ = ¢,
iﬁ’(ﬂ)ﬁ‘}}i}?’w)' = L}O’(B)A‘j”(a)L}O)(B)',

implying that A’(§) = A%) and hence A}’ is independent of 6.
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As in Schweppe (1965), —2 X log k?/%f(y; 0; k) is given, up to an additive
constant that does not depend on the parameters, by

Y logdet S,(¢)t; — 1) +e(/)'S,(tjt;— 1) 'e(j) — D'logk

j=1
n P n p 9
=X Z ogA;;+ DY (ﬁij+ O(l/k)) /A — D’log k,
Jj=1i= Jj=1i=1
and as £ — oo this tends to
Y X logX{)+ Z 2 logA{) + Z X /.
J=1i€Kj J=1i€Kj, J=1i€K

Because A} is independent of 8, (7.1) follows. O
10.4. Proof of results in Section 8.

ProoF oF LEMMa 8.1.
x(t+1) —x(t+ 1t) = F(t)(x(t) — x(¢t)) + u(t)

and (8.1) follows. Part (ii) is obtained similarly to Lemma 6.2(ii), and (8.2) and
(8.3) are obtained as in the proof of Theorem 10.3(ii).

Ly (k) = {I=(/R)(LY) T[LGD + L (k)] + O(1/k) (L)

and (8.4) to (8.6) can be obtained by simple algebra.
We now show that (8.7) holds. S{*(¢ + 1|¢) is equal to L'YA)L{Y so that
CONO(t; R)SP(e+ 14t) = [ L O(R)AY ~ LYK, (LE) LT O(R)AY| LY
= O(1/k)
because LS "O(k)AY) = O(1/k) = L{;"V(k)AY) by Lemma 8.1(ii). O

Before proving Theorem 8.2 we need the following lemmas.

LEMMA 104. Suppose Qk) is a q X q positive semidefinite matrix for all
positive k. Then Q(k) = O(1/k?) if and only if a’Qk)a = O(1/k?) for all fixed
g X 1 vectors a.

Proor. That Q(k)= O(1/k?) implies a’Q(k)a = O(1/k?) is obvious. For
the converse it is sufficient to consider the 2 X 2 case and take in turn o’ = (1, 0),
(0,1), and (1,1). O

LEMMA 10.5. Suppose that S is a q X q positive semidefinite matrix, and
T(k) a p X q matrix which depends on k. Then T(k)S = O(1/k) if and only if
T(R)ST(kY = O(1/k?).
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PrRoOOF. Assume first that S is a diagonal matrix with ith diagonal element
s;;- Let T,(k) be the ith column of T. Then T(k)S = O(1/k) implies that
T.(k)s}? = O(1/k) for all i, so that

(10.18) T(k)ST(k) = S T(k)s,Ti(k) = O(1/k?).

Conversely, if (10.18) holds, then for each i tr{T.(k)s;Ti(k)’} = O(1/k?) so that
T.(k)s!/* = O(1/k). This proves the result for S diagonal. The result holds for
general S, because by Lemma 10.1 we can write S = BDB’ with B a lower
triangular matrix having 1’s on the diagonal and D a diagonal matrix. O

LEMMA 10.6. Suppose that (i) S;, S,, and S, — S, are q¢ X q positive semi-
definite matrices.

(i) T(k) is a p X q matrix which depends on k, with elements that are
uniformly bounded in absolute value.

(iii) T(k)S, = O(1/k).

Then T(k)S, — S,) = O /k).

PrOOF. By Lemma 10.5, T(k)S,T(k) = O(1/k?%), so that for all a,
a'T(k)S,T(k)a = O(1/k?) by Lemma 10.4. Therefore for all a

0 < aT(R)(S, — S,)T(k) a < «’'T(k)S,T(k) a = O(1/k?),

and the required result now follows by applying Lemma 10.4 followed by Lemma
10.5. O

PrRoOF oF THEOREM 8.2. The ordinary fixed interval smoothing algorithm
[Anderson and Moore (1979), Section 7.4] gives

(10.19) x(¢)N) = x(¢)t) — C(¢)(x(t + 1¢) — x(¢t + 1N))

and

(10.20) S (¢N) = S.(¢t)t) — C(¢)(S.(¢t + 1jt) — S.(t + 1IN))C(¢t)’

with C(t) = S.(¢|t)F(¢)S,(¢t + 1|t) and S/t + 1|t)~ is any pseudoinverse of

S.(t + 1j¢). An alternative expression for C(¢) is given by (8.3).
(8.8) follows from (10.19) and Lemma 8.1(iii). From (8.7) and Lemma 10.6

CCNO(8 R)(SO(t+ 1t) — SO(¢ + 1N)) = O(1/k)

and (8.9) and (8.10) now follow from (10.20) by some simple algebra. O
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