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CALIBRATION-BASED EMPIRICAL PROBABILITY

By A. P. Dawip
University College London

Probability forecasts for a sequence of uncertain events may be compared
with the outcomes of those events by means of a natural criterion of empirical
validity, calibration. It is shown that any two sequences of forecasts which
both meet this criterion must be in asymptotic agreement. These agreed
values can then be considered as correct objective probability forecasts for the
particular sequence of outcome results obtained. However, the objective
forecasts vary with the extent of the information taken into account when
they are formulated. We thus obtain a general theory of empirical probability,
relative to an information base. This theory does not require that such
probabilities be interpreted in terms of repeated trials of the same event.
Some implications of this theory are discussed.

1. Introduction. Consider a probabilistic forecasting system that attaches
numerical probabilities to each of a sequence of events. Each probability forecast
is made only when the outcomes of previously forecast events have been de-
termined. As examples, we might have a bookmaker who quotes odds on the
favourite in a sequence of horse races, an economist who makes regular monthly
probability forecasts of whether unemployment will rise or fall next month, a
reliability engineer who gives probabilities of failure for some piece of equipment
year by year, or a meteorologist who appears on television each evening and
assigns a probability to the occurrence of rain in the area within the next 24
hours.

Dawid (1982a) considered the meaning that might be attached to a sequence of
probability forecasts and introduced a criterion, calibration, which can be used to
test the empirical validity of such a sequence in the light of the outcomes of the
events being forecast. This paper investigates further those forecast sequences
which are empirically valid by this criterion, and demonstrates that all of these
must be in essential agreement, given sufficiently extensive experience. It thus
follows that, for any empirical sequence of out-turns of the events, there must be
an asymptotically unique acceptable “objective” sequence of values for the
probabilities of the events (always conditional on previous experience). We thus
obtain a powerful new generalization of traditional frequentist interpretations of
probability, since we impose no requirement that the events under consideration
be regarded as “unrelated trials under constant conditions” and allow the
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objective forecast probabilities to vary from day to day, as well as with the
observed outcomes of past events.

The calibration criterion for an arbitrary sequence of probability forecasts in
the light of a sequence of outcomes can, indeed, be considered as a natural
extension of the attempt by von Mises, for the standard setting of repeated trials,
to characterise an outcome sequence as “completely random.” We briefly review
this now classical theory in Section 2, which also motivates the introduction of
the important idea of computability as fundamental to any rigorous development
of such a characterization. Section 3 considers sequences that cannot simply be
regarded as repeated trials, and formalises the general concept of a probability
forecasting system. In Section 4 we discuss, in general terms, the kinds of
property that are desirable in any criterion which purports to assess the empirical
validity of such a probability forecasting system in the light of data. In particu-
lar, it is argued that asymptotic uniqueness should be such a desideratum. The
next three sections introduce the calibration criterion, and show that, when
suitably restricted by considerations of computability, it does possess the desired
properties, including that of asymptotic uniqueness. In Section 8 we show that
forecasts which are valid under this calibration criterion will minimise long-run
average loss, as measured by a proper scoring rule.

All the considerations to this point relate to a forecaster whose information
base at any time consists of the outcomes of previously forecast events. Sections 9
and 11 consider, respectively, the effects of expanding or restricting this informa-
tion base. The calibration criterion again applies to such cases and again implies
asymptotic uniqueness of valid forecasts. However, the “correct” valid probabili-
ties will vary as we vary the information base. This is considered in Section 10.
Section 12 extends the application of the previous criteria and results to the task
of assigning a valid probability for an outcome event, as a function of specified
covariate information. Finally the discussion in Section 13 points out some
analogies with, and extensions of, the ideas developed in this paper.

2. Collectives. We begin by recapitulating the frequency theory of probabil-
ity which grew out of the celebrated attempt of von Mises (1936) to define a
random sequence. These ideas form a natural introduction to the more general
theory to be introduced below. No attempt at completeness is made in this
section. Those seeking a fuller account are referred to Martin-Lef (1969) or
Knuth (1969, Section 3.5).

Let a = (a,, a,,...) be an infinite sequence of 0s and 1s (sometimes we shall
call these failures and successes, respectively), regarded as the outcomes of a
sequence of trials. We seek to explicate the intuitive idea that this outcome
sequence exhibits “randomness.” A minimal requirement for this is generally
accepted to be the existence of the limiting relative frequency lim,_, n~ 'Y’ ,a,
= p, say. Moreover, if we extract an infinite subsequence of a random sequence,
this too should look random, with the same limiting relative frequency. To
formalise this, let s = (n,, n,,...) be a subsequence of (1,2,...), and define
a.(s)=r"'Y’_,a,, the relative frequency of successes on the first r trials of the
subsequence. ’
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DEFINITION 2.1. We call a invariant under s if either s is finite or a,(s) = p
(r - ). If & is a collection of subsequences, then a is invariant under & if it is
invariant under every s € .

Intuitively, a random sequence should be invariant under any subsequence s.
However, we cannot sensibly require invariance under the (uncountable) collec-
tion of all subsequences. For instance, one such subsequence will consist of just
those values n for which a, = 0, and so yield a@,(s) = 0. A way must be found to
exclude such “peculiar” subsequences.

One possibility is to settle in advance, arbitrarily, on some countable collection
& of subsequences and to require invariance under this . However, this
restriction errs too far to the other extreme. It seems intuitively reasonable that
we should require invariance under certain data-dependent subsequences (for
example, the subsequence of all trials following a failure). If invariance did not
hold under this subsequence, that would appear to indicate a dependence be-
tween the outcomes of successive trials. But any member of the uncountable
collection of all subsequences might be the result of such a process for some
outcome sequence a. Thus a different approach is suggested.

DEFINITION 2.2. A selection rule is a function from the set of all finite
(possibly empty) strings of Os and 1s into the set {0,1}.

If a is a sequence of outcomes, a™ = (a,, a,,..., a,) will denote its initial
string of length n. Then a selection rule & will be said to select the subsequence
s =(n, n,,...) under a if n € s just when §(a”® V) = 1. In that case we may
write s = §(a).

Informally, the trials selected by a selection rule are determined only by
outcomes of previous trials. If, as randomness suggests, there are no “carry-over”
effects in the sequence, then the selected outcomes should still look random. In
other words we should require a to be invariant under the sequence 8(a), for any
selection rule 8. This is von Mises’ randomness criterion and he termed a
sequence a satisfying it a collective.

Unfortunately, as noted by Wald (1937), this definition will not do, for exactly
the same reason that we cannot require invariance under every fixed subsequence.
Indeed, given any “peculiar” subsequence s, such as that of all failures in a, we
can trivially produce a selection rule 8 which selects s under any outcome
sequence whatsoever. We have again tipped the balance too far.

As a reasonably satisfactory compromise position, we might finally settle on
some countable collection € of selection rules. Then a is called a collective with
respect to €, or %-collective, if it is invariant under ¢(a) = {6(a): § € ¥). This s
a countable collection of subsequences for any fixed a, but the collection itself
varies with a. Wald showed the consistency of this definition. Indeed, if we regard
a as the outcomes of Bernoulli trials with probability p, then, for any €, a will
satisfy this definition with probability 1. Had this result been false, we might
have had serious doubts that we had truly captured the idea of randomness. (It is
still possible to argue, as Ville (1939) has done, that the criterion of being a
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collective is too weak, and that further conditions should be imposed. See Section
13.2.) There remains the problem of how to choose %.

