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ON EFFICIENT ESTIMATION IN REGRESSION MODELS

By ANTON SCHICK

State University of New York, Binghamton

In this paper we consider the regression model with smooth regression
function and smooth error and covariate distributions. We study how well
one can estimate functionals of the regression function which may also
depend on the distribution of the covariate. This is done by deriving the
efficient influence functions of least dispersed regular estimators of such
functionals under various assumptions on the parameters of our model.
Then we demonstrate how efficient estimates can be constructed. We
provide a general procedure for constructing efficient estimates that relies
on appropriate auxiliary estimates. We illustrate the usefulness of this
procedure by constructing efficient estimates for various parametric, non-
parametric and semiparametric models.

1. Introduction. Let Y be a random variable and Z be a random vector
taking values in some measurable subset % of R*. We consider the regression
model defined by the structural relation

(1.1) Y=0(Z,¢) te,

where ¢ is an unknown parameter in the set 5, o is a real valued function on
J# % B, and ¢ is an unobservable random variable that is independent of Z.
We denote the distribution of ¢ by F and call it the error distribution. We
denote the distribution of Z by G and call it the covariate distribution. The
parameter of our model is 8 = (£, G, F) which we assume to belong to some
parameter set ® = E X & X &, where @ is a model for the covariate distribu-
tion, and ¥ a model for the error distribution. Let P, s r, denote the
distribution of (Y, Z). The goal of this paper is to study the problem of
efficiently estimating a characteristic x(&, G) of the parameter ¢ and the
covariate G in the presence of the nuisance parameter F. Here x is a
functional from 5 X & to R™. We focus on functionals which are estimable at
a Vn -rate. Our treatment is not intended for characteristics such as o(z,, £),
the regression function at a fixed point z,, which cannot be estimated at the
Vn -rate in general.

Our formulation is kept abstract. This allows us to simultaneously consider
various regression models. If E is chosen to be a subset of R™, one obtains
parametric regression models. These include linear and nonlinear regression
models. In nonparametric regression one takes E to be a set of smooth
functions, usually a dense subset of C,(.%¥), the set of all bounded continuous
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functions from % to R, and puts
0(Z,t) =2), teE.

If one takes E to be of the form E, X E,, with =, a subset of R™ and E, a
subset of some function space, one arrives at semiparametric regression
models. Here are some examples of semiparametric regression models.

1. Partially linear additive regression. Let %= R™ X %,, Z ={UT,WT)T,
E, = R™, and E, be a family of smooth functions from %, to R, and take

0(Z,(b,t)) =bTU + (W), beR™ teH,.

Such models have been studied by Chen (1988), Cuzick (1992a,b), Engle,
Granger, Rice and Weiss (1986), Green, Jennison and Seheult (1985),
Heckman (1986), Rice (1986), Robinson (1988) and Wahba (1984). They can
be viewed as special cases of the additive models considered by Stone
(1985).

2. Semiparametric comparison of regression functions. Let 2= {0,1} x [0, 1],
Z = (U,W)T, B, = (0,»), E, be a set of continuous functions from [0, 1] to
R, and

0(Z,(b,t)) = (1 - U)t(W) + Ubt(W), beE,tekE,.

This model is a special case of models discussed in Hérdle and Marron
(1990). It refers to a two sample problem. In the first sample (U = 0) one
has regression function 7 and in the second sample (U = 1) one has the
regression function Br.

In parametric regression models, a characteristic of great interest is the
parameter ¢ itself leading us to consider y(¢,G) = ¢. In semiparametric
regression models, the finite dimensional component 8 of ¢ = (B,7) is an
important characteristics and can be expressed by B = x((8,7), G). Other
examples of functionals are x(¢,G) = fo(z, £) dG(2), the average regression
effect, x(£, G) = Jo(z, £)? dG(2), the second moment of the regression function
and x(¢,@Q) = Jo(z, £)?dG(2) — (Jo(z, £) dG(2))?, the variance of the regres-
sion function.

- Our paper consists of three parts. The first part deals with efficiency
considerations. The efficiency criterion we shall be using is that of a least
dispersed regular estimator. We briefly review this concept in Section 2. In
Section 3 we apply this criterion to our regression model and characterize least
dispersed regular estimators of smooth functionals . We do this by describing
the efficient influence function of such estimates in terms of characteristics
derived from the functional and the particular model. In Section 4 we explicitly
calculate the efficient influence functions for some specific models. Among
others we obtain the efficient influence functions for the two semiparametric
regression models mentioned above. The efficient influence function for the
second model is new, while the result for the partly linear additive regression
model is well known. It appears in Bickel, Klaassen, Ritov and Wellner (1993)
and in Cuzick (1992a). Some other results in this first part overlap also with
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results in the monograph of Bickel, Klaassen, Ritov and Wellner (1993).
However, our treatment is more general and provides a unifying approach to
the efficiency considerations in regression models.

To carry out this program we shall require that F has a finite Fisher
information for location and that ¢ and y are smooth as made precise in
Assumptions 3.1 to 3.3. We also have to be concerned about the identifiability
of the regression function and the parameter £&. Commonly used assumptions
to identify the regression function are (i) the error distribution is symmetric
about 0; and (i1) the error distribution has mean zero. Of course, other
possibilities exist such as requiring that the median of the error distribution is
zero or that some other location functional of the error distribution vanishes.
In this paper we shall not dwell on the particular conditions that are used to
identify the regression. Our results are applicable to any set of identifiability
conditions. The only identifiability condition imposed on F in the paper is the
condition J, > 0 appearing in Theorem 3.11.

The second part of the paper deals with the abstract problem of construct-
ing efficient estimates. In Section 5 we give a general construction lemma that
reduces the problem of constructing efficient estimates to the problem of
constructing appropriate preliminary estimates of the parameter ¢ and charac-
teristics of the functional y and the model. We directly estimate the efficient
influence function. The work of Schick (1986) and Klaassen (1987) shows that
this is the appropriate approach. However, our construction avoids the sample
splitting techniques used in Schick (1986) and Klaassen (1987) by using
techniques developed in Schick (1987). We have formulated our result to allow
for the popular technique of using discrete Vn -consistent preliminary esti-
mates for finite dimensional parameters in parametric and semiparametric
models. But our construction provides also means of avoiding this approach.
Some of the proofs of results of Section 5 are deferred to Section 10.

The third part deals with applications of the results in the first two parts. In
Section 6 we discuss the construction of efficient estimates in parametric
models. We construct efficient estimates of the finite dimensiol.al parameter
based on the availability of V7 -consistent estimates without using the sample
splitting technique. In Section 7 we discuss efficient estimation in nonparamet-
ric models. In particular, we show that efficient estimates for [A¢dG and
/€2 dG can be constructed under mild assumptions on the covariate distribu-
tion if the regression function ¢ = o(-, £) is smooth. The work of Bickel and
Ritov (1990) indicates that without smoothness assumptions efficient esti-
mates cannot be constructed. In Section 8 we construct an efficient estimate
for the finite dimensional parameter in the partly linear additive regression
model. Our estimate improves greatly over an estimate constructed by Cuzick
(1992b). His construction uses only a small sample to construct the influence
function and imposes stronger assumptions on the model. See Remark 8.3 for
more details. In Section 9 we construct an efficient estimate for the finite
dimensional parameter in the semiparametric comparison of regression func-
tions model.
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NoraTioN. Throughout this paper we will use the following notation. If
{a,} and {b,} are sequences of positive numbers, we write a, ~ b, to indicate
that {a,/b,} is bounded and bounded away from 0. If P is a probability
measure and X is a random vector, we denote the distribution of X under P
by {(X|P) and let L,(P)={h € Ly(P): [hdP =0}. Let P,P,, P,,..., be
probability measures defined on the same o-field. Then we say {P,} has
tangent t with respect to P, if ¢t € L ,(P), and if

[ (Von = Vp) - 3t¥p) du — o0,

for densities p, p;, pg,... of P, P, P,,... with respect to some dominating
measure u. If U is a closed linear subspace of the Hilbert space H and h € H,
then we let II(£|U) denote the projection of & onto U. If L is a linear operator
on a vector space V into a vector space W, and v = (vy,...,U,,) is an element
of V™, then we let L(v) denote the vector (L(v,),..., L(v,,)). This applies in
particular to integrals and to the projection operator II(-|U). Also we write LA
for the image {La: a € A} of the set A under L. In matrix calculations
elements in product spaces will be treated as column vectors.

