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EMPIRICAL SMOOTHING PARAMETER SELECTION
IN ADAPTIVE ESTIMATION!

By Kun Jin
Florida State University

We provide a solution to the smoothing parameter selection problem
involved in the construction of adaptive estimates for the symmetric loca-
tion model and the general linear model. Linear B-splines are used to give a
simple form of the estimate of the score function of the underlying density.
New empirical methods are proposed to locate the knots optimally and to
select the number of knots. We also give asymptotic bounds for the
empirical selection method and show that an estimate with an empirically
selected smoothing parameter is adaptive. Our estimates are easy to com-
pute and possess useful computational features. Simulation studies reveal
that our estimates perform well in comparison with some well-known
estimates.

1. Introduction. The development of adaptive estimation theory has had
a rich history since Stein proposed the idea in 1956. The large sample theory
based on deterministic bandwidths is now well established. However, the
problem of selecting the smoothing parameter involved in the construction of
adaptive estimates has continued to be a major obstacle to applying the
technique in practical problems. In this paper, we provide a solution to this
problem for the symmetric location model and the general linear regression
model.

First, let us describe the models to be considered:

MonEeL I (Symmetric location model)
Y,=60+e,
where 8 € R and {e;} iid ~ f € &, where F is a class of density functions

symmetric about zero.

MonbEL II (the general linear model)

where a € R, B, X; € R?, {X,} are iid bounded random vectors and {e;}
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iid ~fe &, where & is a class of density functions. {X;} and {e;} are
independent. The slope parameter 8 is identifiable and represents the parame-
ter of prime interest.

Stone (1975) derived an adaptive estimate for Model I. Bickel (1982) estab-
lished a rigorous definition and necessary condition for adaptation and con-
structed the adaptive estimates for several important models, including Models
I and II. The basic idea in the construction of adaptive estimates is to replace a
score function ¢ = (log £ in the one-step maximum likelihood estimation by
an estimator ¢ N where ¢, is obtained from a kernel density estimate f, and
its derivative f;, and A is a bandwidth (a smoothing parameter). The large-
sample theory has been established with a deterministic sequence of A, that
converges to 0 at a slow rate.

The practical problems often come with a sample of small or moderate size.
The large-sample theory offers very little that is useful regarding selection of a
smoothing parameter in these situations. Hsieh and Manski (1987) demon-
strated that, in Monte Carlo simulation studies, the behavior of an adaptive
estimate could be changed dramatically by using different smoothing parame-
ters. Therefore, the method for selecting a smoothing parameter becomes a
crucial issue in the implementation of adaptive estimation. This difficulty is
the major reason that there are so few applications of adaptive estimation.

Smoothing parameter selection has been a difficult issue in density estima-
tion problems, and empirical bandwidth selection in kernel density estimation
has been the subject of considerable study. Stone (1984) and Hall and Marron
(1987) proposed the asymptotic optimality theory of the empirical bandwidth
selection based on least squares cross-validation, but it is well recognized that
this method is subject to large sample variation. It offers us little help with our
problem.

Hsieh and Manski (1987) first attempted smoothing parameter selection in
the adaptive estimation problem for Model II. They used kernel estimation to
estimate the density f and its derivative f Then, for a given choice of
bandwidth A, an estimate 9, of the MSE of B was obtained by bootstrapping.
The empirical choice A of A was chosen as the A minimizing §, among a
preselected set of bandwidths. Faraway (1992) worked on this problem for
Model I and Model II by using the logsplines method instead of the kernel
method and by estimating the MSE directly. The smoothing parameter was &,
the number of knots. The empirical selection rule was to choose a & that
minimized the estimate of MSE over all & < K, where K is a preselected
integer. Both of their works produced interesting simulation results and
showed that the empirical selection method is worthwhile. However, three
problems remain. One is showing that the estimates of Hsieh and Manski and
of Faraway, based on empirical smoothing parameter selection, are indeed
adaptive estimates. Since both studies involved selecting the smoothing param-
eter from a preselected range of smoothing parameters, this left a problem of
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determining the range. Finally, their methods require intensive computing
time and are not easy to implement.

In this paper, we solve these problems. We develop new empirical smoothing
parameter selection methods. Instead of estimating the density function first,
we use the linear B-splines to estimate the score function directly and derive a
simple form of the estimate <sz of ¢, where k, the number of knots, is a
smoothing parameter (see Section 4). The empirical selection rule based only
on cross-validation does not work well in simulations. Therefore, we propose to
form an interval of possible k£ based on cross-validation criteria and then
introduce a new method, termed stationary correction, to select k, (see
Section 6). The key feature of this new approach is that it enables us to
develop the asymptotic theory for the empirical selection rule as well as
providing a flexibility to modify the selection rule to achieve better numerical
results for small or moderate sample sizes. We also propose to pick the first
local minimizer of k in the process od determining %, (see Section 6). The
first local minimization approach makes the selection method entirely empiri-
cal without the need for a preselected range of k. This approach also efficiently
eliminates the large variance in small sample situations that, as Friedman and
Silverman (1989) pointed out, is a drawback to using this type of regression
spline. We also propose an optimal forward approach to locate the knots (see
Section 5) that, although derived via different motivation, is in the same spirit
as the method proposed by Friedman and Silverman (1989).

We establish asymptotic bounds on l%n and, for the first time, prove that an
estimate with an empirically selected smoothing parameter is adaptive. The
main theorems are presented in Section 8, and their proofs are given in
Sections 10 and 11.

