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INVARIANCE PROPERTIES OF DENSITY RATIO PRIORS!

By LARRY WASSERMAN

Carnegie Mellon University

Density ratio neighborhoods are classes of probabilities that are used
in robust Bayesian inference. These classes are invariant under Bayesian
updating and marginalization. This makes them computationally conve-
nient in robust Bayesian inference. We show that this is the unique class of
probabilities that has these invariance properties. Aside from its theoretical
value, this result has computational implications as well.

1. Introduction. Classes of probability medsures are used in Robust
Bayesian inference [Berger (1984, 1985, 1990)] and in the theory of upper and
lower probabilities [Waley (1991)]. Various classes have been considered [see,
for example, Berger (1990), Berger and Berliner (1986), Lavine (1991a, b),
Walley (1991), Wasserman (1992) and Wasserman and Kadane (1990)]. An
intuitively appealing class of priors was proposed by DeRobertis and Hartigan
(1981). Berger (1990) called this class the density ratio class. This class is
invariant under Bayesian updating and marginalization. Thus, if a density
ratio neighborhood around a prior 7 is updated by Bayes’ theorem, it is
transformed into a density ratio neighborhood around the corresponding
posterior. As shown in Wasserman (1992) and Wasserman and Kadane (1992a),
these invariance properties simplify many computations. In particular,
Wasserman (1992) showed that these properties allow us to apply Gibbs
sampling techniques [Gelfand and Smith (1990)] to the problem of finding
bounds on posterior expectations. Apparently, this was the first application of
Monte Carlo techniques to these types of robust Bayesian problems and it
raises the following question: Do other classes possess these invariance proper-
ties? In this paper we show that, subject to mild regularity conditions, the
density ratio class is the only class that satisfies these invariance properties. In
Section 2 we present some preliminary material. In Section 3 we study
updating and marginalization invariance and we present the main result
(Theorem 3.1). In Section 4 we discuss the implications of the results.

2. Preliminaries. Let ® be a compact subset of R and let %(0®) be the
Borel subsets of ®. Without loss of generality, take ® = [0, 1]. Let . be the
set of all measurable functions ¢ mapping @ into [0,«) and let = {f €.}
Jf(@)AM(d6) = 1}, where A is Lebesgue measure. We shall regard every f € &
as a prior probability density function and every /€ _# as a likelihood
function. Given fe€ & and /€ .2, we write /® f to mean the posterior
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density function 2(6)f(8)/[Z(8)f(0)A(d8) as long as the denominator is
positive and finite. If T' € & is a class of densities, then we define /® I" =
{¢® f; f<T). Let u be the uniform probability density function.

Let T,: & — 2%, where 27 is the set of all subsets of F and k is a
nonnegative real number, and assume that, for every f € &, I'\(f) = {f} and
that 2 < m implies that TI,(f) is strictly contained in I',,(f). We also assume
that T,(f) = U, <2 0.(F) = N s 2 0a(f). We call T,.(f) a neighborhood of f
and we call {T,(f); k = 0, f € F} a neighborhood system.

Following Ryff (1965) and Marshall and Olkin (1979), we say that two
densities f and g are equimeasurable if A({0; £(0) > t}) = A({6; g(8) > ¢t}) for
all real ¢. In this case write f ~ g. This is the continuous version of saying
that g is a permutation of f. Given f, there is a unique, nonincreasing,
right-continuous function f*, called the decreasing rearrangement of f, such
that f~ f*. If f, g € &, we say that [ is majorized by g and we write f < g
if [5*(O)A(d0) < [§g*(0)A(d0) for every s. This is usually taken to mean that
f is “more uniform’ than g. A fact that we shall use is that if f is constant
over a set A and over A¢ and if [, f(6)A(d6) = [,g(0)A(d0), then [ < g. We
shall make the following regularity assumptions:

AssumpTioN 1. If feT,(u) and g <f, then g € I,(w).
AssumpTioN 2. T,(w) is convex and weakly compact.

Let S(f) be the support of f and define the density ratio metric 8 on & by

1(0)/f(4)
6(f,g) = esssup log————
8] = e % 5(0)/8(4)
if S(f) = S(g) and &(f, g) = » otherwise. Note that &(u, g) =
log(g*(0)/g*(1)). Define the density ratio neighborhood by TI,(f) =
{g; 8(f, g) < k}. This is a special case of the classes studied in DeRobertis and
Hartigan (1981) and has been investigated by Berger (1990), Lavine (1991a, b),
Wasserman (1992) and Wasserman and Kadane (1992a,b). For a given neigh-
borhood system T, define
£*(0)
p(k) = sup o(u,f)= sup 108*—1~
fer,(w) fer,(p) f ( )
Note that p(0) = 0 and that p(k) is increasing in k. We also make the
following assumption about T':

AssumpTION 3. For every k > 0, p(k) < «.