Let A be a subset of a Banach space V with norm | - ||y and a € A. We call
the set D of all d in V, for which there is a sequence {v,} in A with the
property

Va (v, = a) = dlly - 0,

the set of directions of A at a. We refer to such a sequence {v,} as a local
sequence for a in A with direction d. We say a map y on A into some Banach
space W with norm || - |lw is directionally differentiable at a in the weak (resp.
strong) sense, if there is a linear operator y from V to W such that, for each
direction d in D, and some (resp. each) local sequence {v,} for ¢ in A with
direction d,

W (v(v,) = ¥(a)) = vd]w = 0.

We refer to y as the directional derivative of vy at a.

2. The efficiency criterion. The efficiency criterion we shall be using in
this paper is that of a least dispersed regular estimator as elaborated in Begun,
Hall, Huang and Wellner (1983) and Pfanzagl and Wefelmeyer (1982). See also
the monograph by Bickel, Klaassen, Ritov and Wellner (1993). In this section
we briefly recall this concept as it pertains to our situation.

Let (S, S) be a measurable space, Z = {P,: ¥ € 0} a family of distributions
on S, and « a functional on ® into R™. We focus attention on a fixed point 6 in
® and study how well we can estimate «(6) under the product measures {Py'}.
We require that © is a subset of some Banach space &# with norm | |l #. Let
® denote the set of directions of ® at 8. We impose the following conditions.
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2.1 AssumpTiON. There is a bounded linear operator P on & into L, (P,)
such that, for each § in 0, and every local sequence {3,} for § in ® with
direction 8, P, has tangent P§ with respect to P,.

2.2 AssuMPTION. The functional « is directionaly differentiable at 6 in the
weak sense, that is, there is a bounded linear operator k on &# into R™, such
that, for each 6 € 0O, and some local sequence {9,} for 6 in ® with direction &,

(2.1) Vn (k(9,) — k(8)) > K8.

2.3 DEFINITION. The closed linear subspace generated by {Ps: & € @} is
called the tangent space of & and will be denoted by 7. A local sequence {4}
satisfying (2.1) is called admissible. By an estimator we mean a sequence {k,},
where «, is a measurable function on S” into R™, for each n = 1,2,... . We
say the estimator {k,} is regular at 6 if there is a distribution @ such that

g(nl/Z(Kn_K(ﬂn)NP;n) = Q,

for all admissible local sequences {3,}. We say the estimator {«,} has influence
function  at 0, if ¢y € (L ,(Py))™ and

n'/?(k, — «(8) — 1/;,,) — 0 in Pp-prob.,

where i, denotes the map (s,,...,s,) € S* - 1/n(P(sy) + -+ +¢(s,)).

2.4 THEOREM (Convolution theorem). Let Assumptions 2.1 and 2.2 hold.
Suppose there is a Y, in ™ such that
(2.2) o Ps dP, = ks
forall § € O, and
(2.3) {a"Wy: a € R™} is a subset of the closure of {P5: & € ©).
Then the following hold, with V(8) = [y,¢4F dP,. .

(1) The limiting distribution Q of an estimator regular at 0 is a convolution
of the normal distribution N(0, V(6)) and some distribution M:

Q = N(0,¥(6))* M.

(ii) An estimator {k,} is regular at 0 with limiting distribution Q =
N(0,¥(0)) if and only if {k,} has influence function ¥, at 6.

2.5 DEFINITION. The map ¢, is called the efficient influence function (for
at 6). An estimator is called efficient (for « at ) if it has influence function ¢,
at 6.

3. Efficient estimation in the regression model. Let us now apply
this theory to our regression model. The parameter set for our regression
model is the set @ = E X & X ¥, where & is a model for the covariate
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distribution and & is a model for the error distribution. We denote the fixed
point 8 by (¢, G, F). We are interested in a functional k of the form

k(x,T',®) = x(x,T), xeB,Te®, decy,

where y is a functional form 5 X & to R™.

From now on we view (Y, Z) as the identity map on R X .# and assume
that & is a subset of some Banach space B. Let & denote the set of tangents
for F at F, © the set of tangents for & at G and = the set of directions of =/
at £. We may think of §§ as the set of directions for & at F and of & as the set
of directions for & at G. Thus we take © to be 2 X & x &. Throughout this
paper we always impose the following conditions on F, ¢ and y.

3.1 AssumpTiON. The error distribution F has finite Fisher information
for location, that is, F' possesses an absolutely continuous Lebesgue density f
and

’

J=f/2 dF < o, where /= —f71(f>0).

3.2 AssuMpPTION. For each x € H, o*(x,x)dG(2) < ». The map x —
o(+, x), viewed as a map from E into L,(G), is directionally differentiable at 3
in the strong sense with derivative g.

3.3 AssuMPTION. The map y is directionally differentiable at (¢, G) in the
weak sense with derivative y.

Of course, the differentiability of y implies that of x and hence Assumption
2.2. To see that Assumption 2.1 holds, we need the following lemma, which is
derived using similar arguments as given in Hajek and Sid4k (1967), pages
210-214.

3.4 LEmMA. Let {F,} be a sequence of distributions which has tangent c
with respect to F, let {G,} be a sequence of distributions which has tangent b
with respect to G and let {£,} be a local sequence in E with direction a. Then
{P¢, G, r,) has tangent

0a(Z)/(e) + b(Z) + c(¢)

with respect to P, g p,. Thus the sequences {P . r) and {P]; p} are con-
tiguous.

This shows that our regression model satisfies Assumption 2.1 with P given
by

P3=00,(2)(2) + 5,(2) + 54(e), 8= (6,,0,,8) € Ex G x§.

We now impose the following additional conditions.
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3.5 CoNDITION. & is a closed linear subspace of L, (F).
3.6 ConpiTION. @& is a closed linear subspace of L, (G).

3.7 ConbITION. 7, the closure of {ga: a € 5}, is a linear subspace of
L,(@G).

3.8 ConpITION. There exist N; and N, in Ly(G)™ such that

(3.1) x(a,b) = [Ni6adG + [N;bdG, acE be@.

The first three conditions imply that the tangent space 7 is given by
T={a(Z)¢(e) +b(Z) +c(e):ac ¥, be®,ce ).

Thus (2.3) will be automatically satisifed. Condition 3.8 is an identifiability
condition. It restricts the class of functionals. Functionals that do not satisfy
Condition 3.8 are not estimable at a v -rate. Note that N, and N, are not
unique. Define now

u= H(Nzl@) and v =II(N,|?).

Then u and v are uniquely determined and
x(a,b) = [u@adG + [ubdG, acE bed.

Let
J —dJ,
J

For the remainder of this section and throughout the next section we use the
following notation.

4y == N(4IF), J, = j/i dF, A, =

and d=TII(17).

3.9 NoratioN. If @ € Ly(G)’, then @ denotes [adG and a, denotes a — a.
This defines 7, vy, d and d,,.

3.10 THEOREM. If¥ = [udG = 0, then the efficient influence function U, is
given by

Z(¢)
(3.2) Vo = u(Z) +v(Z) "

Proor. 1t is easily checked that 4, belongs to .7 and that
Ey(yy - (a(Z) +b(Z)I(e) + c(e))) = fuadG + fvbdG,

foralace®,be?, cec. O
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3.11 THEOREM. Supposed = [ddG < 1ordJ, > 0. Then
A J -, A,
J-d(J-J,) 1-dA,

is well defined, and the efficient influence function , is given by

Z(e) _
J VI - a.d)

(3.3) ¥y =u(Z) + (vo(Z) +7Ad(Z)) 24 (€).

Proor. As d < 1and J, <, the denominator of A is zero if and only if
J4 = 0and d = 1. Thus A is well defined under our assumptions. Verify that

(34) Wy =u(Z) +wo(Z)4(e) + Wy (), wherew = 3(1) + 7Ad).