Our estimates are easy to compute and possess useful computational fea-
tures, such as stable performance regardless of choice of initial estimate and
fast convergence without iterative computation. Simulation studies reveal that
our estimates perform well in comparison with some well-known estimates,
such as Hampel’s three-part redescending M-estimate in location case and
perform better than Huber’s M-estimates in regression case (see Section 9).

2. Basic setup. Let 6, @, and 3, be Vn -consistent estimates of 8, & and
B. It will be convenient for proving theorems to take the ““discretized” versions
of 6,, &, and B,. The idea of discretization is due to Le Cam (1969) and was
employed by Bickel (1982) in these contexts. Let R, = {n~'/%i, where i is an
arbitrary integer} and define the discretized estimate 6, = the point in R,
closest to 0,. Similarly define @,, 8,,.

Take the residuals
(1) 5 =Y, - 6,
“in Model I and
(2) & =Y - a,-XB,
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in Model II. Notice that &; also depends on n. Let F, be the empirical
distribution of {g;}.
For a given ¢(x), let I(¢) = [p?fdx. Then the one-step mle’s of 6 and B are

A= ri_16(&;)
(3) Bmle - Bn nI(d)) )

L - DX - X)(Var(X) e(@)
(4) Bmle - Bn nI(¢>) )
where

Var(X) = % f (X, - X)(Xx, - X).

In order to get the adaptive estimates, we need to find a good estimate $(x)
of ¢(x). Before doing that, we will introduce the notation to be used.

3. Relevant notation. On an interval (b, b,), for any integer %, let the
knots {¢£}, be b, = &, < &pay < ' < &y = b,. Define the linear B-spline
basis B;(x), i =1,...,k, as follows:

X — gk(i—l)
7 _ if Eri-1 <X < &iiiys
Eriy — Erai-1y

Erii - X . .
(5) Bk(i)(x) = L’ if fk(i) <x =< fk(i+l) and i < &,
fk(i+1) - fk(i)

1, if {0y <xandi =k,

0, otherwise.

Let D, (%), i =1,...,k, be their piecewise derivatives. For Model I, we take
b, = —b,, define B, (x) only on (0, b,) and then extend it antisymmetrically
to (b,,0).

Denote Bj(x) = (Bq(%), ..., Byp(x)), Dy(x) = (Dyq)(%), ..., D))
and A,(x) = B, - Bi(x). Define

B,(F) = (/Bk(l)(x)dF(x),...,ka(k)(x)dF(x)) :

Similarly define D,(F), A, (F), Bk(Fn), D,(F,) and A,(F,).

v Let Aéyyy = &y~ €pg-1p 1= 1.,k and |§] = max;ci<e Afk(i)' For
each k, let .7}, , be the linear space generated by {By(x): i =1,..., k}. For
any function g, lettmg llgll = sup, |g(x)|, define the distance from g to L ¢
as d(g, £, ;) = min, ¢ g lg(x) — a’B,(x)|l.
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For any matrix A = (a;;),,,, define the norms

I|All; = max z|a I All = Z Zla and ||All. = max|a, ;|.
t,J

I<izn ;4 i=1j=1

For any function g, denote g, ,(x) = g(x), if a <x < b, and 0 otherwise.
Let Ib(d)) = fd)glybr fdx = flf’l’d)zfdx.

4. Smoothing on ¢. Now we consider how to get an estimate of ¢. The
method dicussed here is the simplest one proposed so far, yet it does perform
very well. To begin with, consider how to set the 1ntervals on which the
B-splines are built.

4.1. Nested intervals. The domain of ¢(x) is often infinite. Usually, a
sequence of finite intervals, on which B-splines are built, is taken to approach
the real domain, but the situation becomes very complicated when we consider
empirical smoothing parameter selection on such intervals. Here, a nested
intervals method is proposed.

Let b, and b, be percentiles of the underlylng distribution, say, the 5th and
95th percentlles For smoothing parameter selection, we will only estimate the
truncated score function ¢, , instead of ¢. It is reasonable to believe that, as
long as the interval (b,, b,) is sufﬁc1ently wide, there should be no significant
difference between estimating ¢, , and estimating ¢ in terms of selecting the
smoothing parameter. Practically, b, and b, are estimated by empirical quan-
tiles of F,, say, € o5,) and &g gs,)- For Model I, we restrict b, = —b,.

In constructing adaptive estimates, it is not enough to estimate ¢ only on
(b,,b,), since the estimates would not be efficient. Let d,,,d;, be real
sequences that converge to +. Take b, =b, —d;, and b,, = b, + d,,. Then
(b,,b,) c(b;,,b,,). We will estimate ¢ on the enlarged 1nterval (bzm b,,) in
order to construct adaptive estimates. For Model I, we take d;, =d,,. So
bln = _brn‘

Later on, we will discuss how to locate the knots on (b;,5,). Now we
consider how to place knots in the intervals (b,,, b,) and (b,, m) given that &
knots have been placed in (b, b,). Let |¢,] = max, _;_, A&, in (b, b,). Then,
place the knots in (b,,, b,) at distances |£,],2|£,],... from b, until the end-
point b,, is reached. Do that on (b,, b,,) as well.

Denote the number of knots in (b,,, b,,,) by &'. It is easy to see that for a
given (b,,, b,,) and k knots placed in (b;, b,), there is a unique %’ correspond-
ing to k.

The reason for introducing (b,,, b,,,) is only to ensure adaptiveness of the
estimates when the sample size goes to «. Practically, if we have a small- or
moderate-sized sample, there are only a few e,’s outside (b,, b,). That is, with a
sample of small or moderate size, the computations can be restricted to (b,, b,)
only.
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The nested intervals method is useful for developing the large-sample
theory and studying the small-sample performance of our approach.