DEFINITION 2.3. A selection rule 8 is computable if there exists a Turing
machine which, when fed with an input tape containing any finite (possibly
empty) string of Os and 1s, stops after a finite number of operations having
output the value of 8§ for that string.

Since any abstract Turing machine can be finitely described, there is only a
countable number of such machines. Thus, we can, and shall, following Church
(1940), take for € the collection €* of all computable selection rules. This is the
broadest class with which we can meaningfully work, since it may plausibly be
supposed that any selection rule that can be humanly constructed will be
computable. (It is perhaps worth noting that the original definition of a Turing
machine (Turing, 1936) was the result of a deliberate attempt at modelling
human information processing.)

We have thus arrived, finally, at the concept of the € *-collective, a criterion
which applies to an infinite sequence a, and which, when it is satisfied, can be
interpreted as asserting that a looks “random with probability parameter p.”
Henceforth, we shall simply call such a sequence a a collective.

For further developments, it will be helpful to reinterpret this criterion
slightly. Given an empirical outcome sequence a, we can consider, as a possible
probabilistic explanation of a, the model of Bernoulli trials with probability
parameter p. We can then regard this as acceptable if, and only if, a forms a
collective (with this probability parameter). Thus the criterion is now regarded as
applying to the hypothetical Bernoulli probability model, rather than to the
data. If and only if it is satisfied, the Bernoulli model can be accepted as an
“explanation” of the data.

3. Forecasting systems. We now wish to extend the idea that we might
judge the suitability of a hypothetical probabilistic model as an explanation of
given data, beyond the special case of the Bernoulli model. We shall recast this
goal as the evaluation of forecasting systems.

Let A =(A,, A,,...) denote an infinite sequence of uncertain events, iden-
tified with their indicators so that A, =1 if the nth event occurs, A, = 0,
otherwise. We denote (A,, A,,..., A,) by A, and the o-field generated by A‘™
(resp. A) by &7, (resp. &,).

We imagine the outcomes a = (a,, a,,...) of A to be observed sequentially.
After observing the outcomes, A = a'™), of the first n trials, it is required that
a probability p,,, be assigned to the occurrence of the next event A, ,,. Any
method of constructing such probability forecasts, for every n and a'”, will be
called a forecasting system. Such a forecasting system is thus a function (F say)
from the set of finite (possibly empty) strings of Os and 1s, into the interval [0, 1]
(compare Definition 2.2). Its value F(a') for argument a'™ is taken as p,,, ,. If p
is the corresponding infinite forecast sequence ( p,, p,,...), we shall also write
p = F(a).
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If IT is any probability model over &/ , then Il determines a forecasting
system F, by F(a”) = TI(4,,, ,|A" = a'™). (We assume throughout, for simplic-
ity, that no finite string of outcomes is assigned probability 0 by I1.) When II is
the Bernoulli trials model with parameter p, the corresponding F yields the
constant forecasts F(a'™) = p, for any n and A",

Conversely, given any forecasting system F, there exists a unique distribution
IT giving rise to it in this way.

Forecasting systems may, however, be derived in many other ways (Dawid,
1984). For example, we might specify a parametric family 2 = {F,;} of joint
distributions for (A;, A,,...), and take P,,, = F(A, |A, = a, 4, =
ay,..., A, = a,), where 8, is, say, the maximum likelihood estimator of § based
on the observed outcomes a'®. We could also consider “supersystems” of the
following kind. A specific forecasting system is, initially, laid down and used. At
periodic intervals, some sort of comparison is made between past forecasts and
the out-turn of events, perhaps by means of a suitable significance test. One
approach to such a comparison might be based, for example, on the calibration
criterion of Section 5, suitably interpreted for finite outcome sequences. If the
outcome of such a comparison is unsatisfactory, the initial forecasting system
might be modified or replaced by a new one, perhaps attempting to take account
of previously unsuspected patterns discovered in the data. This whole process can
be repeated at regular or irregular intervals. Such a supersystem embodies the
spirit of the recommendations of Box (1980), in which regular periods of “estima-
tion” (use of a particular system) are interspersed with bouts of “criticism”
(leading, possibly, to the overthrow of the old system and the rise of a new one).
It is also close in spirit to the alternation of “normal science” and “scientific
revolutions” conceived by Kuhn (1962). One can even turn this approach in on
itself, and consider superdupersystems, whose basic building blocks are supersys-
tems, which are replaced when they no longer work. And so on, through an
endless ordinal sequence. But, when all this has been done, one is still left with a
single final forecasting system F, which can be evaluated like any other.

Lastly, we might also admit still more informal forecasting systems, where a
meteorologist (for example) gives a ‘“seat-of-the-pants” subjective probability
forecast in the light of his or her background information (Dawid, 1985). (For
cases in which additional information over and above past outcomes is being
used, see Section 9.)

4. Metacriteria. Suppose that Nature determines a specific realised se-
quence a of outcomes of A. Then a forecasting system F will produce the string
p = F(a) of probability forecasts. If possible, we wish to examine the success of F
in explaining the specific outcomes in a.

The philosophy underlying the approach to be taken is that stochasticity
should be regarded as an attribute, not of any external process which generates
the outcomes a, but of the hypothetical probability models or forecasting systems
proposed as possible explanations of a. If such a model provides (in a sense yet to
be made precise) a “successful,” or “(empirically) valid” explanation, we may
conclude that a “looks like” it was generated from that model, but we should rot
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conclude that we have identified ““ the true model” governing Nature’s production
of a. Indeed, there is no evident reason why two different models should not both
provide successful explanations of the same data a. This approach, which pro-
ceeds by pitting hypothetical explanations against empirically observed data, is
in close accord with the general scientific methodology of Karl Popper. By taking
an entirely instrumental approach to probability modelling, however, it dispenses
with any need for a “realist” interpretation of probability.

While it is not immediately clear what assessment criterion should be used to
judge the success of F in explaining a, the following metacriteria for choosing
such a criterion may be considered more or less compelling.

M1. The criterion should be applicable to any forecasting system F and data
sequence a. When F corresponds to the Bernoulli model, it should reduce to an
accepted criterion for the “randomness’ of the sequence a.

M2. The criterion should depend only on a, the realised outcomes, and p, the
forecasts actually made by F.

Ma3. If II is a distribution over 7, giving rise to a forecasting system F, then
the set of outcome sequences for which F is a valid explanation should have
probability 1 under II.

M4. If F! and F? are both valid explanations of a, with corresponding
forecast sequences p' and p?, then p! — p? should tend to zero as n — co.

Notes on the metacriteria. M1 is an expression of the broad basis of our
approach, that empirically valid probabilities should be meaningful even in the
absence of any setup of “repeated trials under constant conditions” (although
that setup must be seen as an important special case).

M2 is intuitively appealing, since we wish to assess how well F' has performed
in this world, not in hypothetical worlds which have not materialised. It is also
necessary if we are to be able to assess more informal forecasting systems, such as
that of the meteorologist who only quotes his probability of rain tomorrow in the
light of actual, not hypothetical, past data, or an incompletely formalised
supersystem. Also, by shunning any recourse to hypothetical repetitions (of the
whole event sequence), M2 draws still further away from the unnecessary and
restrictive idea that empirical probability can only be understood in terms of
such repetitions.

M3 requires that a probability model should be a valid explanation of almost
all the sequences that arise from that model. (This too has been generally
accepted as a metacriterion for criteria of “randomness” in relation to Bernoulli
trials.) If M3 failed, we might reasonably regard our criterion as too strong. If
two different criteria both satisfy M3, they can both be expected to return the
same verdict as to whether F is a valid explanation of a, for “most” sequences a
(but see the caution under Theorem 4.1).