Aswe?™ g, T™ Letae®, be #and c €F. It remains to be shown
that

Ey(dy - (a(Z) +b(Z)£(e) +c(2))) = [uadG + [vbdG.
Easy calculations give

Ey(W - (a(Z) +b(Z) () + c(¢))) = [uadG + J [wobdG + J b

= [uadG +J [wbdG — (J — J,)@b.
By the definition of d, [dbdG = b. Thus
J[wbdG = [vbdG + DAL and (J - J,)W = TA.
The desired result is now immediate. O

3.12 REMARK. If ¥ = 0, then (8.3) reduces to (3.2); if d = 1, then (3.3)
reduces to

2e) | 4ue)

(3.5) Yo =u(Z) +vy(Z) 7 U 7.
and if /= ¢, then (3.3) reduces to

_ 4(2)
(3.6) Yo =u(Z) + (v(Z2) +vAd(Z))—J—.

313 REMARK. We can guarantee the existence of the efficient influence
function by selecting an error model which satisfies JJ, > 0. Let us now
discuss such error models.
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(a) Let &, be the set of all error distributions that have zero means, finite
variances and finite Fisher informations. If § = &, then we find

% = {h € Ly(F): [h(x)dF(x) = 0, [xh(x) dF(x) = 0},

€ 1
Z4(e) = o2 and J, = o2’
where o2 = [x2dF(x) is the variance of F. Thus J, > 0, and the efficient
influence function is well defined for this error model.
(b) Let ¢ be a measurable function from R to R, and let F, be the set of all
error distributions which have finite Fisher informations and for which ¢ has
mean zero and finite positive variance. For § = §, we calculate

% = {h € Ly(F): [hdF =0, [yhdF = 0},

, _[fpedr (Jy< dF)?
* T rar? U0 T T T ytdR
Thus, if [y dF + 0, then J, > 0. Note, if  has a bounded positive deriva-
tive, then [y dF = [¢'dF > 0. The choice §(x) = x gives .
(c) let Fg be the set of all errror distributions that are symmetric about
zero and possess finite Fisher informations. If & = &g, we find

& = (h € L,(F): h is symmetric about zero}, ¢, =¢ and J, =J.
Thus J, > 0. As /= /,, (3.3) simplifes to (3.6).

An important tool in the construction of efficient estimates in semiparamet-
ric models is the use of discretized Vn -consistent preliminary estimates for the
finite dimensional parameter. Such estimates can be treated as nonstochastic
local sequences in the proofs and, combined with contiguity arguments, lead to
considerable simplifications in the proofs. See, for example, Bickel (1982) and
Schick (1986) for this approach. To apply this technique we need the following
result.

3.14 LEMMA. Suppose either 5 =0, d <1 or J, > 0, so that y = (1/J)
(v + DAd) is well defined. For x € E, define ¢, € Ly (P, ¢ ) by
6.(3,2) = x(x,G) + u(2) + v(2)4(y — 0(2,%))
+724(y —0(2,%)), yER2zEX,
[soRthag ¢, =x(&G) + ¢y, c.f. (3.4)] and define maps ®,(x) from (R X ¥ )"
to R™ by

n

1
D () (Y15 2152 Vnr2n) = w Z ¢x(yj’ zj)’ ¥, €R, 2, €X.
j=1
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Let {¢,} be a local sequence for ¢ such that {(¢,,G, F)} is admissible. Then
(3.7) Vn (®,(&,) — 9,(£€)) = 0 in Pl-prob.

ProOF. In view of part (ii) of the convolution theorem, (3.7) follows if we
show that {®,(¢,,)} is regular at § with limiting distribution N(0, ¥(6)). Fix an
admissible local sequence {9,} = {(x,,, G,, F,)} for 6 with direction (a, b, c). We
need to show that
(3-8) L(nV2(Du(£,) — X(%,,Go))IPs) = N(0,%(6)).

Let a, be the direction of {¢,} and r = ¢(a — a ). Let §, be the map from
R X % to R defined by

3.(y,2) =r(2)¢(y —0(2,£,)) +b(2) +c(y —0(2,&,)), y<ER zeX.
The same argument which yields Lemma 3.4 also yields that

(el i) = 30,58 ey 0,

where g, and p, are densities of P, and P, ; r with respect to u, = P, +
P, g r- This implies that the log-hkehhood Tafio A, of Py with respect to

P(fm . ) Satisfies

A, =8, +3[62dP¢, 6~ 0 inP g pyprob.,

where 5, is the map from (R X )" to R defined by. 5,(sp,...,8,) =
n~Y%5 (s,) + -+ +8,(s,)). An application of Le Cam’s third lemma gives
now that

(n2(B(62) — X(60:®)) = oulP6my) = N(O,¥(0))
with
¢n= [66,3, AP, 6.5 = o (F(2)<(s) +b(Z) +c(¢)) dP,

=/\>(a a*’b)

Since n'/%(x(x,,G,) — x(£,,G)) = x(a — a,b), the desired result (3.8) fol-
lows. O

3.15 REMARK. The above result can be generalized as follows. Let {¢,} be a
local sequence for ¢, let {u,} and {y,} be sequences in L3(G) and LZ(G),
respectively, and let T, be the map from (R X J%)" into R™ defined by

1 n
Tn(;yl’zl""’yn’zn) = ; ZIX(gn’G) + un(zj) + ‘yn,O(z)/(yj _Q(zj’gn))
j=

n? % (yj - Q(Zj, fn))

+7
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Suppose that [llu, — ul® + lly, — ¥l dG — 0. Then
Vn (T, = ®,(£,)) » 0 in Py-prob.

This follows as {P,’} and {P('gln,G, F)} are contiguous and
n f1a” (T, = ®,(£,))1° dPE, 6, — 0
for every a € R™.

4. Examples of efficient influence functions. Let us now discuss and
illustrate the results of the previous section for parametric, nonparametric and
semiparametric regression models.

4.1. Parametric regression. Suppose E is an open subset of B = R™.
Then E = R™, and Assumption 3.2 implies that there is a ¢ € L,(G)™ such
that

oa=¢Ta, acR™
Typically, ¢(2z) is the gradient of the map b — o(z,b) at b = £, We have
7= {¢Ta: a € R™}. Suppose now that the matrix

o= j 6T dG
is invertible. Then
a=d 1dg = fq>-1¢¢TadG, aeR™.

We are interested in estimating £, that is,
x(x,T) =x, xeB,TI'e®.
As a linear functional, y is directionally differentiable,
x(a,b) =a, acR™be,

and Condition 3.8 holds with N; = ® !¢ and N, =0. One finds u =0,
v=>=®"1 and d = $7® " '¢. Easy calculations show that
1

v+ 0Ad = (&' + AD1$HTD )¢ = J(Jf¢0¢oT dG +J,38"| .
Thus

(A1) b= (I[8085d6 +I.B5| (50(2)4(e) + 2.(2)).

" 4.2 ExampLE. In linear regression, E = %= R* and o(Z,b) =b7Z, b €
R*. Assume that [|z]” dG(z) < » and [zz7 dG(z) is nonsingular. Then the
above applies with ¢(Z) = Z.



ESTIMATION IN REGRESSION MODELS 1497

4.3. Nonparametric regression. Suppose that E is a dense subset of
C, (%), the set of bounded continuous functions from % to R endowed with
the topology of uniform convergence, and

o(Z,t) =4(Z), tekE.

Then Assumption 3.2 holds with ¢ the identity map on C,(%¥") and 7= L,(G).
Every functional y from E X & that is weakly directionally differentiable at
(¢, G) has a derivative y satisfying (3.1). This follows from the Riesz represen-
tation theorem. As 7= L,(G), we find v = N; and d = 1. Assume now that
J« > 0 so that the efficient influence function is given by (3.5). In particular, if
& = &, the set of all error distributions with zero means, finite variances and
finite Fisher informations, then

(4.2) —u(Z) + uO(Z)—Q + De.

An example of a weakly differentiable functional y is given by
x(¢,T) = [htdT, teE,Te®,

where & is a known bounded measurable function from % to R™. It is easy to
see that Condition 3.8 holds with N; =h and N, =h¢ If A =1, then
x(¢,G) = [£dG is the average regression effect and its efficient 1nﬂuence
function is ¢((Z) + £, (e)/J, if J, >0 and & = L ,(G). In particular, if
& = &, the set of all error distributions with zero means, finite variances and
finite Fisher informations, then the sample average will be an efficient esti-
mate of (¢ dG.
Another weakly differentiable functional is given by

x(t,T) = [£2dT, tcE,Te®.

Here Condition 3.8 holds with N, = 2¢ and N, =¢2 If & =L ,(G) and
& = &, then
/()

(4.3) Yo = €4(2) — [£2dG + 26(2) — + Ee.