4.2. Spline interpolation and estimation of ¢. Now we discuss how to
interpolate and estimate ¢ on (b,,b,). We take the expected squared error,
/(g — $)*fdx, known to be a key measure regarding the adaptiveness of
estimates, as the loss function.

Given any & knots on (b,,b,), let B,(x) be the B-splines basis defined in
Section 3. The interpolation of ¢(x) is defined as a’,(F)B,(x), where a,(F)
minimizes [{(a} Bg(x) — ¢(x))*fdx for all a, € R*. By partial integration,

[ f’(asz(x) — ¢(x))’ fdx

(6) - atk( "B, Bi(x) fdx)ak — 24, ["Byé fdx + ["¢*fdx
b, b b,

= Ay (F)ay + 203, Dy(F) + I,(¢).

It is easy to see that minimizing (6) is equivalent to minimizing a% A,(F)a,
+ 20, D)(F). So the a,(F) exists and a,(F) = —A,;(F)D,(F). Then ¢, ,
is interpolated as ¢,(x) = a%(F)B,(x). Naturally, we take G, = a,(F,) =
—A, (F,)D,(F,) as the estimate of a,(F), and we estimate ®p,6, BY é,(x) =
a'(F,)B,(x).

Similarly, for %’ knots on (b, ,b,,), let B,(x) be the B-splines basis on
(b,,,,b,,,). We have that the interpolation of ¢, , is ¢,(x) = a’(F)B,(x),
and the estimator is ¢,(x) = a%,(F,)B,(x).

This approach also could be used in logsplines density estimation, where it
also yields an easily computable algorithm. The partial integration in (6) was
first used by Cox (1985) to interpolate ¢ by smoothing splines.

REMARK. The simplicity of linear B-splines is the main reason for employ-
ing them in the estimation of ¢. However, it should be noted that using
high-order B-splines (e.g., parabolic or cubic splines) does not give satisfactory
simulation results with small sample sizes. In Section 9, we shall see that
k =0 or 1 is suitable for sample size n = 40 (which means taking a linear
spline with at most one interior knot). A parabolic spline must start with at
least one interior knot, and a cubic spline with two interior knots. For small
sample size problems, those high-order splines seem to be “oversmoothing.”

5. Knot placement. We now give two data-driven approaches for locat-
ing the knots.

5.1. Equally spaced quantiles method. For a given integer k, let {¢;)},
i =1,...,m(n), be the order statistics of the residuals {¢;} in (b,, ,). Then,
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the knots are &,;) = €;.men)/k+1y ¢ = L,---, k. This simple method is moti-
vated by the idea that the data should be evenly distributed among the knots
in the interval. Faraway (1992) took this approach.

Simulations indicate that this approach occasionally gives an inadequate fit.
However, this approach behaves well when combined with the optimal selec-
tion rule &, given in Section 6.

5.2. Optimal forward method. This approach, although motivated differ-
ently, is in the same spirit as the method proposed by Friedman and Silverman
(1989).

We consider the nested knot sequence {¢}, € {€},., for £ = 0,1,... . Start
with 2 = 0 and add selected knots consecutively to the knot set. Recall that ¢
is interpolated by ¢, = a’(F)B,(x). Denote the bias of the interpolation as

(7) Bias(k, ¢) = [b”'(atk(F)Bk(x) — é(x))" fdx.

The idea is to reduce Bias(k, ¢) as much as possible during the process of
adding knots.

It is easy to see that if ¢ is not a piecewise linear function, Bias(k, ¢)
decreases monotonically to 0 as & — ». Denote A(k, ¢, F) = Bias(k, ¢) —
Bias(k + 1, ) > 0, where &, ., is the (¢ + 1)th knot to be added to {¢},. The
quantity A(k, &, ,, F) can be thought of as a measure of the effect of adding
£,., to {£),. With several possible candidates of &,,;, the greater value of
Ak, &, ., F) implies that Bias(k + 1, ¢) becomes smaller after adding &, ;. If
possible, we wold like to pick &,,; with the largest A(k,é,,,, F). By the
definition of a,(F), we can see that Bias(k, ) = —DL(F)A, (F)D,(F) +
I,(¢). Thus

A(k,&,,1, F) = Bias(k,$) — Bias(k + 1,¢)
=D} (F)A; 1 (F) Dy (F) — Di(F) AL (F)Dy(F).
We propose to estimate A by

A(k, 441, F) = Dh o F) A to(F,) Dy o( )

Now we discuss how to choose the nested sequence of knots on (b,, b,). For
kE=2,i=0,1,..., let {¢}, be the 2 equally spaced points on (b,, b,), with b,
being taken as a knot. Clearly, {¢},: C {¢}yi+1. Next, we deal with the situation
when 20! < & < 2i. Since we have already dealt with % = 2i"!, take 2'!
middle points of the intervals divided by {£}yi-1 as candidates. For each
candidate ¢,.,, we compute A(k,¢,.,, F,) and then order all candidates
according to the magnitude of A(k,§&,.q, F,): first the candidate with the
 largest A(k,&,.,, F,), etc. Then, {£}, can be obtained by entering these
ordered candidates into {¢},_, sequentially.

The method can be extended in several ways. Instead of dividing each
interval into two subintervals, we can take m subintervals. In practice, the

(8)
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equally spaced points can be changed to equally spaced quantiles estimated by
empirical quantiles.

6. Empirical selection of k. To choose the number of knots, we would
like to pick % to minimize

9) [ (@(F) Bu(x) - #(x))" fds.