For every n>1, let ©,,={60,...,0,} represent a finite set with n
elements and let &,, be the set of all probability mass vectors on
0,). We assume that I, is well defined over &, for all n, that is, if f=
(f1,--., f) € F,y then T(f) € F,,. The decreasing rearrangement of f =
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(fi,..., f,) is the vector obtained by rearranging the elements of f in de-
creasmg order. Then f<g if L{f* <T{g} for j=1,...,n. Let pg,, =
(1/n,...,1/n). For &,,, the density ratio metric is deﬁned by

fi/f;
6(f,g)= sup log
6,0e8(H)  8i/8j
if S(f) = S(g) and 8(f, g) = » otherwise. Define
p(k) = Sl}; 5(:“(2): f) = logsup f7*/f5".

feFy feJq

We assume that Assumptions 1-3 apply to the finite sets as well. It follows
that p(k) is a strictly increasing, continuous function and that T(u) =

p(k>(f"(2>)

3. Invariance. We say that a neighborhood system I, is update invari-
ant if T,(/®f) =<0 T,(f) for every fe &, k >0 and /€ . This means
that operations of Bayesian updating and neighborhood formaticn commute.

Lemma 3.1. If T, is update invariant, then T,(f) C I‘<k)(f ) for every
k >0 and every f € &.

Proor. Let f e I‘k(p.) Then &(u, f) <p(k) so fe T‘_<k (u). Hence
I(w cT, (). Now, using update invariance we have I,(f) = T,(f ® u) =
f® Fk(,U«) cfe Fp(k)(l"‘) p(k)(f® W) = p(k)( f) O

If X: ® —» Ris a simple random variable that is constant over the elements
of the partition w = {A,..., A,} and f € &, then the marginal of f induced
by X can be regarded as a mass vector f7=(f},...,f,) € %, where
fi = Ja, f(0)X(d0). Given T C F, define I'" = {f7; f € I'}. We shall say that I,
is marginalization invariant if, for all fe &, for all £ > 0 and all partitions
m, T7(f) =T,(f™). In words, the marginal of the neighborhood equals the
neighborhood around the marginal.

REMARK. At the end of Section 2 we pointed out that I,(i ) = Ts)(k)-
If T}, is update invariant, then for every f € F,), T, (f) =[(f® up) =f®
Tl = ® Tiayina) = Tpu(F)-

To make further progress, we will need the following lemma, which gives an
integral representation of T,. For every ¢ € (0,1) and z > 1 define a probabil-
ity density function 7! by 7%%8) = zc>* if 0 <t and 7>%(9) = c>* if 0 > ¢,
where ¢! ={zt + (1 — )} L. For t = 0 or 1 define 7>’ = u.

LEMMA 3.2. The following two statements are equivalent:

@ fe L.
(ii) There exists a probability measure R on #B(0®) and a number z €
[1, exp(k)] such that f*(6) = [J7>"(0)R(dt) for all 6 € O.
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Proor. Suppose (i) holds. Then 1 < z = £*(0)/f*(1) < exp(k). Let h(8) =
£*0)/f*(1). If z = 1, take R to be a point mass at ¢ = 1 and we are done. So
assume z > 1. Define a set function V by V([0, 0]) = (z — h(0))/(z — 1). Then
V(®) = 1, and V can be extended to be a probability measure on %(0). Let
h=%6) = 7240)/c>'. Then [¢h>"(0)V(dt) = V((0, 6] + 2(1 — V([0, 6]) = h(0).
Now, £*(6) = f*(Dhr(0) = F*(1)[¢h>4(OIV(dt) = [{r>(0)R(dt), where R is
defined by R([0,¢] = V(0,¢] f*(1)/c*'. Now we confirm that R has total
mass 1 and so can be extended to be a probability measure. We have

1 * _ 1,1 2, ¢
1 =[0f (0)A(d6) —[OjOT (0) R(dt)A(d6)

= [*[}+=*(0)M(d6) R(dt) = ['R(dt) = R(®).
070 0

Hence (ii) holds. Now suppose that (ii) holds. Then &(u, f) = log(f*(0)/
£*(0) = log h(0) = log z for some z € [1, exp(k)] since h(8) = [th>*(0)A(d0).
Thus, (i) holds. O

Lemma 3.3. If T, is update invariant and marginalization invariant, then
p(k) = p(k) for all k > 0.