Note, however, that M3 limits the extent to which we can discriminate
between different probability models. Thus let I1' and I1? be distributions over
&/, with II! < I12 (i.e, I1' is absolutely continuous with respect to II% so that
if Ses/, and II1*S) =0, then II(S)=0). For i = 1,2, let S’ be the event
that, for some given criterion satisfying M3, the corresponding forecasting system
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F! is a valid explanation of the realised outcome sequence. Then, by M3,
ITY(S') = 1 and I1%(S?) = 1. In particular, both F' and F? will be regarded as
valid whenever S° = S' N S? obtains, an event which has IT'-probability 1. Thus
we cannot expect to distinguish between F'! and FZ2, by any such criterion, for a
large class of outcome sequences.

With this ambiguity in mind, it might be thought, initially, that M4 is too
strong and inconsistent with the other metacriteria. Indeed, the present investi-
gation arose from the author’s original belief that this was so and that many
essentially different forecast sequences might reasonably be considered as equally
valid explanations of a given outcome sequence a. For example, if two weather
forecasters persist in producing quite different day-by-day probability forecasts
for rain, can we not allow that, though different, both sequences might turn out
to be valid probabilistic explanations of the weather, particularly in the light of
the arbitrariness shown to be inherent in M3 above? However, the following
result gives some indication that M4 may not, after all, be too strong.

THEOREM 4.1 (Blackwell and Dubins, 1962). Let I1' and I1? be distributions
over o, with II' < I12. Then with II'-probability 1, sup{|II'(S|sZ,) —
[1%(A|eZ,)|: Se, )} > 0(n— ).

CorOLLARY. If P!, =TI(A,,,|%,), then, with II'-probability 1, P, — P}
- 0(n — o).

In other words, for “most” outcome sequences for which both II' and II?
provide valid explanations, their forecast sequences will be asymptotically in-
distinguishable, as required by M4. However, this result can be no more than
suggestive: it is a long way from “most” to “all.”

As we shall see, it is indeed possible to produce criteria for which all of the
metacriteria M1-M4 hold, and this, once being shown possible, may then reason-
ably be regarded as obligatory.

Notice that M4 does not constrain F' and F* to be asymptotically in-
distinguishable as forecasting systems. In the spirit of M2, it is only required that
p. — p? — 0 for the actual data sequence a obtained, not necessarily for other
hypothetical sequences. It will thus not be possible (nor, I believe, desirable) to
distinguish between different forecasting systems or models which just happen to
yield identical forecasts for the outcomes which Nature produces. In this sense,
M4 does not justify us in calling an empirically valid model ““the true model”, but
it does justify us in considering a valid sequence of forecasts as “true,” or
“objective,” at least asymptotically. Thus a criterion satisfying M1-M4 can be
said to yield an empirical concept of probability, of great generality, which comes
as close as may be reasonably expected to justifying unique “correct” probabili-
ties for individual events.

A consequence of M3 is that no definitive rejection of F can be made from any
finite string of outcomes (as long, at any rate, as we continue with our simplifying
assumption that such a string is assigned positive probability). Similarly (even
without such an assumption), M4 implies that no definitive acceptance is possible
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with only finitely many data. In other words, under M3 and M4, probabilities can
only be validated in infinite sequences. While this creates a serious (some might
say insurmountable) obstacle to practical implementation of any validity crite-
rion, it is surely the very essence of any reasonable empirical interpretation of
probability in terms of a sequence of data outcomes. Certainly, it holds for any
traditional approach based on limiting relative frequencies.

In this connexion, note that it is impossible to strengthen M4 to the point that
it insists on individually unique, rather than asymptotically unique, valid prob-
ability forecasts. Indeed, it is an essential limitation of any frequency theory of
empirical probability based on limiting properties of infinite sequences that we
can alter the probabilities attached to an arbitrarily large, but finite, set of
events, without disturbing any of those limiting properties. Consequently, no
such theory can ever justify assigning particular probabilities to particular
events. The most that can be expected is that some asymptotic assignment may
be justified and it is in this spirit that we propose M4.

5. Calibration. We shall now exhibit a criterion which satisfies M1-M4, and
thus justifies asymptotically unique “objective” probability forecasts for events.
It is a natural extension of the ideas in Section 2, which related to Bernoulli trials
only.

For a subsequence s = (n, n,,...), denote by p(s) the average probability
forecast, r~'L_, Pnj» for the first r events in s.

DEFINITION 5.1. We say that p is calibrated for a with respect to s if either s
is finite or a (s) — p{s) = 0 (r — o0).

If § is a selection rule, we say that p is calibrated for a with respect to § if
calibration holds with respect to the subsequence s = §(a) selected by & under a.

If € is a collection of selection rules, we say that p is completely calibrated for
a with respect to € if calibration holds with respect to every 6§ € %.

Finally, if p is completely calibrated for a with respect to the class €* of all
computable selection rules, we shall call p computably calibrated for a.

The intuitive concept of calibration is that, for all suitably specified subse-
quences, the probability forecasts should be right “on average” in comparison
with relative frequencies, at any rate asymptotically. Further, if the quoted
probability forecasts truly do take full and correct account of all previous
outcomes, they should remain appropriate even for events picked out on the basis
of those outcomes, which is why we must require calibration with respect to
selection rules. Indeed, such a selection rule may fruitfully be regarded as a
strategy selected by an adversary who is trying to discredit p as a valid sequence
of forecasts, by picking some subsequence for which he believes the forecasts are
inappropriate (for example, too optimistic). We must allow such an adversary
access to the same past data as the forecaster, to give him scope to show that the
forecaster has not taken correct account of those data. A forecast sequence
cannot be regarded as valid if such an adversary can prove his case by showing
that p is not calibrated for a with respect to his selected subsequence.
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One possible selection rule might pick out all those events A, for which the
forecasting system F' under test assigned probability p, satisfying, for example,
|p, — 0.4] < 0.05. This does indeed depend only on the outcomes a'”"" of previous
events, since this property is true of p, = F(a'" ). If the selected subsequence is
infinite, p will be calibrated for a with respect to this selection rule only if the
limiting relative frequency of success, among the events whose probability fore-
cast is 0.4 (to one decimal place), is itself 0.4 (to the same accuracy). An identical
conclusion holds for any other ““target probability” and accuracy. Traditionally,
the calibration criterion has been applied only for such selection rules, which
group events according to their assigned probabilities (see e.g., Lichtenstein et al.,
1982). However, Definition 5.1 imposes no such restriction, and complete calibra-
tion is consequently a much more stringent condition on p than traditional
calibration. For example, one could use a selection rule picking out only a
subsubsequence of that for which |p, — 0.4| < 0.05, by imposing additional
inclusion criteria depending on previous outcomes. In particular, calibration
under an appropriate collection of such rules would ensure that the outcomes of
all the events assigned probability (about) 0.4, say, should be a collective with
that probability parameter, as suggested by Curtiss (1968). (Even this condition,
however, is less stringent than complete calibration.)

The sequence of definitions in Definition 5.1 parallels exactly the develop-
ments described in Section 2, and its culmination in computable calibration
follows from the same logical considerations that led to the representation of
randomness by the (% *)-collective. Henceforth, we shall take computable calibra-
tion as our criterion for the validity of p as an explanation of the data sequence a.
We shall justify this choice by showing that it satisfies the metacriteria M1-M4.