This cannot be done since (9) depends on the unknown f. This is a typical
situation in which cross-validation can be applied.
Minimizing (9) is equivalent to minimizing

L(k, F,, F) = a}(F,) Ap(F)ay(F,) +2a5(F,)D,(F).

Split the residuals into é,,...,¢,, €nit1- > €p 4ny Where ny + ny, =n. We
can estimate L(%, F,, F) by

L(k,F,,F, ) =ay(F, JA(F,)a.(F, ) + 2a%(F, )D,(F, L)
where F, and F,, are the empirical distribution functions of {¢,,..., ¢, } and
{en1 PP n1+n2} respectively. We find that a reasonable choice of 7n, and ny
isn, = m1n{3n1/ 2 n/2} and n, = n — n,. We propose to select the first local
minimizer k of L(k F,,F, ) as a cross-validatory estimate of %, that is, to
choose kcv satlsfylng
(10) L(L,F,,F,)=> - 2L(ky, F,,F,) <L(ky, +1,F,,F,).

ny’

Simulations at small or moderate sample sizes do not give satisfactory
results using this method. This is due to the splitting of the sample in
constructing L(k, F, , F, ), as well as the fact that the cross-validation method
suffers a fairly large sample variation. We propose a new method, stationary
correction, to overcome this difficulty.

Split the residuals again, this time into &,,...,¢,,,¢, ,, . Let F,, and F,
to be the empirical distribution functions of {¢,, ..., €, } and {en +1 3 Cnginb
respectively. These will give another estimate of L(k, F,, F'), namely,
L(k, F, , F, ). Similarly, pick the first local minimizer k., as deﬁned in (10)
Suppose B < k_,. We create an interval of possible £’s as I(n) = {k: k.,
k<k2).

Every k in I(n) is an empirical selection %, of k. Theorems 4 and 5 in
Section 10 reveal that, from an asymptotic pomt of view, such a k is suitable
for constructing our adaptive estimate. The skey issue now is to select a k for
which the adaptive estimate has adequate numerical performance for small or
moderate sample sizes.

It is well recognized that the cross-validation method suffers from large
sample variation. This variation appears to cause unstable behavior of d)k,
even consecutive é & can be quite different from one another. We want to select
a k that would produce a stable ¢;e We begin by considering whether there

isa k in I(n) minimizing d(k) = f(d)k 1 qbk)2 dF(x) so that ¢k _; and ¢k
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are very close and can be considered as stable estimators of ¢. This motivation
is further supported by the following fact: If %k, is a local minimizer of
L(k) = [($, — ¢)? dF(x), then k, is a stationary pomt of the function L(k)
and d(k,) will have a small value. We estimate d(k) by d(k) = [($,_, —
$,)2 dF (x) Simulation shows that minimizing d(k) within I(n) yields good
results. Noticing that there is fairly large variation among {d(%)}, we introduce
a smoothed version of d(k):

1 k-1 .
ST(kF) = T [ (@R By(2) = a(Fy) Bulx)"dF

Define k to be the first local minimizer of ST(k, F,) over k € I(n). That is,
choose k within I(n) satisfying

ST (., F,) > --- > 8T(k,,F,) <ST(k, + 1, F,).

We call k a stationary correction to k . If there is no such k within I(n),
choose k = k2 From the above motlvatlon we can see that both k and
k,—1 should be good choices of k. Let [,(¢) = Dfe(F )A; ((F,)D,(F). Then
I k(d)) is an estimate of I(¢). The final selection £, is defined as the one of £,

and k£, — 1 giving the large 1,(¢).

On the enlarged interval (b, , b,,), we use ', (defined in Section 4.1) as the
empirical selection rule. Simulatlon studies show that stationary correction
rule works very well.

To summarize, cross-validation is used to find I(n) that possess a desirable
asymptotic property (Theorems 4 and 5). The stationary correction rule gives
good numerical results at small sample sizes. In Section 9, we present some
graphics to show more of what is going on for £, and £,

The idea of using the first local minimizer has been consistently employed
throughout our optimization process. This makes kn easily computable and
also produces good simulation results. Bickel initially suggested that the
author consider the first local minimizer of % in this research and noted that a
small number of knots corresponds to a large kernel bandwidth. The first local
minimization method essentially follows the same practice used in kernel
density estimation. In studying empirical bandwidth choice in kernel density
estimation, Rudemo (1982) pointed out that very small bandwidth may cause
irregular behavior. Park and Marron (1990) further noted that if multiple local
minimia arise when using a cross-validation selection rule, the largest local
minimizer should be used.

ReMaRK 1. k., in I(n) actually refers to the smaller of %/, and k. We
keep the same notation for convenience. The computing procedure is as
follow§: Initially, inspect both L(%, F, ,F, ) and L(k, F, , F, ) to find k.
Once k¢, is found, say, from L(k, F, , F, ), then start to inspect ST(k, F,) as
well. As soon as k, is found, stop the procedure Simulation reveals that in
almost all cases (99 8% in the location model) k is found before k . The
computation takes little computer time.
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REMARK 2. Choosing k2, as the right endpoint of I(n) gives the largest
possible interval over which ST(k, F,) can range. This is permissible in terms
of the asymptotic theory, and has no effect on the actual computation due to
Remark 1.

REMARK 3. Choosing n; ~ O(n'/?) and n, ~ O(n) is sufficient for our
asymptotic results. However, for small n, n'/2 is too small for practical use, so
we take n, = min{3n'/2 n/2}. Such an n, is usable when 7 is small and has a
rate of O(n'/2) when n — . Further research on how to choose the optimal
rate is needed.

7. Assumptions. We assume the following:

(A-1) I(¢) = [¢p*(x) f(x)d < .

