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ONE-SIDED TEST FOR THE EQUALITY OF TWO
COVARIANCE MATRICES

By SaTosHi KURIKI
University of Tokyo

Let H and G be independently distributed according to the Wishart
distributions W, (M, ®) and W, (N, ¥), respectively. We derive the limiting
null distributions of the likelihood ratio criteria for testing Hy: & =W
against H, — H, with H;: ® > W¥; and for testing H§®: & > ¥,
rank(® — ¥) < R (for given R) against H; — H§®). They are particular
cases of the chi-bar-squared distributions.

1. Introduction. Let H and G be m X m random matrices which are
independently distributed according to the Wishart distributions W, (M, ®)
and W _(N,W¥), respectively, where ® and ¥ are assumed to be positive
definite and M > m, N > m. Consider the likelihood ratio test (LRT) for
testing H,: ® = ¥, the hypothesis of the equality of two covariance matrices,
against the one-sided alternative H, — H, with H;: ® > ¥, that is, ® — ¥ is
nonnegative definite. Furthermore consider the LRT for testing the more
general null hypothesis that H{®: ® > ¥, rank (® — ¥) < R for a specified
R, 0 < R < m, against the alternative H, — H{®. Note that H{” is equivalent
to H,. The main purpose of this paper is to derive the limiting null distribu-
tions of the likelihood ratio criteria for these testing problems.

These testing problems appear in the multivariate variance components
model in the balanced case:

(1.1) XLJ=M+‘7l+U i=1,...,n;j=1,...,k,

ijo
where X;; is an m X 1 observed vector, p an unknown mean vector, V; an
unobserved random effect vector of group i, and U,; an unobserved measure-
ment error. V; and U;; are assumed to be independently distributed according

to the normal distributions N,,(0,®) and N, (0, ¥), respectively. The suffi-
cient statistics of the model (1.1) are X= ¥7_,X,/n with X, = T*_ X, /¢,

H-%Y (X, - X)X, - X

and

G=Y ¥ (X, -X)X,-X].

i=1j=1
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Here H and G are independently distributed according to W,(n — 1, ¥ + k@)
and W, (n(k — 1), W), respectively. Then testing the hypothesis of no effect:
® = O reduces to testing H, based on H and G against the one-sided
alternative H, — H,,. Testing the hypothesis that the effect vectors are linear
combinations of R or less dimensional factors reduces to testing H§® against
the alternative H, — H{®.

The likelihood ratio criterion A® for testing H{® against H, — H{® was
obtained by Anderson, Anderson and Olkin (1986) as

1

AR =
pli+1—p

R* 1° (M+N)/2
{——} , if R* >R,

i=R+1
=1, . otherwise,

where [;> -+ >, (>0) are the latent roots of (N/M)HG™!, p =
M/(M + N), and R* is the number of [, > 1. In this case the limiting null
distribution of (—2) times the logarithm of the likelihood ratio criterion is not
chi-squared distribution. Anderson (1989) showed that, under H{® and
rank(® — W) = R, as letting M, N - » with p — p,, 0 <p, < 1, —2log A®
converges in distribution to

p
(1.2) Y= % (b V0

i=1
where p =m — R, b; > -+ > b, are the latent roots of a p X p symmetric
random matrix A with normal density

1 1
- 2
92P/2,p(p+1)/4 exp{— ) trA }

and x V y = max(x,y). From this fact Anderson (1989) derived the distribu-
tion function of Y for p = 2. For p > 3, Amemiya, Anderson and Lewis (1990)
gave the table of the estimated quantiles of the distribution of Y by Monte
Carlo simulations. In the following section we derive a method to calculate the
distribution function of Y for general p, and give the table of the quantiles of
the distribution of Y.

2. Results. The characteristic function of Y is written as

(2.1) b(t) = f[ ~ exp{itibf}qa(b) db, -+ db,,
r=0"B.XB,_,

i=1

where

N[ =

p
bf}n(bi b))
i=1 i<j

l

(2.2) e(b) = d(P)eXP{—
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with
P-4 1
d(p) = /2 = p
i=1

is the joint density of b = (by,...,b,), b; > -+ > b, [Anderson (1984), Theo-
rem 13.3.5], and

B, = {(by,...,b,) by > -+ >b,> 0},
B, ={(bys1r-- s bp)I0> b,y > 0 >}

By the Laplace expansion of the hnkage factor IT,.;(b; —b;) contained
in the density ¢(b) in (2.2), which is the Vandermonde ‘determinant
det(6? /), _; ;<> the RH.S. of (2.1) becomes

d(p) T, L (-1 “f exp{—— sz} det(bf) 1, j<r dby - db,

r=0 q

X[ exp{—— Z bz+r} det(b 4“- )lst Jj<p-— rdbr+1 dbp’

i=1

where § = (1 — 2it)”"*/?, and L, is summation over all combinations of ¢; >
- >gq,, > " >7q,_, such that Qe 30 G- T} =0,
p — 1}. Then, putting

1 .
(28) Udan--,0,) = [ ew| =5 T 67| det(b0)1cijar dby = by,
r>1,and U, = 1, we see that

p
24)  $(t)=d(p) ¥ LUqu- ) Up (G0, 85 )0°
r=0 q
with @ = ¥)_,q;, + r. By inverting the characteristic function of (2.4), we get
the following theorem.