4.4. Semiparametric regression Suppose that E = 5, X E,, where E, is
an open subset of R™ and :,2 is a subset of some Banach space B,. Write
¢ = (B, 7), with B € E,. Then E = R™, and Assumption 3.2 implies

Q(xy)=hx+92y7 xERm,yEBz,

for some h € L,(G)™ and some linear operator ¢, from B, to R™. Let 7,
denote the closure of {g,y: y € H,} and set

h, =h-T(hl%) and H, =[h*hT* dG.

Assume now that the matrix H, is nonsingular. Then 7  is the sum of the
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orthogonal subspaces 7; = {h%,a: @ € R™} and %;, #; has dimension m, and
(44) a=H;H,a= H;l[h*hT dGa = H;lfh*(hTa +0,) dG,
for all @ € R™, y € E,. Suppose now we want to estimate 8. The correspond-
ing functional is

x((b,t),T') =0, beE,teE, ed.
As a linear map, y is directionally differentiable and

x((a,b),c) =a, ac€R™, beB,ce®.

In view of (4.4), Condition 3.8 holds with N, = H. 'k, and N, = 0. Thus
u=0and v=N,.Also d =d; +d, where d, = TI(1|*})) = AL H;'h, = h%v
and d, = [1(1]7;). Let

1
v = —7 = = H
J(l —A*d) J—d(J—dy)

<R
and
1 -1 -1 7,T -1
Q= j(H* + AH'h b, H, )
One verifies that v + Ad; = JQh ... Thus the efficient influence function can
be written as
(4.5) Yo = Qhy o(Z) 2 () + vhody o( Z)L(e) + v/ (e).
If1 € 7, then h, = 0 and
1 Z(¢)
(4.6) Yy = Hy h*(Z)T'
Let us now consider some special cases.

(a) Partially linear additive regression. Suppose % = R™ X HFyy L=
(UT,WhT, B, = R™, E, is a dense subset of B, = C,(.%,), and

0(Z,(b,t)) =bTU + (W), beg,ter,,

Suppose that E,(|U|*) < . Then E = R™ x C,(.%,) and Assumption 3.2
holds with

0(x,y)(Z) =UTx +y(W), xeR™ yeCy(H).
Thus 7; = {a € Ly(G): a(Z) = (W), b € Ly(Gy)}, where Gy = (W),
h(Z) = U,
h(Z) =U—-E,(UIW),
and the efficient influence function is

_Ho1 /(e)
Yo = H (U - Eo(Ulw))_J_
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provided H, is invertible. This result has already been obtained in Bickel,
Klaassen, Ritov and Wellner (1993) and Cuzick (1992a).

(b) Semiparametric comparison of regression functions. Let J={0,1} X
[0,1], Z = (U,W)7, E; = (0,), E, be a dense subset of B, = C([0, 1)),

0(Z,(b,t)) =1 -U)y(W) + Ubt(W), bekE,teckE,.
Assume that U and W are independent and that m = E(U) = P(U=1) €
(0, 1). Then Assumption 3.2 holds with
0(x,y)(Z) =xUr(W) + (1 - U)y(W) + UBy(W), «x<R,yeC([0,1]).

Thus h(Z) = Ur(W). Let R denote the distribution of W, and let D denote
the bounded linear operator from L,(R) to L,(G) defined by

Da(Z) =a(W)(1 - U+ UB), a&cLyR).
Then 7, = {Da: a € L,(R)}. Set
TBT 1—-7+mB
R e N T
One verifies Dh, = II(h|7;) and Dd, = d, = I1(1|7;). Therefore
h(Z)=Ur(W) —Dh(Z) =Ur(W) —h,(W)(1- U+ UB)
Ul-m)-(1-U)Bw

= (W) 1-—7+m7p2 ’
- m(l-m)(1-p) _
e JrdR and H, 1_w+ B2f dR.

Suppose now that f72 dR > 0. Then H, > 0,
42y = (1-p) L b (2) and dyzy=~—"""P 1 vy
1(Z) = ( )f g +(Z2) and dy )—m( B)-

Suppose furthermore that o/, > 0. Then the efficient influence function is
given by (4.5). Substituting the above expressions and simplifying gives

([ (U 1-U Jui(l-w+pm)
b= 527 BT o e + ST U my ()
+w/*(8),

where 7o =7 — 7,7 = [7dR,

_Jm(1-m)(1 - B)* +J, (1 -7+ pm)’
B 11—+ B2

and+

n ={f7§dR+?2J*.
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5. Construction of efficient estimates. We shall now address the ques-
tion of how to construct efficient estimates. Our emphasis is on error models of
the form §, as described in Remark 3.13b, but our results can be easily
modified to allow for the symmetric error model Fg of Remark 3.13c.
Throughout this section we make the following assumption.

5.1 AssumpTiON. Let {¢,} be a local sequence for ¢£. Let ¢ be a function
from R to R which has a bounded first and second derivative and satisfies

JudF=0, 0< [y?dF <= and [y'dF +0.
Let q, ¢, g, ... be measurable functions from % to R™ such that
[lgl?dG < and [lg, - ql*dG - .
Let s, sq, S5, ... be measurable functions from % to R? such that
JIsI*dG <= and [ls, - sl*dG - 0.

Let wy, pg,... be vectors in R™ such that u, » u and M, M;, M,,... be
m X p matrices such that M, - M.

From now on let (Y}, Z,),(Y,, Z,), ... denote R X J#‘valued random vectors
and let {P,: x € E} be probability measures such that (Y, Z,),(Y,, Z,), ... are
independent and identically distributed with distribution P, ; . Let Y, =
(Yl, ., YY), Z, =(Z,...,Z,), and let E, denote the conditional expectation
given Z calculated under IP’ For j = 1 ,n, let Y, ; denote the random
vector obtalned fromY, by deletlng its jth component Y s =Y, - 0(Z;,¢,),
and let [, ; denote the conditional expectation given ( . J,Z ) calculated
under P, . If {X,) is a sequence of random vectors, {r,} is a sequence of positive
numbers and {§ } is a sequence in ¥, then we write X, = o, (r,) if r;'X,
converges to zero in P, -probability, that is, P, (X, > ér,) — 0 for all 6 > 0;
we write X, =&, (r,) if r, -1X, 1s bounded in P, -probability, that is,
lim. ., limsup, . [P’g (X, > Cr, ") =

We shall now address the followmg problem Construct functions y, from
R™ X %™ to R™ such that ¥, = x,(Yy,...,Y,,Z,,..., Z,) satisfies

1z _
(51) Xn = ;ng (QIL(ZJ) + Mn(sn(zj) - sn)/(sn,j) + /'an(gn,j))
+ o, (n71?).

The construction of efficient estimates for the error model § = &, is a special
case of this problem. To see this simply choose M, s, ¢ and u such that

[y dF _

1 —
Ms=y= (v +8d),  q-x(6G)tu and k=
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Then an estimate satisfying (5.1) will be efficient provided [q, dG = x(¢,, G).
See Lemma 3.14 and Remark 3.15. A possible choice of s and M satisfying
Ms = vy is given by M = (1/J)[I,5A] and s = (07, d)".

Let us now describe an estimate x,. Let M, and £, be estimates of M, and
w,, respectively, and let §, ;, #, ; and §, ; be estimates of q.(Z), 0(Z;,¢,)
and s,(Z)), respectively, j = 1,...,n. Let W, ,...,W, , be {0, 1}-valued ran-
dom weights based on Z,. We have included these random weights to be able
to discard some of the estimates 7, ; that we know are poor. See Remark 7.3

for such a use. Now set

n 1 n
Nn= Ewn,j’ Sh, % =_ﬁ_ an,jsnj’
j=1 nj=1
én,j=Yj_Anj and 5n,j=fn’j—Q(Zj,§n),‘ j=1,...,n.
Based on the variables £, 1,...,£, , we estimate the function ¢ by
A fi(x
/n(x) =~ A_Q—’ x € R’
fa(x) + b,
where fn is the kernel density estimate of f,
o 1 2 1 (x—§&,;
x) =— W —k|—1], x € R,
fn( ) Nn jgl n,Jj an ( an )

based on the kernel % and positive numbers a ,, b, converging to 0. We let

c_ Lo N
n=Fnjz=:1wn,j n(gn,j) and \I,"=Fnjz=:1wn’j¢,(8n,j)'

We shall now give conditions on the estimates §,;, 7, $,; M, and i, that
imply that (5.1) holds with

n A
(52) XAn = E wn,j(énj + Mn(gnj - '§n, *)/n(ényj) + /l”‘,j(g”,j))’

ConpiTioN K. The kernel £ is symmetric, three times continuously differ-
entiable, [t2k(¢) dt < «, and, for some positive constant C,

E®(x)| < Ck(x), x€R,i=1,2,3.