(A-2) In Model II, Var(X) > 0.

(A-3) ¢ € CO(R).

A-49) NIfll<b(f)< +oo, Ifll<I(f)< +xand f(x)> 0, for all x € R.

(A-5) There are constants ¢, and c, such that c(b, — b,)/k < A¢; <
cy(b, —b)/k,i=1,...,k forall k=1,2,3,....

(A-6) Bias(k, ¢) decreases monotonically to 0 as & — .

(A-7) There exists a; > 4 such that liminf, _,_ k*2(Bias(k, ¢) — Bias(k +
1,¢)) > 0.

(A-8) The initial estimates are Vn -consistent.

(A-9) There exists a constant c(f) > 0 such that, for |x| > c¢(f), f(x)
monotonically decreases as |x| increases.

(A-10) There exists a constant y(%) > 2 such that f(x)exp{x?¥)} — .
(A-11) d,,,d,, are of rate O((loglog n)'/ 7)),
(A-12) For any ¢ > 0, [16P(x)ll/n° — 0, where ¢,(x) = ¢, , (x).

ReEmARKS. These conditions are not very restrictive:

(1) (A-5) holds under all of the knot placement methods discussed above.
(ii) A sufficient condition for (A-6) is that the knot sequence {¢}, be nested
and ¢ not be piecewise linear.
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(lll) Let bn( f’) = maxbl,,sxsbm If’l’ fmin,n = minbl,,sxsbm f(x)’ fmax,n =
max, _,.p f(x). Under conditions (A-9), (A-10) and (A-11), we have that,
for any £ > 0, '

11 dln + drn 0
—_—
(11) — ,
(12) n® n?lin,n - +°°’
3 b '
(13) AT "flf) - 0.

min, n

These three conditions are what we really need in Section 11. However, they
are not easily understood. Instead, we use conditions (A-9), (A-10) and (A-11)
since they are less restrictive and more easily checked.

(iv) If we further assume that |[f®| <c, i = 1,2,3 (which is often true
because, for most commonly seen densities, we actually have |[f(x)| — 0, as
x — ), then (A-12) holds under (A-9)-(A-11).

8. Main theorems. Define the estimate of I(¢) as I ,(q)) =
Di(F,)A,;(F,)D,(F,). Substituting ¢(x) and I(¢) in (3) and (4) by ¢,(x)
and [,(¢), we have

é '=5 _ atk'(Fn)Bk'(Fn)

mee Le)

. Ty(X - X)(Var(X))ah(F,) Be(@)
Bn,k’ - Bn - ’

nly($)

where ¢,(x) is defined in Section 4. Recall that A,(x), D;(x), By(x) are
defined on (b,,, b,,), and &’ is the number of knots on (b, b,,)

Let £/, be the empirical selection rule defined in Section 4.1. Then the
adaptive estimates are defined as

A

(14) on = én,ie’n
for the location parameter  in Model I and
(15) ﬁn = BAn,fe'n

for the slope parameter 8 in Model II.
We have the following theorem.

TaeoREM 1. Under the conditions of Section 7, én and ﬁn defined in (14)
and (15) are adaptive estimates, that is,

Vn (6, — 6) >, N(0,17'(¢));
v (B, — B) =1 N(0,(Var(X)I(¢)) ).
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From Bickel (1982), Theorem 1 can be proved by showing
(16) n=V2 ¥ (ar(F,) By (&) — #(&)) = 0p(1)

i=1

for Model I,

n 12 3 {(Xf - RVar(X) i (#)ai(F) By(@)
(17) i=1
— (X! - BE(X)")Var {(X)I"}($)#(2,)} = 0p(1)
for Model II and

(18) Iy (é) —1(¢) = 0p(1)
for both models.

From assumptions (A-3) and (A-4), we can see that f is absolutely continu-
ous. This and (A-1) give that {f,, 6 € R} is a regular parametrized family.
Thus, for any such f, {P; z}and {P, y} are contiguous for any deterministic
sequence {6,} satisfying Vn (6, — 8) = O(1). See Hajek and Sidak (1967) or
Bickel (1982) for definitions of regularity and contiguity. _

By applying contiguity back and forth, it can be seen that the discretized 6,
in €; (see Section 2) can be replaced by the real parameter 6 in proving
(16)-(18). See Bickel (1982) for detailed discussion. That is to say, we can
replace the residuals {¢;} by the real errors {e;} in (16)-(18). Notice that k' in
these formulas also becomes a function of {e; } after these replacements.

To prove (16)—-(18), we need asymptotic bounds on k with {&;} replaced by
{e,}. Since k' depends on k (see Section 4), the real issue is to bound %,. We
have the follow1ng theorem

THEOREM 2 (Bound theorem). For k defined in Section 6, suppose that
the residuals {e;}, on which k depends are replaced by the real errors {e;}.
Then, under conditions (A-1)- (A 12) of Section 7, there exist constants 0 <
B <1/32 and ¢, ¢, > 0 such that

P(enP <k, <cn/™*) 51 asn -,
for all € > 0.

REMARK. A referee has pointed out the following strengthening of Theo-
rem 1. Let 6, and (a,, B,) be deterministic sequences such that

Vn'(6,—6) —h|>0 and |[Vn[(a,,B,) - (a,B8)] —r|-0,

where h € R and r € RP*! and let f, be a sequence of densities such that
IV (£1/2 — f1/2) — glly > 0 for some g € L, (it is necessary that g L f1/2).
Let L, represent, respectively, Py 1y and P(a,,, 6., fn)' Then

Vn (8, — 6,) >, N(0,I7Y(¢)),
Vn (B, — B,) —1, N(0,(Var(X)I($)) ).