It is easy to see that M2 holds for this criterion. For M1, we note that, since
the Bernoulli forecasting system has p, = p, then p,(s) = p, so that we recover
in that case the criterion that a should form a collective, our accepted criterion
for randomness.

That M3 holds is less obvious, but does indeed follow from the theorem of
Dawid (1982a), which asserts that, with [I-probability 1, the outcome sequence a
will be such that the corresponding forecasts p produced by F will be calibrated
for a with respect to any prespecified selection rule. Thus our criterion is not too
strong.

It remains to investigate M4. To see that some caution is required here,
consider, for example, an outcome sequence a forming a collective, with probabil-
ity parameter p, and the following two sequences of forecasts, p' and p?. For p'
we have p} = p, according to the usual Bernoulli model. For p* we have p? = a,,
corresponding to perfect forecasting with certainty. It is clear that both these
forecast sequences are computably calibrated for a, but p! — p? -5 0 in con-
tradiction to M4.

Intuitively, it seems clear that the forecasts p? should be ruled out, not
because they fail to satisfy our criterion, but because they are “too good.” It is
simply impossible to forecast a collective perfectly, at any rate in the absence of
clairvoyance or additional external information. We must therefore impose some
such constraint on the forecasts we may consider. This idea is taken up in the
next section; we then return to investigate M4 in Section 7.



1260 A. P. DAWID

6. Computable forecast sequences. Our restriction on the allowable fore-
cast sequences will parallel closely that already imposed on selection rules, that
they be, in a suitable sense, computable. For our present purposes, a fairly weak
definition will suffice.

DEFINITION 6.1. A forecasting system F is called simply computable if its
value for any string has the form a2, for integral a and b, and there exists a
Turing machine, which, when fed with an input tape containing any finite
(possibly empty) string of Os and 1s, stops after a finite number of operations,
having output the (finite) binary expansion of F for that string.

Given a specified outcome sequence a, a forecast sequence p is called simply
computable for a if there exists a simply computable forecasting system F' such
that p = F(a), viz. p,,, = F(a™), all n. We call p computable for a if there
exists a simply computable approximating forecast sequence q for a, viz. one
such that p, — g, = 0 (n - ).

This author would again hold that, if we restrict attention to computable
forecast sequences, we shall not have excluded any that are humanly attainable
(still excluding clairvoyance or the possession of additional external information).
Without entering into any further philosophical debate on this point, we now
impose this restriction. With it, the possibility of perfect forecasting of a
collective, for example, is ruled out. If it were possible, there would exist a
computable selection rule which picked out all the events, beyond some point in
the sequence, which result in a success, in contradiction to the requirement of
invariance under this subsequence.

7. Asymptotic uniqueness. We now present the principal result of this
investigation that, when only computable forecast sequences are admitted, M4
holds for the criterion of computable calibration. (Note that, if p' is empirically
valid under these conditions and p} — p2 — 0, then p? is empirically valid. Hence
M4 is the strongest such requirement that can be imposed for this criterion.)

LEMMA 7.1. Let p',p? be forecast sequences, each calibrated for a with
respect to a subsequence s. Then, if s is infinite, p\(s) — p>(s) = 0 (r = ).

Proor. Immediate from Definition 5.1. O

THEOREM 7.1. Let p',p* be computable forecast sequences for a, each
computably calibrated for a. Then p} — p?> - 0 (n > o).

Proor. Clearly it is enough to prove the result when each p' is simply
computable, so that p' = Fi(a) for some simply computable forecasting system
F' (i =1,2). For this case, given any integer K, we can define a selection rule 8
by: 8x(a'™) = 1if Fi(a™) — FYa™) > K™Y §,(a™) = 0, otherwise. Further-
more, 8 is computable, since a Turing machine can be constructed which
combines those which compute F! and F? with a further step which checks
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whether or not the condition F'(a(™) — F2(a(™) > K~! is satisfied. It follows
that both p' and p® must be calibrated for a with respect to the subsequence
sg = 8x(a), for which n € sy if and only if p} — p2> K~'. Then, for all r,
DH(sg) — PX(sg) > K. Thus s, must be finite, for, if not, Lemma 7.1 would
yield a contradiction. The same argument applies on interchanging F' and FZ2.
We have thus shown that, for any integer K there exists N such that |pl — p2|
<K 'forall n> N, ie, p,—p2—0.0

Note 7. 1‘:/ Universal algorithm. Theorem 7.1 essentially states that, under the
calibration criterion, if valid probability forecasts exist at all, then they are,
asymptotically, uniquely determined. The demonstration is, however, disappoint-
ingly nonconstructive. It is tempting to think that there might exist a “ universal
algorithm” that could sequentially process the data and construct the valid
forecast sequence when it exists. Unfortunately, this assumption may be shown
to generate a contradiction (Oakes, 1985). There is no computable way of
discovering what the “correct” forecast sequence is!

It is instructive to examine the following hopeful attempt to construct a
universal algorithm. Let F, F,,... be a complete listing of the countable collec-
tion of simply computable forecasting systems, with corresponding distributions
IT, II,,... . Define IT, = ¥® ,I1,/2". Then II, < II,. There exist sets of se-
quences, S, S,,..., such that II,(S;) = 1, F, is computably calibrated for any
a € §;, and (by the corollary to Theorem 4.1) so too are the forecasts made by
IT,. Thus II,, will be computably calibrated for any a € S = U |S;, a set which
has probability one under any computable distribution IT,. This would seem to
come as near as one might require to providing a universal algorithm.

However, II, above does not correspond to a computable forecasting system.
The above programme cannot be carried out in an effective manner, since it is
impossible to order the (F)) effectively. If we could do so, the rule F *(a®) =1 —
F(a™) if this is not i, or 2 if it is, would determine a simply computable
forecasting system that differs from all the (F)). [This diagonal argument goes
back, in essence, to the original paper of Turing (1936).]

Note 7.2: Stable estimation. A well-known result in Bayesian inference (see,
for example, Edwards et al., 1963) asserts, informally, that if two forecasters
agree on the form of a statistical model for data X = (X, X,,...) given a
parameter 6, but have different prior distributions for 6, then, as n — oo, their
posterior distributions for 8 given X" = (X, X,,..., X,,) will tend to agree-
ment. So too, it follows, will their predictive distributions for X, ,, given X,
For some models at least, this asymptotic agreement will hold for any sequence
of outcomes.

The Blackwell-Dubins result (Theorem 4.1) can be regarded as an extension of
this argument when the two forecasters do not necessarily share a common
model, but do at least have mutually absolutely continuous distributions, and so
agree with each other on what events are to be regarded as certain or impossible.
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Then they will be in asymptotic agreement for a set of outcome sequences to
which each attaches probability 1.

Neither of these arguments implies that the resulting agreed predictions will
be empirically meaningful in any way. However, Theorem 7.1 demonstrates that,
if two forecasters do both succeed in making empirically valid forecasts, then
they must be in asymptotic agreement. Neither need base his forecasts on any
specific modelling assumptions, nor, if they do, need they agree over these, nor
need their overall distributions be mutually absolutely continuous.

Note 7.3: Calibrability. Theorem 7.1 does not guarantee that, given an
outcome sequence a, there will necessarily exist any empirically valid forecast
sequence p. If this holds, we may call a calibrable. From M3, we know that the
set of noncalibrable sequences has probability 0 under any probability distribu-
tion that corresponds to a computable forecasting system, and so is evidently
very sparse in an intuitive sense. It is not empty, however. Schervish (1985) has
shown that there exist uncountably many noncalibrable sequences. A similar
conclusion has been reached by, among others, Sudbury (1973).