Proor. Let z = exp(p(k)). Choose f € I',(n) such that f*(0)/f*(1) = z.
Choose 6 > 0. Since f* is nonincreasing, for sufficiently small, positive ¢,
f*¥0)/f*(¢p) >z — 6 for all 8 €[0,e] and ¢ € [1 — ¢, 1]. Hence

E L% %k
" BEEONED | efte)
[i-e F*(0)A(dO) — ef*(1 —¢)

Let B=[0,e]U[1 —¢,1] and let ¢ be the indicator function for B. Then
g=¢8f*e /T (un) =T,(¢/® pn) =T,(up), where pp is the density that is
equal to 1/(2¢) on B and 0 otherwise. Let m = {A, A°}, where A =[0,1/2].
Then u™ = p, and g = (g1, 85), where g, = [,8(0)A(d6). Appealing to
marginalization invariance, we have g7 € I'7(up) = I(up) = l"k(,u,(z)) =

p(k)(,u,(z)) From (i) we conclude that &(u ), ™) > log(z — 8). Since g7 €

Loi2), we conclude that 8(u), &™) < p(k). Thus log(z — 8) < p(k) for
every & > 0 so that p(k) > p(k). 3

Now, with 7 defined as above, I'7(u) = I, (u™) = I = Tinpe)
Choose f € Ty, (u ) such that 6(u,), f) = p(k). Then there exists g € I',(n)
such that g™ = f. Define the density 2 by ~(6) = [,g()A(d8)/A(A), if 6 € A,
and h(0) = [,.g(0)A(d0)/A(A°), otherwise. Then h < g so h € I',(n). Note
that [,h(0)A(d0) = [,g(0)A(d6). Hence 8(u, h) = 8(ue), f) = p(k). But h €

Tp(w) € T, () s0 8(p, h) < p(k) and we conclude that p(k) < p(k). O

‘REMARK. It follows from Lemma 3.3 and the assumptions about I}, in
Section 2 that p(0) = 0 and p(k) is a strictly increasing, continuous function
of &.
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TueoreM 3.1. If T, is update invariant and marginalization invariant,
then l"(k)( f) =T,(f) for every k > 0 and every f € &. Hence, I}, and T,
generate the same neighborhoods.

Proor. The theorem is clearly true if & = 0. Now assume % > 0. Let
z = exp(p(k)). First we show that 7>’ € I,(u). Let 7 = {A, A}, where A =
[0,¢]. By marginalization invariance, I'7(u) = [(u™) = T, (u™) = p(k)(,u )
There must exist f < I,(u) such that 8(u™, f7) = p(k). Note that u”
(t,1 —t)and f™ = (fy, f), where f, = [§ f(B)A(dO) and f, =1 — f;. Then

tfs (1-t)f;

A-t)f1" '
Consider the case where #f,/(1 —t)f) < (1 — 1) fl)/(tfz)-—the other case is
proved in a similar manner. Then p(k) = 8(u™, f™) = log((1 — £) f,/(tf,)) so
that f, = 2t/(1 — t + 2t). Hence, [, f(0)A(d0) = [,r>*(0)A(d0) and since 7**
is constant over A and A°, 7*! < fe& [,(w). By Assumption 1, 7>’ € I‘k(;u)
Also, 7t € T}, (u) for all r € [1 z]. Let g € [,;(w). By Lemma 3.2, g* is a
mixture of the 77"’s for some r €[1,z] so, by the regularity assump-
tions, g € I}, (u). Hence, T, (u) C T(w). Now, for any fe F T =f®
p(k)(p,) c f® I(n) = T,(f). By Lemma 3.1, T,(f) C T,,(f) and the proof is
complete. O

5(u, f7) = logmax

4. Discussion. Suppose we use a prior f in a Bayesian analysis of a
statistical problem. To evaluate the sensitivity of our inferences to the choice
of prior, we may embed f in a convenient class of priors and compute bounds
on posterior quantities of interest. If the density ratio class T,(f) is used,
then, by the update invariance property, the set of posteriors after combining
the prior with the likelihood ¢ is T,(¢® f). In other words, the set of
posteriors is again a density ratio class. Further, Wasserman and Kadane
(1992a) showed that if it is possible to draw a random sample from f, then
bounds on posterior expectations are easily estimated for a density ratio class.

Specifically, suppose we wish to compute the upper bound p on the poste-
rior expectation of a function ¢ = ¢(8) of a parameter § when the prior g
varies in the class T,(f). Then Wasserman and Kadane (1992a) showed the
following: Let ¢, ..., ¢" be a random draw from f,, the marginal probability
distribution of ¢ under f. Let ¢@,..., ™ be the ¢*’s ordered from smallest
to largest and let ¢ be the average of the ¢"s. As a consequence of marginal-
ization invariance, to find the upper bound of the expectation of ¢ over I T,(f),
we need only compute the upper bound over {g; 8(f,, &) < k}. This maximum
is attained at the g that has density proportional to kf, over a set where ¢ is
greater than some constant and is proportional to f¢ otherwise. Using this
fact together with standard facts about order statistics, they showed that

p + 0p(1/ VN), where

p= max {(1-i/N)(z—1)+1} '{(z—1) 5 69N + ),

1<i<N j=i
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where z = exp(%). This simplifies the computation of posterior bounds consid-
erably. This simplification is possible because of the invariance properties
possessed by the density ratio class. The results in this paper imply that no
other class has these properties.
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