1856 K. JIN

From Begun, Hall, Huang and Wellner (1983), P, , (or P, p /) and
Py s (or Py, 4 ;) are contiguous. Hence we still only have to prove (16) (18).

9. Simulation studies. A variety of distributions were chosen as the
underlying distribution of the errors {e;}. These were normal(0, 1), Cauchy(0, 1),
beta(2,2), ¢+ with three degrees of freedom, bimodal mixture of normals
0.5N(3,1) + 0.5N(—3, 1), contaminated normal 0.9N(0,1,/9) + 0.1N(0, 9) and
lognormal(0, 1). These distributions cover a fairly large range of distributions.
All the distributions are standardized to have mean 0 and variance 1, except
for the Cauchy distribution. The sample sizes were 40 and 100 for the location
model, and 50 and 100 for the regression model. These choices of sample size
allow us to compare our results with other existing methods. Although we use
the discretized initial estimates in our asymptotic theory, we will only use the
original initial estimates in simulation studies, as is the common practice.

9.1. Distributions of k, and kCv - The empirical selection rules %, and
kcv . are key issues in thls research. It is of interest to look at their dlstrlbu-
tions graphically. In the process of computing the location estimate, we took
the histograms of %, and kcv . in 5000 replications, n to be 40 and 100,
respectively.

Graphs of asymptotics of kn Theorem 2 claims that kn — o« at a slow rate.
Figure 1 presents interesting graphs to show this. The light shading repre-
sents the distributions of £,,, and the dark shading that of %100- We can see
that in most cases, except for the normal, k increases slightly as n increases
from 40 to 100. The maximum number of kmO is 4 or 5, instead of 3 for %,,.
Especially, look at Figure 1f, where the error distribution is the Cauchy
distribution, and observe that the range of k, moves from (0,3) up to (1,5).

The peculiar behavior of k in the normal case, in which k tends to go to 0
as n increases from 40 to 100 does not contradict our theorem The score
function ¢ of the normal distribution is simply a straight line. Thus, the
condition ¢, & .7, ,, which is required by the theorem, fails to hold here. Now
Bias(k, ¢) = 0, for a]l k > 0. It is apparent that the optimal selection of £
should be %, = 0. Figure 1a reveals that £, tends to adapt to the different
situations in approaching an optimal selection.

k’ and k and their related distributions. We have made similar plots for
k’ and k These show that k’ and k have the same tendency of moving
up as k does The upper bound k moves faster than the lower bound k
To understand better what is going on about the stationary correction rule and
the cross-validation selection, we present the distributions of &, — &/, (see
Figure 2). There is considerably nonzero portion among these dlstrlbutlon
This indicates that k is substantially different from k . However, k is not
far away from k’ In most of the cases, the stationary correctlon k gives no
more than a one step correction for k’ This agrees with the Remark 1 in
Section 6 that the computational procedure takes little time.
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(a) Normal

22 33 44 655

(d) Bimodal

22 33 44 55

() Cauchy

00 11 22 33 44 55 00 11 22 33 44 55

Fic. 1. (a)-(f) compare histograms of IE 40 and 12’1100 under the various error distributions. The
light shading represents the histogram of ko, and the dark shading that of k4. It is clear that in
most cases, except for the normal, k, increases slightly as n increases from 40 to 100. We used

5000 replications.
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(a) Normal (b) Beta

i

00 11 22 33 44 §5 00 11 22 233 44 55

Fi1c. 2. (a)-(f) present histograms of k - kcv » under the various error dzstrzbutwns The light
shading represents the histogram of k4, kcv 40, and the dark shading that of E100 kcv 100- The
considerable nonzero portzon of these hzstograms indicates that k is different from k . However,
the stationary correction k gives no more than a one-step correctzon to the cross-valzdatwn
selection kcv » in most of the cases.
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TABLE 1
Location case (Model I); sample median is initial estimate

Sample 10% Our SE of

Distribution size Mean Median trim Hampel estimate RMSE
Normal n =40 0.154 0.188  0.157 0.158 0.161 0.0016
n =100 0.100 0.121 0.102 0.101 0.101 0.0010

Cauchy n =40 © 0.254  0.391 0.255 0.250 0.0028
n =100 LY 0.159  0.228 0.154 0.150 0.0015

t with three n =40 0.156 0.119  0.117 0.114 0.118 0.0012
degrees of freedom n =100 0.100 0.078 0.074 0.073 0.074 0.0007
Beta(2, 2) n =40 0.162 0.233 0.180 0.171 0.160 0.0017
n =100 0.101 0.147 0.113 0.104 0.096 0.0010

Bimodal n =40 0.158 0.552 0.187 0.320 0.306 0.0051
n =100 0.100 0.478 0.119- 0.166 0.101 0.0032

Contaminated n =40 0.158 0.069 0.065 0.059 0.064 0.0006
normal n =100 0.099 0.045 0.040 0.037 0.040 0.0004

9.2. Location case. There exist many location estimates. The well-known
Princeton project [Andrews, Bickel, Hampel, Huber, Rogers and Tukey (1971)]
investigated more than 68 different types. We have picked the commonly used
sample mean, sample median and 10% trimmed mean, as well as Hampel’s
three-part redescending M-estimator, which is one of the best estimates
recommended in the Princeton project.