A possible choice is the logistic density.

i

ConpitioN M. M, — M, = o, (1) and 2, — p, = 0, (1).
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Under these conditions one can derive the following preliminary result.

5.2 THEOREM. Suppose Conditions K and M hold and Xn is defined by
(5.2) with

dn,j=Qn(Zj)’ fn,j=Q(Zj’§n)’ é\n,j=sn(Zj) and wn,j= 1.
Suppose that n~'a,*b, 2 > 0. Then (5.1) holds.

The proof is the same as the one given in Schick (1987), Example 2, for
linear regression. Thus it will be omitted. We shall show in the next section
that this result is quite adequate for the construction of efficient estimates in
parametric regression. It is, however, inadequate when dealing with nonpara-
metric or semiparametric models as these models require genuine estimates of
q, r and s. To deal with this more general situation we need the following
additional conditions.

ConpiTION R. There are positive numbers o and a, such that, with
Fogii = B ilFy ),

1 n
(Rl) Rn,l = F .len,j[En(lfn,j - Q(Zj’ §n)|2) = ﬁgn(n_za)’
n j=
- 2
(R2) R, = .len,j[En(lfn,j = Fuiil?) = G (n7o),
j=
1 A, A A 2 —2a
(R3) Rn,3 = N Z;an,j[En(Vn,j - rn,j,il ) = @,,(n )-
noi#j

ConprtioN 8. There are estimates §, ; based on (Y, ;,Z,) and numbers
A,, A, > 1, such that

(SO) Sn,O = I?I,ai(n”wn,jgn,j” =< An’
1 2 9
(S1) Sn1= 3 .len,ern(ngn,,‘ = 5,(Z))I”) = 0, (1),
nJ=
(S2) Sn,2 = ‘le,,,,-tEn(us*n,,- — 5, %) = 0, (1),
2 2
1 . ) i ) \
(83) Sus = 3 Z#an,jEn(l|sn,j =8, 4ll?) = 0, (a2).
n 13 J

Conprtion T.

T, = —]%élwn,j(cfn,,- = 0u(Z)) = [M(80; = 800 + 2,85,

=0, (n"1?).
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ConprTioN W.  The random weights &, ; are such that N,/n — 1 = o, (1).
5.3 THEOREM. Suppose Conditions K, M, R, S, T and W hold and
a;4n—a* N 0’ Ana;2n1/2—2a N 0’
A’n"la,*b,;2 >0, Ain~%%; 5p 1> 0.

Then x, defined by (5.2) satisfies (5.1).

(5.3)

5.4 REMARK. A necessary condition for (5.3) isthat « > 1/4. If a = a,, =
1/3, then (5.3) is implied by b, > a® and A,n"%a 2 - 0. Conditions R, S
and T will be discussed in more detail in the sections below in the context of
concrete examples. Condition S essentially calls for consistent estimates of s,
while Condition R calls for estimates of the regression function that possess
appropriate rates of convergence. We shall see that, under mild assumptions
on the covariate distribution, Condition R is implied by appropriate smooth-
ness conditions on the regression function. Typically, Condition S should be
easy to satisfy. Thus the above approach places the difficulty of constructing
efficient estimates on verifying Condition T.

We base the proof of Theorem 5.3 on the following propositions.

5.5 PROPOSITION. Suppose Conditions K, R, S and W hold. If
a;2n1/2—2a N 0,

then

1 2 N .
N, L s (G0 = 003) = G0)) dF) = o (ne7%),
ngjg=

and if A,a;,?n'/272¢ - 0, then

1 2 A A N
N L it [(400 = 00.) = 49) + ZU9)8,, ;) dF(3) = op (n717%).
n j=

5.6 PROPOSITION. Suppose Conditions K, R, S and W hold,

a,*n™* >0 and Al(n"'a,*b,®+n"?%,%;') > 0.

N f: wn,j(§n,j(/:l(§n,j) ~ [4r - 5n,j)dF(y)) - Sn(Zj)/(gj))

5.7 PROPOSITION. Suppose Conditions K, R and W hold,

—2a

—2a—-a -6 -4
n *a,°— 0, n"*%a,.* -0,

n~*a;b;' >0 and n '"%%,;%,2% - 0.
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Then

1 2 A R
N .le"d'(/r:(én,j) - f/r:(y - 6n,j) dF(y)) = Ogn(n“'l/z),
nJ=

5.8 PROPOSITION. Suppose Condition R holds and 7 is a function from R
to R which is F-square integrable and has a bounded derivative. Then

1 - 1 n

N, &0 m(n) = 5 B mlen ) + [y = 8,.) dF ()
n gjg= n j=
+ o0, (n172)

and

S

1
N, /T3

nyJg

B, ; [1(y = 8,,,) dF ()

1 n
= [ndF - <= ¥ &, 5, ; [n'dF + &, (n7%).

nj=1

ProOF OF THEOREM 5.3. Propositions 5.5 and 5.7 yield o, = [2,: dF +
0, (n*~'/?). This and Propositions 5.5 and 5.6 give

1 n
nj=1
It follows from this, Condition W and Condition M that

1z , A A

L ML[8, 5= 8, (46 ) + s )
nj=1

(5.4)

S| =

n

Z Mn(sn(Zj) - §n)/(8n,j) + Ogn(n_l/z)'
j=1
It follows from Proposition 5.8 applied with n = ¢ and 7 = ¢’ that

1 = . 1 n
N, .len,j(w(é\n,j) + ‘I’,ﬁn,j) =N > W, (e, ;) + Ogn(n_l/z).
ngjg=

nj=1

This, Condition W and Condition M yield

S

1z ; 1
(55) Fnjglwn,j“‘n(w(sn,j) + \Pnsn»j) - ; .

Kat(e, ;) + Ogn(n_1/2)~
Jj=1
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Combining (5.4) and (5.5) shows that
1 n
T n 'El (qn(zj) + Mn(sn(zj) - §n)/(Yj - Q(Zj’ fn))
j=
+u, (Y —0(Z;,¢,))) = T, + o, (n™1/?).
The desired result follows now from Condition T. O
5.9 REMARK. We have shown in the proof of Theorem 5.3 that of, =
[4, dF + o, (n*~'/?). Integration by parts yields /¢, dF = [¢,¢ dF. It can be
shown that f(/ — /) dF = 0,(1). See Lemma 10.2 and Lemma 10.5 for the

relevant arguments. Thus J, = J + o, (1).

5.10 REMARK. If 5, =0 and §, , = &, (n™'/?), then we may replace §, ,
by 0 in (5.2).

6. Parametric models. Let us now demonstrate how one can apply
Theorem 5.2 to obtain efficient estimates in parametric models. We assume
that § = &, as given in Remark 3.13(a). Thus F has finite Fisher information
and satisfies

[xdF(x) =0 and [x?dF(x) = o? <.

Suppose that E is an open subset of R"‘ and that there is a known map A
from % x E to R™ such that for all x € E, [llh(z, x)I* dG(2) < =,

[(e(z,x +t) —o(z, %) — t7h(z, %))’ dG(2) = o(ltI]*)
and
JIlk(z,x +t) = k(z,%)I* dG(2) = o(1),
as [|¢l > 0. Suppose also that the matrices
H(x) = [h(z,x)h(z,x)TdG(z), x €&,

are nonsingular. It was shown in Section 4 [see (4.1) and Remark 3.13(a) for
the form of ¢, and J,] that an efficient estimate of ¢ is efficient if it satisfies

1 n
61 k= DL 0(Z,6).2,6) + oi(n ),
Jj=1
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where
- 1_
L(y,z,x) =x + @ '(x)(h(z,x) — h(x))Z(y) + ?h(x)y,
yeER zeX xe g,

Q(x) =JH(x) +

i - J)h(x)h(x)

h(x) = [h(z,x)dG(z), =x<€E.