If a is a calibrabie sequence, a valid forecast sequence p will generally be
nondegenerate, in the sense that p,(1 — p,) does not tend to zero. This will
certainly be the case for almost all realisations from a distribution II having this
property for p,=1I(A,|A,, A,,..., A, ;). In particular, such a sequence a
cannot itself be computable, for, if it were, we could take the perfect forecasts
P = a as empirically valid in contradiction to Theorem 7.1. Thus calibrable
sequences are themselves highly irregular, but the very fact of calibrability
implies some deeper underlying regularity. For a noncalibrable sequence, even
this “order in chaos” is absent.

8. Scoring rules. A popular way of evaluating individual probability fore-
casts is by means of a scoring rule (Savage, 1971): a function S = S(a, p) of the
outcome a of the event A being forecast and the quoted forecast probability p.
We regard this as a penalty to be paid. If a forecaster’s “ true” probability of A is
Dy, then his expected score, if he quotes p, is S(p,, p) = p,S, p) +
(1 — py)S(0, p). If this is (uniquely) minimised in p for p = p,, the scoring rule is
called (strictly) proper. Thus a proper scoring rule motivates the forecaster
truthfully to quote his true probability. An arbitrary decision problem, with loss
function L(a, d) depending on the decision d and outcome a of A, determines a
proper scoring rule S, such that S(a, p) is the loss suffered by taking the decision
d,, optimal under the quoted probability p for A, when A = a. If the forecaster
now faces a sequence A of such events, with the same decision problem at each
stage, it seems reasonable to measure the badness of his quoted probability
forecasts p, in the light of outcomes a, by the average loss which they imply
(Dawid, 1985a). This motivates the following.

DEFINITION 8.1. Let S be a proper scoring rule. A sequence p of probability
forecasts is said to be S-superior to another such sequence q, with respect to the



CALIBRATION-BASED EMPIRICAL PROBABILITY 1263

outcome sequence a, if

liminfn=' Y {S(a;, q;) — S(a,, p;)} = 0.
=1

n—oo

We might consider, as another possible validity criterion for p, the require-
ment that p be S-superior to any other contending forecast sequence. The
following result shows that, under a continuity condition, this is implied by our
criterion of computable calibration.

THEOREM 8.1. Let S(a, p) be a proper scoring rule, continuous in p € [0,1]
(a = 0,1). If forecast sequences p and q are computable for the outcome
sequence a, and, moreover, p is computably calibrated for a, then p is
S-superior to q.

PROOF. Since continuity on a compact interval implies uniform continuity, it
is easily seen that the result will hold if it holds for simply computable forecast
sequences approximating p and q. Thus we now suppose p and q to be simply
computable.

Let Yi = S(ai’ Qi) - S(ai: pi)’ 5’n = n_12?=1yi‘ We must show that
liminf, |, ¥, > 0.

Given & > 0, we can find rational 8 > 0 such that, for p, p’ € [0,1], |p — p/|
<8=|S(r,p)—S(r,p)|< e for r=0 or 1 and, thus, for any r € [0,1]. We
may then partition the interval [0,1] into a finite number N of intervals
(I,, I,,..., Iy), each of length < §, and such that each I, has rational upper and
lower endpoints u, and [,, with u, =1, , (k=1,..., N —1). We may corre-
spondingly partition the unit square into N? boxes (Bj: 1 <J,k < N), where
B, = I, X I; and the sequence (1,2,...) into N 2 corresponding subsequences
(8;;), where i € s, if and only if (p;, q;) € Bj;,. Note that each such subsequence
is computable. We denote by s/, the intersection of s, with {1,2,..., n}, and by
n ;, the size of this set.

Define z; = S(a; 1) — S(a;, u;) if i €sj, with j <k -1, z,=S(a;u,) -
S(a; ;) if i € sy, with j>k +1,and z;, = 01if i € s, with |j — k| < 1. Then,
for all i, |y, — 2;| < 2¢,s0 that |y, — 2,| < 2e.

Let zJ, (resp. aj;) denote the average of the z; (resp. a,) for i € s/;. Then
z, =X X} (n;/n)-zj. By the continuity, and hence boundedness, of S,
terms in this sum will be asymptotically negligible unless n;, — oo, i.e., s, is
infinite. Terms with |j — k| < 1 will be zero. We must therefore investigate the
terms with |j — k| > 1 and infinite s .

First suppose j < k£ — 1. Then zj;, = S(a}, [,) — S(aj, u;) with u; < 1,. Let
D)), denote the average of the (p,) for i in sj}, and wyj, = S(pj,, 1) — S(Pj,, u,).
Since p is computably calibrated and s;, is computable and infinite, we can find
T;), such that, for n > T, |aj, — pj,| <8, and then |z}, — wj| < 2¢e. But, for
I € sy, p; < u;, whence pj, < u; <1l,. Since S is a proper scoring rule, it follows
(Savage, 1971, end of Section 4) that wj > 0. Thus, for n > T),, z, > —2e.
Since a similar argument holds when j > k& + 1, it follows that we can find T
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such that n > T = ZJ, > —2¢, all j, k. Thus z, > —2¢, whence y, > —4¢(n >
T). O

9. The information base. So far we have supposed that the only data that
can be used in formulating forecasts are the outcomes of previously forecast
events. However, this is far too restrictive as a model for most practical forecast-
ing problems, where the forecaster will usually have further relevant information.
Thus the meterologist forecasting rain might have current and historical data on
temperature, cloud formation, wind speed, etc.; the econometrician forecasting
inflation might wish to take into account related series such as balance of
payments and unemployment; and the utility company forecasting electricity
demand will need to take account of external temperature. Our analysis can be
extended to account for such expanded information.

Let %, be the o-field of events whose truth or falsity will be determined and
supposed known to the forecaster at time n. We call # = (%,) the information
base. Throughout this section we shall suppose %, C %, , (forecasters never
forget) and A, € %, (past outcome data are always available). The probability
forecast p,,, for A, , at time n is considered to be the realisation of a
% ,-measurable quantity P, € [0,1]. A sequence (P,, P,,...) of such quantities
forms a %-forecasting system. Such a system has the flexibility to take account of
all the data available when forecasts are issued. Clearly, any probability distribu-
tion II over %, =lim, %, determines such a system, with P, , =
ITI(A, . ,|%,), and any such system is consistent in this way with such a distribu-
tion II (and, generally, with many such).

In order to investigate the empirical validity of a %-forecasting system F for
A, we must take into account, not only the outcomes a of A, but also the data
used in constructing the forecasts, since we must check that these data have been
fully and appropriately utilised. We can express such data, specifying, as well as
a, the truth or falsity of every B, € %,, for all n, as an elementary event
B € %, Thus our validation check should involve some sort of comparison of F
with B, the true “state of the world.”