THEOREM 2.1. The distribution function of Y in (1.2) is given as:

p
Pr(Y<y)=d(p) ¥ LUq1--9)Up_p(T1s -+, Tp—r) Pr(X*(Q) <),
r=0 q
where x*(v) is a chi-square random variable with v degrees of freedom, and

x%0)=0

REMARK 2.1. The distribution function of Y is a mixture of the chi-squared
distributions with », 0 <v < p(p + 1)/2, degrees of freedom. This is a partic-
ular case of the chi-bar-squared (x?) distribution which appears as the limiting
null distribution of (—2) times the logarithm of the likelihood ratio criterion
when the null hypothesis is on the boundary of the parameter space [e.g.,
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Robertson, Wright and Dykstra (1988), Chapter 2; see also Shapiro (1988),
Section 6].

In order to calculate the distribution function of Y given in Theorem 2.1,
the integral U.(q, ..., q,) of (2.3) has to be evaluated. The “pseudo determi-
nant’’ method of Pillai (1956) is exploited here.

THEOREM 2.2. U.(qy,...,q,) can be evaluated by the following recurrence
formula:

Ud1--54,) = (=17 U, _(@s,---, ) (g1 = 1)
+(q: - 1D)U(q1 - 2,95,---,4,)
(2.5) 1
+2 22( 1)JWU1(Q1 +q;- 1)
J
r_z(Q2,~-~,(Ij—1,qj'+1,---,qr),
r>2,q,=1,and
U(g)=I(g=1)+(¢-1)Uy(qg—-2), qg=1,

U(0) = ym/2,

where I(+) denotes indicator function.

Proor. Define

1 r
F, (6;91,---,9,) = fB . {——2— ) b2} det(b%)1 i, j<rdby -+ db,,

0 <i<r, with

B, (b) ={(by,...,0)lby> =+ >b;>b>b, > - >b, >0}
Then, by expanding the first column of det(b/), _; ; ., in the R.H.S. of (2.3),
we have

ACTNY BE Z( 1) lf exp(— 3b2)b% db

} XFr—l,i—l(b;q2""’qr)‘
By integration by parts, and using the relations that

(2.6)

db -1,i— l(b ds; - "’qr)

~ ¥ (-1)" exp{— 26H0U(F,. 5 5(b3q2s - Qi1 Tjs1s- -2 4r)
j=2

+Fr—2,i—1(b;q2a cey qj—la qj+1’ crey qr)}a



TEST FOR COVARIANCE MATRICES 1383

TABLE 1
Quantiles of the distribution of Y

p
Prob. 2 3 4 5 6 7 8
0.010 0.0000 0.0000 0.0986 0.6832 1.7747 3.3713 5.4720
0.025 0.0000 9.1E - 7 0.3178 1.1788 2.5559 4.4424 6.8352
0.050 0.0000 0.0508 0.6207 1.7319 3.3617 5.5021 8.1492
0.100 0.0000 0.2423 1.1146 2.5241 4.4511 6.8881 9.8313
0.250 0.0957 0.9190 2.3181 4.2400 6.6723 9.6108 13.0531
0.500 0.7717 2.2605 4.2581 6.7572 9.7567 13.2563 17.2561
0.750 2.1535 4.2858 6.8788 9.9539 13.5198 17.5803  22.1373
0.900 4.0457 6.7324 9.8503 13.4372 17.5088  22.0709  27.1272
0.950 5.4845 8.4904 11.9156 15.8047  20.1758  25.0360  30.3894
0.975 6.9229 10.1978 13.8848 18.0330  22.6618  27.7789  33.3888
0.990 8.8211 12.3994 16.3852  20.8310  25.7566  31.1703  37.0766
9 10 11 12 13 14

0.010 8.0757 11.1817 14.7894 18.8984  23.5086  28.6196

0.025 9.7322 13.1324 17.0348  21.4389  26.3445  31.7511

0.050 11.3010 14.9559 19.1133  23.7724  28.9330  34.5947

0.100 13.2787 17.2291 21.6817 26.6359  32.0913  38.0478

0.250 16.9980  21.4446 26.3925  31.8415  37.7912  44.2415

0.500 21.7559  26.7557 32.2556  38.2555  44.7554  51.7553

0.750 27.1920  32.7450 38.7967  45.3476  52.3977  59.9472

0.900 32.6794  38.7288 45.2761 52.3218  59.8663  67.9098

0.950 36.2381  42.5835 494264 56.7676  64.6072  72.9458

0.975 39.4936  46.0949 53.1935 60.7903  68.8855 77.4795

0.990 43.4779  50.3756 57.7707  65.6639  74.0555  82.9460

and that Z;22F,_, (b5 qs,...) = U,_x(gy,...) for any b > 0, we can see that
the R.H.S. of (2.6) reduces to the R.H.S. of (2.5). The case of r = 1is easy. O

REMARK 2.2. Since UJlgy,...,q,) is a skew-symmetric function of
4, --»q,, we can restrict ourselves to ¢; > -+ >gq,, and the second term of
the R.H.S. of (2.5) can be replaced by:

(ql_l)Ur(ql_Z’q2""aqr)7 ifq1_2>q27

_(qi_1)Ur(q2’q1_2’q37“"qr)7 ifq2>q1—2>q3,
0, otherwise.

The quantiles of the distribution of Y for 2 <p < 14 are given in Table 1.
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