Let us now construct such an estimate. For this let f denote an estimate of &.
Define J, and / as in the previous section with @, ; =1 and &, ;=Y -
o(Z,, £,), and set

P LA A WICHAUE A

J

§||—a

Qn=Jan+ A—2_Jn hn,*hn,* and — Z n,j*
n =

n

6.1 THEOREM. Suppose the preliminary estimate f is a discrete Vn -con-
sistent estimate of &, and n™'a;;*b;2 — 0. Then the estimate

A A 12 A 1
_ 1 A A
_f +Qn ; ; ( ( )_Bn,*)/n(gn,j)+é\__nzi;’n,*en,j
satisfies (6.1) and is therefore efficient.
Proor. By the properties of the preliminary estimate § it suffices to prove
the result under the assumption that f is a local sequence. Thus assume from

now on that f is a local sequence. In view of Lemma 38.14 and Remark 3.15, it
suffices to show that

§|b-t

= B 0(2,6).2,6) + opn .

But this follows from Theorem 5.2 as Q Q(§ ) + 0z(1) and (1/6-2)hn . =
1/eDh(E,) + 0s(D. O

6.2 ExamMPLE. In linear regression one assumes that
o(z,x) =x"z, zewx¥ xeR™,

and that [zzTdG is invertible. In this case A(z, x)=2z z2z€ X%, x€ &
A Vn -consistent estimate is given by the least squares estimate. If % is a

compact subset of R™ and £, is the least squares estimate, then discretization
can be avoided by using Theorem 5.3 with ¢, = £ One verifies Condition R
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with 7, ; = £7Z, and « = a, = 1/2, Condition S with A, = sup, . ,lzll and
Condition T w1th T, =0.

7. Nonparametric models. Assume now that %=[0,1], G has a
Lebesgue density g, § = &, so that F has mean 0 and finite variance 0%, and
that

o(z,t) =t(z), zeX,te€E,
with E a subset of C([0, 1]). Let us first address Condition R.

7.1 LEMMA. Suppose there are positive numbers C, a, b such that b > 1/2,
inf,_,_,8(2) > a, and

(7.1) |€(21) — é(25)| < Clzy — 22|b 21,25 € [0,1].
Then there are estimates 7, . which satisfy Condition R with W, ; =1, §, = §,
a=b/(1+2b)and a, = (2b - 1/ + 2b).

ProoF. Let m, be a sequence of positive integers such that m, ~ n?/@+20),
Partition [0,1] into m, intervals I, ,,..., 1, , of equal lengths m; . For
l=1,...,m,, let N w1 = Lo 1, (Z)) be” the number of observa-

tions Z; in the interval I, ; and Y Ej_lY 1; (Z})/N, , be the average of
those Y; for which Z; belongs to I,,,l. Let

(7.2) £(2)= L1, ()Y, z€X.
=1

With 7, ; = £(Z,) we verify
ma I[N, , > 0]

S0t BTy = almin ),
a’m, a’m,
R,,< +C?m,;?® and R, ;<
' n ' n
We used the fact that max;_; ., = &(m,/n). The desired result follows

now from the choice of m,. O

7.2 REMARK. Note that b/(1 + 2b) is the optimal rate discussed in Stone
(1982).

7.3 REMark. With 7, ; as in the above proof and
mn
w”yj = Z lln,z(zj)I[Nn,l > dn]’
=1

with d, ~ n/(m, log(1 + n)), we can verify Condition R with a = b(1 + 2b)
and a, < (2b — 1)/(1 + 2b) without the requirement that g is bounded away
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from 0 on [0, 1]. Simply note that we can now bound R, ; by
o I[Nn,l>dn] Uzmn

<
=1 N, d,

nt

2
R, , <o

Of course, in this case one needs to verify Condition W. However, Condition W
can be verified even if g is not bounded away from 0, for example, if g is
bounded and bounded away from 0 on each compact subinterval of (0, 1).

In what follows we assume that E is the set of all Lipschitz-continuous
functions from [0, 1] to R and that © is the set of all distributions which have
Lebesgue densities that are bounded away from 0 on [0, 1]. Then B = L,(@)
and & = L, (G). Thus every weakly differentiable functional y satisfies Condi-
tion 3.8, and an estimator ¥, is efficient if it satisfies

R 12 ACH . —1/3
(7.3) = ; q(Z;) +vo(Z;) . +0g; + o(n~?),
where q(2) = x(¢,G) + Ny(z) — N, and v =N, Let now &, ; = 1and #, ; be
as defined in the above proof with m, ~ n'/3. Now consider the estimate ~
1 = A /”(én»j) A A
(7'4) = ; E: ( ,j_vn,*) J’.‘n +vn,*8n,j’

where ¢, ; and 0, ; are estimates of ¢(Z;) and v(Z;), and 0, , =
Q/n)L2_ v, ;.
7.4 THEOREM. Suppose Condition S holds with

A oA ~1/6 -2
Sp,j = Un,j> A,n a,”—0, b,>a

S W

and

(15) T, =

3|;—A

Z j q(Zj) - ﬁn’j(i’n’j - §(Zj)) = Og(n'l/z),
Then the estimate defined in (7.4) satisfies (7.3) and is therefore efficient.

Proor. We apply Theorem 5.3 with ¢, =¢. As @, ; = 1, Condition W
holds. An application of the above lemma with b = 1 yields Condition R with
a = a, = 1/3. Condition S is assumed. It implies that 0, , =7 + 0,(1), and
this implies Condition M. Condition T follows from (7.5). Finally, (5.3) follows
from the specified rates. Thus Theorem 5.3 applies and gives the desired
result. O

7.5 ExampLE. Let us now consider the functional y defined by

x(x,G) = [h(2)x(2)dT(z), x€E,Te6,
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where % is a known bounded measurable function from [0, 1] to R. For this
functional ¢ = h¢ and v = h. We take ¢, ; = h(Z)F, ; and 0, ; = h(Z)).
Then Condition S holds with A, = sup, ., .,/%(2)], and (7.5) holds as T, = 0.

7.6 ExamMpLE. Now consider the functional y defined by
x(x,T) = [x*(2)dT(z), x€E,T€G.
We have ¢ = ¢2 and v = 2¢. Let us take ¢, ;=72 ; and 0, ; = 27, ;. Verify
that

max |7, ; — £(Z;)] = 0,(1).

l<j<n

It is now easy to see that Condition S holds with A, = sup,_,,/é(2)| + 1.
Finally, (7.5) follows as

M=

T

n

; ~ Ar?,j - §2(Zj) - 2’°n,j(fn,j - §(Zj))
J

(Fo; = €(Z)))" = G(n~2%).

I
|
S| =

Jj=1

8. Efficient estimation in the partly linear additive regression
model. Let us now derive an efficient estimate in the partly linear additive
model. In this model we take %= R™ X [0, 1] and write Z = (U7, W)T. We
take =, to be the set of all functions from [0,1] to R which are Lipschitz
continuous. Recall that o is given by

0(Z,(b,t)) =bTU+t(W), beE,=R" teq,.

We assume from now on that ¥ = §,, that U is bounded and that the
distribution of W has a density with respect to the Lebesgue measure which is
bounded away from 0 on [0, 1]. Let

h(Z) =U - E,(UIW) and H=fhthG.

We assume also that H is nonsingular. Then an efficient estimator g, of
must satisfy

. 12 /(¢
B,—B—H Py )y h(Zj)"Se%')' =o0,(n"%?).
Jj=1

Let B, be an estimate of 8. We construct estimates of 7 and & as follows.
Partition [0, 1] into m?% intervals A, ;,..., A, .2 of equal length, so that

n
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A, =[0,m,;?), A, n2=[1-m;%1] and A, ;=G -Dm;% jm;?, j=
2,...,m% ~1,andlet B, ; = UlmA, G-tm,+p i =1,...,m,. Let

Tl (W)(Y: - BIU;)

(W) = X 1a, (W)

i-1lp, (W) ’
m2
N n 1A W) n
! T4 z:a=11,«1,,,,(W:z) it )

n =Y, —BrU; —7(W;) and &, ;=1,j=1,...,n.

Define
- A A .1l 2 A
— -1 2 A 7
(8.1) Bn - Bn + n ; Z hn,j/n(sn,j)/Jn’
Jj=1

where

8.1 THEOREM. Let f, be discrete and Vn -consistent. Let m, ~ nl/3,
n~%a,? - 0 and b, > a3. Then B, defined in (8.1) is efficient.