The metacriteria of Section 4 may be modified to apply to this new problem,
on replacing references to the realised outcome sequence a, and the o-field </,
by respective references, instead, to the realised elementary event B, and the
o-field #,. (We may also ignore the second sentence of M1, as no longer
relevant.) With these changes, the same arguments for these metacriteria may be
made as before. In particular, Theorem 4.1 continues to hold, with =/, and .7,
replaced by %, and %, respectively, and its corollary, with P!, defined as
Hl(An+ lan)‘

Once again we shall use calibration as the basis of our validity test, and once
again we imagine an adversary who attempts to select, if possible, a subsequence
of events with respect to which calibration fails. However, this time, in order to
challenge the claim that the forecasts take full account of all the available
information, the adversary is allowed to base his decision as to whether any event
is to be included in his subsequence on the full information supposed available to
the forecasting system when producing its probability forecast for that event.
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Such an adversary may be represented by a %-selection rule é = (d,, d,,...),
where d,, ., is a %,-measurable quantity, with possible values 0 or 1, such that
the (n + 1)th event is to be included in the selected subsequence if and only if
d, ., = 1. Our validity criterion will, as before, demand calibration with respect
to all the subsequences selected by a suitable collection of such %-selection rules.
This will satisfy the modified metacriteria; in particular, the theorem of Dawid
(1982a) still applies to show that, with II-probability 1, the forecasts produced by
a distribution II over %, with respect to an expanded information base %, will
be completely calibrated for the outcome sequence with respect to any countable
collection of %-selection rules.

To make further progress we must, for reasons already rehearsed, again impose
suitable constraints of computability on both the %-forecasting systems and the
%-selection rules admitted. The following extension of Definition 6.1 will be
adequate for our purposes.

DEFINITION 9.1. Let €= (¥%,, %,,...) be an information base such that each
%, is generated by an (at most) countable partition I, = (C,: 1 <j < J, < o).
Then we call € simple. In this case, a %forecasting system F is called simply
%.computable if its forecasts for any data in € are all of the form a2~%, with a
and b integers, and there exists a Turing machine, which, when fed with an input
tape containing (a finite encoding of) any two integers n > 0 and j < JJ,, stops
after a finite number of operations, having output the binary expansion of the
probability forecast produced by F for A, ., given the event C,; € %,,.

A forecast sequence p is #-computable for a realised elementary event 8 € Z_
if there exists a simple information base ¢, with €, € %, (all n), and a simply
%-computable forecasting system F, such that p, ., — F(¢,) = 0(n — o0), where
¢, is the event of the partition I', which obtains under B.

A subsequence s is #-computable if it is so when considered as the sequence of
forecasts o, where 6, = 1if n € s, 0, = 0, otherwise.

A forecast sequence p is #-computably calibrated for B € %, if it is calibrated
for B with respect to every #-computable subsequence.

THEOREM 9.1. Let p',p® be %-computable forecast sequences for B € &,
each %-computably calibrated for B. Then p} — p2> — 0 (n —> ).

The proof parallels very closely that of Theorem 7.1, and is therefore omitted.
The theorem again asserts that, when judged by the validity criterion of calibra-
tion, all forecasting systems taking full and valid account of the same information
base must make asymptotically indistinguishable probability forecasts.

We can similarly show, parallelling Theorem 8.1, that if p and q are %-com-
putable forecast sequences for 8, and p is #-computably calibrated for 8, then p
is S-superior to q with respect to a for any continuous proper scoring rule S. In
general, if & c 2, valid 2-computable forecasts will be strictly S-superior to
valid %#-computable forecasts.
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10. Logical probability. We have seen that the empirical validity of a
sequence of forecasts depends, not only on the outcomes, but also on the
information supposedly utilised in making those forecasts. Clearly, the more
information the better. If # and 2 are information bases with # C 2 (i.e,
%B,< 2,, all n), then valid Z-computable forecasts will be %-computably
calibrated. However, such forecasts will not, in general, be #-computable, and so
not available when given only the information base #. The %-computable
forecasts have the flexibility to respond more sensitively to relevant information;
on the other hand, in order to be valid, they must respond appropriately by being
calibrated with respect to a larger collection of subsequences than required for
forecasts based on % alone. This stronger constraint limits the additional
freedom available, to the extent of implying asymptotic uniqueness of valid
9-computable forecasts.

Since any information base % thus generates essentially unique valid forecasts
with respect to %, we can think of these forecast probabilities as expressing an
objective, quasi-logical relationship between the information utilised and the
outcomes. In effect, they provide a measure of “partial implication”, i.e., the
strength with which it is reasonable to assert that the forecast events will occur,
on the (generally inconclusive) evidence of the data gathered. Thus they partake
of some of the flavour of the logical probability concepts of Keynes (1921) and
Carnap (1950), while remaining firmly tied to the specific empirical data which
Nature chooses to produce.

Consider, for instance, a “deterministic”’ problem, where, for some suitably
complete information base 2, a prediction with certainty is possible. [In particu-
lar, for any valid Z-computable probability forecasts q, ¢,1 —gq,) — 0 as
n — oo.] In the context of forecasting rain, 2 might specify, to great precision,
the positions and momenta of all particles in the atmosphere and oceans, and this
might be enough to determine the next day’s weather with certainty. Even
repeated coin flips could be regarded as deterministic in this sense, with 2
specifying sufficient details of the angular momentum imparted in tossing, the
physical layout of the table, etc. In practice, however, this “deterministic infor-
mation base” will frequently not be available, but, instead, a much reduced
information base % C 9, no longer sufficient to allow pure computation of the
future. Then valid %-computable forecasts p will be asymptotically nondegener-
ate, with p, (1 — p,) + 0. Thus we see that a nondegenerate probability need not
necessarily be interpreted as measuring any intrinsic stochasticity in Nature.
Rather, it can be considered as a price that must be paid for attempting to
forecast on the basis of incomplete information.

11. Restricted information. Instead of considering an expanded informa-
tion base, as in Section 9, we can generalise in the opposite direction, by limiting
the information that may be used in making a forecast for A, . , to be strictly less
than the outcomes a'™ of all past forecast events. For example, we might retain
only the outcome a, of the previous event A,, thus restricting the forecasting
system to have the form of a computable function p, ., = F(n, a,). A further
restriction might even exclude dependence on n from this formula, so that
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DPni1 = F(a,), yielding p,., =A, say, if a,=1, p,,,=p if a,=0. Such
forecasts would be fully appropriate under a simple stationary Markov chain
model for A, but not so otherwise. Nevertheless, if the forecasts are constrained
in such a way, we can still ask whether they are in the best possible correspon-
dence with the data, subject to the constraints.

Once again, calibration can be used to formalise such questions. We shall
require calibration with respect to a subsequence selected by an adversary who is
allowed to construct his selection rule on exactly the same basis as the forecasts
under test. Thus, for forecasts restricted to the form p,,, = F(a,), the only
admissible nontrivial selection rules would pick out either the subsequence s, of
all events following a success, or the subsequence s, of all events following a
failure. The forecasts with F(1) = A, F(0) = p will thus be acceptable, subject to
the restriction on their form, if and only if the limiting relative frequency of
successes is A in s, and p in s,.

The calibration criterion remains an intuitively appealing one in this context,
although the arguments in its favour are less strong. In particular, M3 need not
hold. Consider, for example, the severest possible restriction, p,., = constant
(taking no account of n and past data). The only admissible selection rules for
this restriction yield either the null sequence or the complete sequence, so that
the forecasts p,,, = 7 are acceptable if and only if 7 is the limiting relative
frequency, r say, of success in the whole sequence.

A distribution II over &/, may be considered as giving rise to such a
forecasting system if the marginal probabilities II(A4,,, ,) (which take no account
of past data) are all equal (and thus take no account of n), and we could then
take p,,, = II(A,,,) = constant. Consider, however, the exchangeable distribu-
tion II obtained by mixing the Bernoulli trials model with respect to a uniform
distribution for its parameter p. Then p,.; = ; and thus calibration holds if and
only if r = ;. However, with II-probability 1, » = p # {. Thus M3 fails.

If, nonetheless, the restricted calibration criterion is applied, our principal
result, Theorem 7.1, extends to this setup. The result will hold so long as,
whenever F' and F? are admissible forecasting systems, 8, defined as in the
proof of the theorem, is an admissible selection rule.