The estimate’s performance is measured by the Monte Carlo standard error

5000
RMSE = 5000 Z ( )

where 6 is the true location parameter and 0 is the estimate for the ith
replication. Table 1 shows the results. We take the sample median as the
initial estimate that is a Vn -consistent estimate under the error distributions
considered, and then take the first estimate as new initial estimate to get a
two-step estimate as 6,,.
Our estimate shows consistent improvement over the initial estimate (sam-
le median). Its performance compared well with Hampel’s estimate. Overall,
6, stays within the range of good estimates for all cases. It is also worth noting
that 9 improves the sample median in both the normal and the Cauchy cases,
a rarlty in the Princeton project.

We also carried out simulations with n = 20 and n = 200; 0 performed
well consistently. For n = 200, with the bimodal error dlstrlbutlon the RMSE
of 0 (two-step) was 0.034, which significantly improved on the initial esti-
mate, sample median (which had RMSE = 0.427). The RMSE of Hampel’s
estimate was 0.089.

ReEMARK. There is Monte Carlo variability in the simulation study. To
assess the magnitude of such variability, we calculate the SE of the RMSE by

SE = (VRMSE? + &/Vn ~ VRMSE? — 6/Vn )/z
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where 62 = X29°((9, — 6)% — RMSE?)?/5000. The last column of Table 1
gives such SE’s for the RMSE of 6,. The SE’s of the RMSE for the other
estimates have approximately the same magnitude [see Jin (1990), page 39, for
more details].

9.3. Regression case. The performance of the estimate ﬁn of the slope
parameter in Model II is of more interest. We compare our estimate with least
square estimate, least absolute deviation estimate, one-step maximum likeli-
hood estimate based on knowing ¢, Huber’s M-estimate with ¢ = SD of
residuals, Hsieh and Manski’s bootstrap adaptive estimate and Faraway’s
spline adaptive estimate.

Our estimate is calculated by taking a least square estimate L2 as an initial
estimate that is a v -consistent estimate under the error distributions consid-
ered. From a computational point of view, obtaining a least square estimate is
the easiest task. Unlike the location case, computation of a least absolute
deviation estimate L1 is time-consuming.

We only report the case of Bernoulli X, (see Table 2). We obtained similar
results when using X; ~ U(0, 1). Further detalls can be found in Jin (1990).

From Table 2 we can see the following advantages of Bn

1. Improvement over the initial estimate: It is clear that Bn is a significant
improvement over the initial estimate L2.

2. Close to one-step mle: Except for the bimodal case, Bn comes very close to
matching the performance of the one-step mle. It performs much better
than the one-step mle for the lognormal.

3. Better performance than Huber’s estimate: For the normal, ¢ with three
degrees of freedom and the contaminated normal, B, comes close to

TABLE 2
Regression case (Model I1); P(X =0)=P(X=1) = %

Sample Hsieh and Our One-step
Distribution size L2 L1 Huber Manski Faraway estimate mle
Normal n =50 0287 0.357 0.30 0.31 0.29 0.294 0.287
n =100 0.200 0.251 0.21 0.20 0.203 0.200
¢t with three n=>50 0279 0224 0.21 0.23 0.22 0.228 0.207
degrees of freedom n = 100 0.200 0.159 0.15 0.15 0.155 0.144
Beta(2, 2) n=50 0284 0.423 0.34 0.29 0.29 0.296 0.266
n =100 0.200 0.299 0.23 0.20 0.213 0.179
Bimodal n=>50 0.285 0.871 0.39 0.16 0.14 0.217 0.141
n =100 0.204 0.775 0.28 0.08 0.155 0.083
Contaminated n=>50 0.283 0.133 0.14 0.17 0.13 0.172 0.144
riormal n =100 0.198 0.091 0.10 0.09 0.096 0.086
Lognormal n=50 0288 0.173 0.16 0.17 0.19 0.102 0.239

n =100 0.201 0.119 0.11 0.13 0.059 0.178
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matching the performance of Huber’s estimate, while for beta(2,2), the
bimodal and the lognormal, it performs much better than Huber’s.

4. Better performance than the L1 estimate: Bn consistently performs better
than the least absolute deviation estimate (L1). There has been consider-
able effort toward finding a better algorithm to calculate L1 in the linear
model; Bn starts with an easily computable L2, yet it performs better than
L1.

5. Comparable to other adaptive estimates: Our estimate performs as well as
those of Hsieh and Manski and Faraway for the normal, ¢ with three
degrees of freedom, beta(2,2) and contaminated normal. Those of Hsieh
and Manski and Faraway do better for the bimodal, while ours is superior
for the lognormal. Taking ease of computation into account Bn is certainly
the better choice.

We have found several interesting features of our estimate that could
substantially reduce computational requirements for multiple linear regres-
sion.

Effect of initial estimate. It is commonly accepted that one-step mle’s are
often severely affected by bad initial estimates. M-estimates also suffer from
this problem. An important feature of ﬁn is that it is less prone to such
behavior.

Table 3 compares Bn with one-step mle’s having initial estimates L1 and
L2. It is clear that one-step mle’s suffer from bad initial estimates, while the
performance of Bn is more stable. The SE’s of our estimates come very close to
each other, regardless of the initial estimate. Furthermore, our estimates tend
to give more ““correction’ to a bad initial estimate, especially in bimodal and
lognormal cases.