PrOOF. Assume first that {ﬁn} is a local sequence. Let ¢, = (B,,7). It
suffices to show that

~ A

1 r /Y, - BTU. — (W,
bo=Fut o L Hh(Z;) 5 =420, = +()
j=1

, J

+ o, (n"17?).

For this we apply Theorem 5.3 with Fuj = ﬁfUl +7,(W), 8, ;= fzn,j, s, =
s=h, M,=H,', M,=M=H"'4,  =q,=8,, and i, = u, = 0. Clearly,
Condition W holds. Condition S holds with A, a constant as U is assumed to
be bounded. Condition M is implied by Condition S. Condition R is verified
with @ = @, = 1/3. Finally, Condition T holds as

1 » -
Tn = ; Z Bn,.l(?n(wl) - T(W])) = - ; Z hn,jT(W]) = Ogn(n_1/2).
Jj=1 i

We used Zfﬂfzn’len’l(W}) =0, 7, is constant on each A,, and
sup, yeca, I7(x) — 7(3)| < Ln~2/3 for some positive constant L and all n and
I =1,..., m%. This proves the result in the case that {B,} is a local sequence.
The general case follows as {,én} is discrete and vn -consistent. O

| 8.2 REMARK. Chen (1988), Cuzick (1992a) and Robinson (1988) have con-
structed Vn -consistent estimates under stronger assumptions than imposed
here. However, the type of estimate considered by these authors can be shown
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to be Vn -consistent under our present conditions as shown next. Let

s _p1lg
Bn = Yk,

njl

Then {ﬁn} is a Vn -consistent estimate of B. Indeed, since

- i by, j7(W;) = 0,(n™'%) and = f: ni = R(Z)IP = 0,(D),
n 7 n =z
we have
1 n 1 n
;ZE’ ;Z +_ZﬁnJT(W)
= Jj=1
1 n 1 n
+— ; (hn,; = B(Z)))e; + . glh(Zj)sj

= lfInB + Py i h(Zj)sj + Og(n_l/z),

Jj=1

and the desired result follows.

8.3 REMARK. Cuzick (1992b) has also constructed an efficient estimator of
B. While we use all the data to construct an estimate of the score function ¢,
he uses only a small part of the sample to estimate it. In addition, he imposes
stronger conditions on the function 7 and requires that the conditional
expectation of U given W has a twice continuously differentiable version. Our
construction shows that this latter condition is not needed.

8.4 REMARK. We believe that discretization can be avoided at the expense
of a more difficult proof. The requirement that 7 is Lipschitz continuous can
be relaxed. Of interest are extensions of the above to the case when W is a

p-dimensional random vector and 7 is additive. These modifications w1ll be
carrled out somewhere else.

9. Semiparametric comparison of regression functions. Let %=
{0,1} x [0,1], E; = (0,), E, be the set of all positive Lipschitz continuous
functions from [0, 1] to R, and let

0(Z,(b,t)) =(1-U)(W) + Ubt(W) =t(W)(1 — U + Ub),

for b > 0, t € E,. We assume that § = §,, that U and W are independent,
that w = E(U) = P,(U = 1) € (0,1) and that R, the distribution of W, has a
Lebesgue density that is bounded and bounded away from zero on [0, 1]. Let

?=deR, To=T—T.
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For b > 0, let

U 1-U
B(Z,b) = (W) 5~ ),
o Jm(1-m)(1-b)°+ (1 — 7 +bw)® (1 —m + br)
£(b) = R o Gl =T
and

n(b) = {1(b) [3 dR + 72.

Then an efficient estimator ¥, of B must satisfy

. 2 [ £(B)
Xn g (J (B) (Zj’B)/(ej)
©D £(B) (1-B)7
2 - T
U, - —s. | + —172y,
Faney T ) 2(n)
Let ﬁn be an estimate of 8. We estimate r as follows. Partition [0, 1] into m,
intervals B, ,,..., B, ,, of equal length m ;' and set
M n X 1 - 1 Y1 W
fu(w) = X 1p, (w) = * (1/6,)0) ¥ s, ( J), w € [0,1],
-1 " j=lan,(W})

Construct the estimates /:L and J, with

8y, =Y, — (1-U+B,U)2,(W,) and @, ;=1,j=1,...,n.

n,J
Let
1 r 9 12 12
A2 - A - - A W A _ U’
On n ngen J» Tn n ng Tn( ) Tn n ng J
7 - é2J,%,(1 — ‘n'n)(l - Bn) (1 - #, + ann)
b — &, + B27, ’
Lo (1 — B, + B,7)
T (= B
A > 1 = A 2 2
M = 61 n; Z (Tn(Wl) 1-n) + 7,
j=1
and




ESTIMATION IN REGRESSION MODELS 1513

1_ A -_
(A,

9.1 THEOREM. Let B, be discrete and Vn -consistent. Suppose m, ~ n'/3,
n~1%;% >0 and b, > a3. Then X, defined in (9.2) satisfies (9.1) and is
therefore efficient.

ProOF. Assume first that {8,} is a local sequence. Let £, = B, 7). It
suffices to show that

e (a) ., s
Xn_ n n g (B\) (ZJ’Bn)Z( _])
L) e — B,
an(g) T g

For this we apply Theorem 5.3 with ¢, ; =q, = Bn,

(-B)7

) )+o(n 172y,

= (1-U+ U)W, 8=

_[r(Z,8,)
Z) = )],
5.(Z) ( oo
M, = bn bon |y | ElB) Gl h) |
(L =B (1~ Ba)7
= d —~
Fon A TR

One verifies that Conditions R and S hold with @ = a, = 1/3 and all se-
quences A,, A, — ». Condition M is easily verified. Condition W is met. We
are left to verify Condition T. First note that

1 . /. N A
Tn = _n_'f’nng ({l,n(hn,j - iLn,ﬁ) + {2,n(l]j - ﬁ-n) + (1 - Bn);n)

X(1 =T + B,U)(F(W) = 7(W))).
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Since (1/n)L}_ (7 (W)) — 1(W)))* = &, (n=2/?), we have

%jé( ni h(Zj,Bn)) = G (n), k.= G (n
and

L 2 (b = b )(1 = T, + BT (3(W,) - #(W))

(93) %i 1(Z.B,)(1 = U+ B.U)(£.(W,) — (W)

+o,(n"1?).

We need the following result. If ¢ is a bounded measurable function from [0,1]
to R, then

1
n

U¢>(W)( (W) — 7(W)))

||M=

J

= ﬁnf¢(w)(7°n(w) — 7(w)) dR(w) + o, (n~1/?)

and

S|~

T (1= B)8(K)(5(W,) - (W)

=(1- ﬁn)fcb(w)(?n(w) —7(w))dR(w) + 0, (n~1?%).

This result can be proved using Lemma 3.4.A in Schick (1989). From this we
immediately obtain that

% éh(zj, B.)(1 - Ty + B,U)(2.(W) — (W)

94 1z én BA" 7
B e T K LR
=0 (n_l/z),
1 n A 5
o L &n(U= )1 U+ BU) (W) = 7(W))
=
A 12 (B, 1
(9.5) O . -gl(ﬁ_nt_ =7, 0" Uj))

X(Fo(W;) = (W)
= ?n(l - T, + BAnﬁ'n)(én - l)ffn —7dR + o, (n"1?),
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and
1 . . X
— L (1= B)%(1 = Uy + B.U)(7(W)) — 7(W))
(9.6) J=1
=(1-B)7(1 -4, + ﬂ‘nﬁn)/@ —rdR + o, (n"V?).

Combining (9.3) to (9.6) yields Condition T. This proves the result in the case
that {B,} is a local sequence. The general case follows as {8,} is discrete and
Vn -consistent. O

9.2 REMARK. A Vn -consistent estimator is given by
. D(l- U)SLUY,
VT LLUTL (- 0)Y,

Indeed, one verifies easily that
o?(1 — m + p*rm)

(1 - 77)?2

L(Vn (B, - B)IPs.) = N0,
See Hardle and Marron (1990) for other choices of Vr -consistent estimates.