12. Prognostic systems. We now introduce another variation on the theme
of empirically valid probabilties. We suppose that we have a large (conceptually
infinite) ordered population of individuals 1,2, ... . Attached to each individual n
is some given background information x,, and also an uncertain event A,. We
seek a rule 7 that attaches to each individual n a probability p, = m(x,,), to be
interpreted as the probability that A, will occur, based on data x,.

Examples of such a setup include:

(a) Medical prognosis (or diagnosis), in which x, consists of various items of
patient n’s clinical history, medical symptoms, etc. and A, denotes the event
that patient n will recover (or, has a particular disease);

(b) Insurance portfolios, in which x, determines various actuarial rating
factors and other properties of car driver n and A, is the event that he or she
will have an accident within a given year;
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(c) Criminal trials, with x, representing the evidence before the jury concern-
ing defendant n and A, the event of guilt.

It is common in such cases to build a statistical model relating p, to x,. See
for example, Titterington et al. (1981) for case (a), and Du Mouchel (1983) for
case (b). Case (c) has not, to my knowledge, been subjected to such a treatment.
However, our analysis will be general enough to allow such cases, even though the
very nature of the information x may vary from one individual to another, and
no two different individuals need have identical values for x.

For concreteness, we shall refer to a rule =, specifying p, completely as a
function of x,, as a prognostic system. A standard statistical investigation might
proceed by postulating a parametric or nonparametric family of such prognostic
systems for a given setup, assuming that one of these is true, collecting some data
on (x,, A,) for various individuals n, and attempting to use this to make
inferences about the true underlying prognostic system.

We shall concern ourselves here with the meaning of the assumption that there
exists a “true” prognostic system to be discovered by sufficiently extensive data
analysis. There is no real problem if it can be assumed that, for any possible value
x of the background information, the conceptual infinite population contains an
infinite subset of individuals » having x, = x; the probability p, appropriate to
any such individual would be taken to be the limiting proportion of individuals,
in the subset, for which the associated event A occurs. This could be discovered,
at least asymptotically, given enough data.

More interesting, however, is the contrary case. Is there any valid objective
meaning to be attached to the probabilities associated with different individuals,
when we cannot group them into large homogeneous subsets?

Suppose,then, we have a prognostic system 7. What criteria should we demand
it satisfy in order to be acceptable, in the light of sufficient data? As in earlier
sections, our approach to this will be essentially infinitary, so that we shall
suppose complete information available on (x,, A,) for all individuals. The
important practical problem of the acceptability of = on the basis of finite data
will not be tackled. However, our conclusion will be important as a philosophical
justification for the type of statistical exercise commonly undertaken.

Although the background information may be so detailed as to give no way of
decomposing the population into infinite homogeneous subsets a priori, the
assumed prognostic system 7 itself imposes on the population a suitable decom-
position. We may take, for example, all those individuals n for which |p, — 0.4|
< 0.05. If 7 is to be empirically meaningful, we should expect that in this subset,
if infinite, the limiting relative frequency of occurrence of the associated events
(a,) should be 0.4 (to one decimal place). Moreover, since # claims not to
recognise any noticeable differences in prognosis between the individuals in this
subset, the same limiting proportion 0.4 should hold for a subsubset, chosen on
the basis of the same background information (x,,) available to 7. The parallels
with our previous calibration criteria will be clear.

To be precise, we now consider only computable prognostic systems, wherein
7(x) is constrained to be a computable function of x (supposed to be approxi-
mately encodable as a finite string). We shall test these with computable selection
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rules, i.e., those computable functions of x having values 1 (inclusion) or 0
(exclusion) only. And we shall require that =7 ’s sequence p of probabilities should
be calibrated for the outcomes a with respect to all such computable selection
rules, in which case we may again call 7 computably calibrated. This seems to be
a reasonable requirement that =« is getting overall proportion correct, and at the
same time is making fullest possible use of the available background information
in determining its prognostic probabilities.

In exactly the same way as in Theorem 7.1, we can now show the essential
uniqueness of a computable and computably calibrated set of prognostic probabil-
ities. If (p}) and (p?) both have this structure, then p, — pZ — 0 as n — oo.
There thus exists (assuming calibrability, at least) an essentially unique set of
objective prognostic probabilities based on the available data x. An attempt to
make inferences about these objective probabilities is therefore justified to the
extent that it is a hunt for something which does, at least, have a unique
existence, at any rate asymptotically. Note, however, that, just as before, the
objective prognostic probabilities will depend on the extent and form of the
information x used for prognosis.

13. Concluding remarks

13.1. Subjectivist implications. While the theory presented here can be con-
sidered as an extension of von Mises’ frequency theory of probability, it in fact
arose from an attempt to provide an empirical assessment of the sequence of
forecasts produced by a coherent subjectivist forecaster. Thus p, ,, would repre-
sent the forecaster’s strength of belief in A, , , in the light of his past data.

The theory of de Finetti (1975) would put no constraints on subjective
probability assignments other than that they be consistent with some probability
distribution II. In our case, this imposes no constraint at all on the ( p,), apart
from the trivial requirement 0 < p, < 1. From this extreme viewpoint it would
therefore seem that any set of forecasts is as good as any other. But this is to
ignore the evident fact that some forecasters are more successful than others, and
that some measure of empirical success is required as an external validation of
subjectivist forecasts. As shown in Dawid (1982a), the calibration criterion we
have chosen can itself be regarded as a consequence of a very natural require-
ment: A subjective distribution is discredited if a prespecified event to which it
gave probability 1 fails to materialise.

It is a perhaps of surprising consequence of this validity criterion that it
imposes asymptotic uniqueness on subjective probability forecasts. Any forecas-
ter whose forecasts are not, ultimately, indistinguishable from the objective ones
will eventually be discredited. This raises difficulties for the forecaster who
cannot guarantee that he will produce objective forecasts. It also means that the
scope for subjective disagreement between different forecasters is virtually
eliminated, if they all wish to stay in touch with reality. In defence of the
subjectivist Bayesian position, however, it should be pointed out that no other
method of forecasting can be guaranteed to do any better (Dawid, 1985b).
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13.2. Martingale extensions. If a forecaster assigns probability forecasts ( p,,)
to (A,), he should be willing to accept bets on the (A,) at odds determined by
his probabilities. Since his forecasts are intended to take full account of his
information base %, his betting opponent should be allowed to exploit any
departures he feels the forecaster is making from full use of this information, by
allowing the size ¢, ; of his bet on A, ; to vary accordingly. The opponent’s
gain from such a bet will be ¢, (1 — p,.,)if A, occurs, —c,, ., p,., if not.

A %-computable sequence of real-valued terms, ¢ = (c;, ¢y, ...), may be termed
a betting strategy. The accumulated fortune, by time n, of an opponent using
strategy ¢, for outcome sequence a, will be f, = f, + £*_,c(a, — p,).

The calibration criterion only covers the case where ¢ is a selection rule, so
that each ¢, = 0 or 1. The opponent can choose whether or not to bet at any time
but not the size of the bet. And Definition 5.1 requires that, for such a case, the
opponent’s total fortune f, grows infinitely more slowly than the cumulative size

» = Lr_.c, of the bets.