10. Proofs of the propositions. Let r, = o(-, ¢,) and set

Wn,1 €n,1
- —_— —_—
W, = s €, = )
A
wn,n €n,n
A A
€, 1 En,l J
A . A —_— A —
&= : and &, ; =L, (&) =
A A
€n,n gn,n J

For each n € N, let /, denote the map from R X R X {0, 1}” to R defined by

(1/a2)r_wk' ((x — y;) /a,)
bn):;Lle + (1/an)Z;’=1ka((x —yj)/an) ’

x€R,yeR*, we{0,1}",

/n(x’y’w) = -

so that
Z(%) = 4,(%,&,,%,), xR

Let /,fi ) denote the ith-order partial derivative of Z, with respect to its first
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argument, that is,

i

axizn(x’y’w)’ x€R,y eR”, w e {0,1}".

4%, y,w) =
We shall need the following properties of the maps <.

10.1 LEMMA. Suppose Condition K holds. Then there is a positive constant
¢, such that the following inequalities hold forallx € R, y,5 € R*, w € {0,1}"
andi=0,1,2:
@ Co
(L1) | 4O, y, )| < —7,
Co e

- a1, w;la /\|~-— |
):Lleai”bn jgl J( n yJ yJ )’

(L2) |49(x,y,w) — £(x,5,w)| <

i i - 2 Co = _ 2
(L3) |er )(x’y’w) _/rf )(x,y,W)| < Zr; w~a5+2ib Z wj(yj_yj) )
J=1"%;"n nj=1

Proor. Straightforward. O

10.2 LEMMA. Let Condition K hold. Let f,(x) = [f(x — a,Dk(#)dt, x € R.
Then

2

fr/z 1,—43—2
3.1= En(f 4(%,€,,W,) + ﬁ%ﬂ dF(z)| = &, (n"'a;"0,%)
and
RGN AGN .
2“‘“m+mn fm)“”“ .

Proor. See Schick (1987).

PROOF OF PROPOSITIbN 5.5. It follows from Condition S that

1?f§nllw”’js"’j“ = é?g,,(An)

As F has finite Fisher information for location,

Jlf(x+1) — f(x)|dx < |t
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Using this and (L1), one finds

[(20x =0 = ) + 02i() ) |

< Itlfol‘f(/:i(x - At) — (%)) f(x) dx|dA

< |t|j01[|2,;(x)( f(x +At) — f(x))|dxdA < cpa;262VT

and

(4= 1) = ) ) o
< [la@|1£x +0) - f(x)]dx < coa; 20T

The desired results are now immediate. [

The proofs of Propositions 5.6, 5.7 and 5.8 rely on the following modifica-
tion of Lemma 3.4.A in Schick (1989)

10.3 LEMMA.  For each pair (n, j) of positive integers, 1 <j <n, let h,,
be a measurable function from R X R™ X FT to R, let H, ; be a measurable
functzon from RXR" X %" toR, leth, ; n, ;O Yn,Z ) and let h,,

H, (-,Y, ;,Z,). Suppose that for some & > 0

12 .
(10.1) =;§hn1(Y) h, (Y) =0, (n7?),

1 .
Cro= o glffzn,,-(y () = b, 5(3 + r(Z)) AF ()

A
p—t
o
o

N’
o
[
:M| —_
|| ™M=
m
/“\
—
>
;l
&.
‘<
+
/\
N
N
Q
)
~~
<
N’
N ——
|
S
M
S
[
&2
N’
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Then
1 n A N
; g hn,j(Yj) - fhn,j(y + rn(Zj)) dF(y) = Ofn(n_s)’

Proor. Let U, ;=h, (Y) -E, j(k, (Y)) and U,”, E, U, ). In
view of (10.1), (10. 2) and the 1dent1ty [En J(hn AY)) = fh (y+r (Z ) dF(y)
it suffices to verify (1/n)L"_ = 0, (n~?).’As in Schlck (1989) one verifies

12 ?
En((;jg Un'j)
1 n
=F ZE( ) ZZ[En(ant)
Jj=1 i#j
1 n
= ? Z [En(Unz,J) + ZZEn((Un,J - Un,j,i)(Un,i - Un,i,j)))
j=1 i)
1

™M=

<z | LE(U) + DEE((U,,; - Un,j,i)z)) = o, (n™?).

no\j=1 i%j

This establishes the desired result. O
The following statements are easy consequences of Condition R.

10.4 LEMMA. Suppose Condition R holds. Then

Uni1 = N2 LY, n( iT én,j,i|2) = G, (n7%),
n l#J
LS 6, - ) - A,
n l#j
1
Ups =5z LLL @ aba(lfna; = Eni(na))) = G (7).

n i#j,i+a,j*a

Proor. Note that U, , < (1/N)L_ b, E(e, ;- é, ;1) <R, and
Un,3 < Un,2 = Rn,3' g

“ Let

Z9%y) = 403,80, 52 %,) and 29 (3) = 493, (8 )) W)
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10.5 LEMMA. Suppose Conditions K, W and R hold and na’ b2 — . Then
for n = 0,1,

1 n
T,§1)=-N— Eu‘) y n(sup|/(“)(x—r 5 - /(”“)(x— ”)|)

=N;! _z“ﬁ’f(a n~% + N;la,*b,2 + a,%b,; 'n"2*),

1 2
Tn,2 N2 Z wn J n( ( (Z) Tn,j, j) - /n(x’en’ An )
N, =4
= N;lﬁ (N, %a,*b, % + a, b, 'n"%),
T,Sl"'g = Xrz Zzwn J n(

2
2 2N, = Fuys) = 40 (% = En (i) )
n i#j

=N, la,;%6, (N, 'a,*b,? + a;,°b;" n=%),

T,4= [En(f'/:l(y) - /(y)l dF(y)) A (a . _2"‘) + 0, (1).

Proor. Using (L1) to (L3), one obtains for some positive constant C:
T < Ca;?(N;'a,*R, , + N, %a;*b,% + N; %%, 'U, 5),
T, ,<C(N;la,*R, ; + N;%a;*b, > + N; ;%6 'U, 1),
T < Ca;?(N;'a, R, 5 + N, %a,*b, % + N, 'a;%b,'U, ),
T, ,<C(a,’;'R,  +32, 1 +3%,,).

The desired results follow from these bounds, Lemma 10.3 and Condition R. O

PROOF OF PROPOSITION 5.6. We shall apply Lemma 10.3 with hn )=
w, (8, J/n(y o) —sZ)(y —r(Z) and h, (y) =, (5, J/,, (y —
P i) — 8Z; )/(y r (Z )) Thus we have to verlfy (10 1) to (10 4) for ‘these
choices. We have (10. 1) in view of the bound

2
8 Y = P i) = 8n i /(Y5 — fn,j,j)|))

(E(IC, 4))* < ( z ,, E,(|$

1 n 1 n
=< 2Sn,2 F Elwn,J'En(an(Y] - i}n,j)) + 2T7§(,))1F .Elwn,jEn(grzz,j)
n j= n j=

= ogn(n'l).

The proof of (10.2) is similar. Equation (10.3) follows from Lemma 10.2,
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Lemma 10.5 and the bound

Cn3<N anj n( §n,j2;z,j(y_(n.lj n(Z)))

—5.(Z;)¢(y) \2 dF(y))

fay) \*
2 1 1 -
< 4(A%T, ,+N;'S, )+ N; 'S, , bn+fn(y)) dF(y)
+_ anj n(Z)N 12n2
nJ 1
= N;}(A26, (a;%b; 'n "2 + N;%a;%b;% + Ny 'a; b, %) + 0, (1))
=0, (n7 ).

Finally, (10. 4) follows from the bound

n 4 = N2 Ezwn J n( n j/n,j(Ifj - An,j,j)

no i#j

A
~

=80 it (Y~ [En,i(fn,j,j))r)

<2N; (S, sa,% + A2T"}

=N, (0, (1) + G, (A%(a;%b,'n"2* + N, la,*b,?)) = 0. (n71).
Thus Lemma 10.3 applies and gives the desired result. O

PROOF oF PROPOSITION 5.7. We shall apply Lemma 10.3 with 4, ) =

i lny —F, ) and h, (y) =, 4, (y—7F, ;) Equatlons (10. 1) (10 4)
follow from Lemma 10. 5 and the bounds C2,+ 02 2, <2TN, C,3<n"'a,
and C, , < T"}. Thus Lemma 10.3 applies and gives the des1red result. O

Proor oF ProposITION 5.8. The proof of the first part is similar to the
proof of Proposition 5.6, and the second part follows as in the proof of
Proposition 5.5. We omit the details. O
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