We can modify the calibration criterion by allowing the opponent an arbitrary
betting strategy, and imposing suitable restrictions on the behaviour of f,. Note
that, under a probability model II for which p, = II(A,|%,_,), (f,) forms a
martingale with respect to the information base #. Thus we can test the validity
of this forecasting system by requiring that ( f,) should “look like” a martingale
realisation. One way of formalising this, generalizing ideas of Ville (1939) and
Schnorr (1971) for the Bernoulli case, is as follows. Consider an opponent who
starts off with unit capital f, = 1. At any time he may choose c,, as a function of
past data, subject to the restriction that he must always have enough capital to
meet his debt if he loses. In this case we may call the bet sequence ¢ allowable,
and the fortune sequence f = ( f,) strongly nonnegative. If the forecasts p made
by II are “correct”, f will be a realisation of a nonnegative martingale, of unit
mean. Such a martingale must be bounded above, with II-probability 1. We can
therefore impose, as a new validity criterion, the requirement that, for any
allowable %-computable bet sequence ¢, the associated fortune sequence f is
bounded above. This may be shown to be essentially the same as the require-
ments of Howard (1975) and Martin-Lef (1966). This martingale criterion says
that, when betting at “correct” odds, it is impossible to make an unlimited
fortune out of a finite initial capital. As a Lasis for a theory of probability, it has
much in common with (and is as soundly established in practice as) the principle
of the impossibility of a perpetual motion machine as a basis for physics.

The above martingale criterion may be shown to satisfy M1-M4 of Section 4,
extended where necessary as in Section 9. It appears to be strictly stronger than
the calibration criterion, just as Ville’s development for the Bernoulli case
strengthens that of von Mises. Further study of this criterion would appear
promising.

13.3. Some analogies. The calibration criterion, and especially its martingale
extension' above, is somewhat analogous to de Finetti’s coherence criterion.
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Suppose a subjectivist assesses probabilities (p;) (simultaneously, not sequen-
tially) for a set of events (A,). If these truly represent his beliefs, then he should
be willing to accept as fair any combination of bets, of sizes (c;), where his loss
from the ith bet will be c,(A; — p;). The (p,) are said to be coherent if, no
matter what the sizes (¢;), be they positive or negative, of the bets selected by his
opponent, the forecaster’s total gain —X,c,(a; — p;) will be nonnegative for at
least one logically possible set of outcomes (a,) of the (A;). This holds if and only
if there exists a probability distribution IT such that p, = II(A)).

The above martingale criterion extends this idea to the sequential case, but
with constraints on the forecaster’s total loss for the state of the world which
actually obtains. It thus represents a way of taking standard Bayesian arguments
based on the self-consistency of subjectivist beliefs and extending these to take
account of the connexion between those beliefs and the empirical world.

Another idea closely analogous to both calibration and coherence is that of the
relevant subset due originally to Fisher (1956) and developed by Buehler (1959).
Let X have distribution P, governed by the parameter 8. Suppose that some
method of inference produces, for each value x of X, an interval I(x) of 8 values,
together with a “confidence coefficient” y relating to the possibility that § € I(x).
An adversary is allowed to select a subset S of x values, for which, say, he regards
v as an overestimate. He is successful, and the method of inference is thereby
discredited, if he can do so in such a way that Py(§ € I(X)|X € S) < y for all 4.
Extensions of this idea (Pierce, 1973) allow the opponent to lay bets against
“0 € I(x),” the size s(x) of the bet being allowed to depend on x; the original
criterion is recovered if s(x) = 0 or 1 only.

13.4. Data analysis. How are we to assess calibration in the real world, given
a finite sequence of probability forecasts and their associated outcomes? This is
an extension of the problem of defining the “randomness” of a finite sequence:
see e.g., Fine (1973, Chapter V). One cannot reasonably expect finite calibration,
even approximately, with respect to all possible computable selection rules, for
one of these would select, “by accident,” just those events which in fact occurred.
This is the well-known problem that any finite set of data will exhibit peculiari-
ties and departures from expectations, but these may well be noise, not signal,
and, if so, need not be taken seriously. One possible suggestion is that we might
choose some collection of computable selection rules, ordered in some reasonable
way (for example, in terms of some measure of their complexity, as considered by
Kolmogorov, 1963), yielding a sequence §,, d,,... . (Note that such a collection
must exclude some computable selection rules, since it is impossible computably
to order all of them—see Note 7.1). We further choose a function k(n), tending
to infinity more slowly than n (perhaps, following Kolmogorov, k(n) ~ alogn
would prove suitable). For a data sequence of length n, we could assess the
departure from calibration with respect to §,, 8,,..., 8(,, only, for example by
means of suitable significance tests, and regard the sequence as acceptable if it
passed all these tests. One might well take &, to select all events (i.e., first
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investigate only the overall proportion), with k(rn) = 0 for n < n,, k(n) =1 for
n, < n < n, where 1 < n, < n,. Thereafter, different collections and orderings
of the &s will be appropriate, depending on the kind of plausible and interesting
departures from calibration which it is desired to pick up quickly. Further work is
clearly needed to make a practicable method, necessarily somewhat ad hoc, out
of these suggestions.

13.5. A case for empirical probability? This paper has set out a theory which
might be regarded as justifying a concept of probability based on empirical
correspondence with the real world. As such it might seem to give some comfort
to statisticians of the frequentist school, and to discomfort the subjectivist.
Closer attention to the nature of the justification, however, might reverse these
conclusions. Empirically valid probabilities exist, essentially, only at infinity—no
finite collection of probability forecasts can be declared invalid. (This conclusion
holds, as argued in Section 4 above, for any criterion of empirical validity which
satisfies the metacriteria of that section.) Furthermore, empirical probabilities
cannot be calculated, in general (see Note 7.1)—success or failure at specifying
valid probabilities is a matter of luck. With conclusions like this, our investiga-
tion of theories of empirical probability might be regarded as yielding a counter-
example to the idea that it is a meaningful and useful concept. This position has
been forcibly argued by Schervish (1983).
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I wish to thank Professor Dawid for providing such a thought-provoking
paper to discuss. He has raised an interesting question in his paper, namely,
“Do objective probabilities for events exist, relative to a given information
base?” Professor Dawid suggests that the answer is yes, while this discussant
believes that the answer is no.

1. Existence. Professor Dawid’s main Theorems 7.1 and 9.1 prove the
asymptotic closeness of computably calibrated computable forecasts. Their ex-
istence for any given forecasting problem is an open question. The purpose of this
section is to cast doubt on their existence.

Whether or not there exists a single sequence of computably calibrated
computable forecasts depends on exactly which sequence a actually occurs.
Schervish (1985) has shown that there are uncountably many sequences a such
that not a single computably calibrated computable forecasting system exists.
That is, there are as many noncalibrable sequences as there are calibrable ones.
The claim, which Professor Dawid makes, that the noncalibrable sequences are
sparse in an intuitive sense, is an understandable outgrowth of the fact that, as
statisticians, we view the world through the rose-colored glasses of computable
forecasting systems. Hence, we see only calibrable sequences (with probability 1).
But Nature is not (to my knowledge) hampered by the same computability
restrictions as statisticians are. It follows, then, from the cardinality argument
above that the most positive answer we can give to the question of the existence
of objective probabilities is “Maybe they exist, maybe not.” In Section 2 we will
show that even such a weak positive answer is unwarranted.

Even if the sequence a is noncalibrable, there is no cause for alarm in the
forecasting community. It may very well be the case that, for many forecasters,
the majority of forecasts in any finite initial segment are still quite good. That is,
most forecasts may still be close to the indicators of the forecast events.

2. Probabilities of events. Suppose that the sequence a which will occur
will be calibrable. (Please, do not ask how we might know this.) What then are