TABLE 3
Effect of the initial estimate in Model II; P(X = 0) = P(X =1) = }

Sample L1as One-step Our L2 as One-step Our

Distribution size  initial mle estimate initial mle estimate

Normal n=50 0.357 0.292 0.294 0.287 0.287 0.294
n =100 0.251 0.201 0.204 0.200 0.200 0.203

t with three n=50 0224 0.202 0.229 0.279 0.207 0.228
degrees of freedom n =100 0.159 0.142 0.155 0.200 0.144 0.155
Beta(2, 2) n=50 0.423 0.332 0.297 0.284 0.266 0.296
n =100 0.299 0.226 0.213 0.200 0.179 0.213

Bimodal n=50 0.871 0.697 0.249 0.285 0.141 0.218
n =100 0.775 0.590 0.168 0.204 0.083 0.155

Contaminated n=>50 0.133 0.106 0.176 0.283 0.144 0.172
normal n =100 0.091 0.075 0.096 0.198 0.086 0.096
Lognormal n=50 0.173 0.149 0.085 0.288 0.239 0.102

n =100 0.119 0.106 0.054 0.201 0.178 0.059
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TaBLE 4
Iteration in regression case (Model II); n = 50, P(X=0)=P(X=1) =}

Iterations of our Iterations of our
Initial estimate Initial estimate
Distribution L2 1st 2nd 6th L1 1st 2nd 6th
Normal 0.287 0.294 0.295 0.296 0.357 0.294 0.295 0.296

t with three
degrees of freedom 0.279 0.228 0.228 0.228 0.224 0.229 0.227 0.228

Beta(2.2) 0.284 0.296 0.297 0.298 0.423 0.297 0.298 0.298
Bimodal 0.285 0.218 0.210 0.206 0.871 0.249 0.216 0.206
Contaminated

normal 0.283 0.172 0.173 0.173 0.133 0.176 0.171 0.172
Lognormal 0.288 0.102 0.082 0.079 * 0.173 0.085 0.079 0.079

One-step versus iteration. Bickel (1975) proposed a one-step M-estimate as
an approximation to an M-estimate. Huber [(1981), Section 6.7] advocated an
iterative algorithm to compute M-estimates more precisely. It turns out that
the one-step M-estimate has essentially the same behavior as the fully iterated
one.

Table 4 depicts the results with L2 and L1 as the initial estimates. We used
six iterations. We can see that the fully iterative procedure is not necessary for
computing ﬁn One-step iteration is usually sufficient; two-step iteration gives
perfect results.

10. Asymptotics of k_,. To prove Theorem 2, notice that &/, < k, < k2,
so we only have to give upper and lower bounds on Ecv.

Recall from Section 6 that %, is defined as the first local minimizer of
L(k,F,,F,). Let CV(k,F,)=L(k,F,,F,) + I,(¢). Then k, is also the
first local minimizer of CV(k, F,). As a first step, decompose CV(k, F,),

CV(k,F,) = L(k,F,,F,) - L(k,F, , F) + ["(a}(F,) - ¢)" fdx
by

= Di(F, )A7 {(F, )(Au(F,,) — Au(F)) Ay (F, ) Dy(F,,)
+ 2D;(Fnl)A;1(Fnl)(Dk(Fn2) — Dk(F))
+(Di(F,,) — Dy(F))Ag'(F)(Dy(F,,) — Dy(F))
+ 2(D4(F,,) — D4(F))( Ay (F,,) — A '(F))Du(F,,)
+ Dy(F,) (A N(F,,) — AN (F))Au(F)
X (A7 \(F,,) — Ay (F))Dy(F,)) + Bias(k, ¢)
£ CV(k,nq,ny) + 2CVy(k,ny,ny) + V(k,ny)
+ 2CVy(k,n,) + CV,(k,n,) + Bias(k, ¢),

where Bias(k, ¢) is given in (7). We will repeatedly use this decomposition.

(19)
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THEOREM 3. Under condition (A-6),

ke, = + a.s.

asn — «,

ProoF. For any fixed £, it is easy to check that CV(k, F,)) — Bias(k, ¢) a.s.
Denoting EAS(k) = {w: lim, _,, CV(k, F,) = Bias(k, ¢)}, we have

P{EAS(k)} = 1.

Suppose the theorem is not true. Then there must be a k&, such that P{o:
liminf, ., k., , < ko} > 0. Letting EAS = N, _, EAS(k), we have

P{EAS) = 1.
Denote Ek, = {w: liminf, _, %, , < ko). Then P{Ek, N EAS} > 0. For any

w € Ek, N EAS, there must exist a sequence {n;} and an integer k, < k, such
that £ n(@) = k. Also, since k, (w) is the first local minimizer of CV(k, F,),

(20) CV(ky, F,) <CV(ky+1, F,).
However, since w € EAS, (20) implies that Bias(k,, ¢) < Bias(k; + 1, ¢). This
is contrary to condition (A-6). O

The rate of convergence of Bias(k, ¢) is important for later proofs. We have
the following lemma.

LEMMA 1. Under conditions (A-3) and (A-5) in Section 7, Bias(k, ¢) con-
verges to 0 at rate O(1/k*).

Proor. See Jin (1990) for the detailed proof. O

The next three lemmas give upper bounds on [|A; (F)ll; and A, }(F)l;.
Let fmax = maxblsxsbr f(x) and fmin = minblsxsbr f(x)

LEMMa 2. Under condition (A-5), the following hold:
@ IlA; 1(F)”1 < ck( frna)¥2 /b, — B frnin)®?);
Gi) Tk 02 < ck®(2./ (b, = b)) fin) holds for all 1 <i < k;

lJ_

(i) if )tl -+« > A, are the eigenvalues of A,(F), then c, fy;.(b, — b))/

ProoF. See Jin [(1990), Corollaries 1 and 2 and Lemma 4]. The difficult
proof of (i) relies on the elegant work of de Boor (1976). O

For the bound on [[A;YF)l, let S, , = lA(F,) — Ay(F)ll. <
¢; foin(b, — b,)/18k}. We have similarly the following lemma.

LemMa 3. Ifk = O(n'/27%) and condition (A-5) holds, then
| AT (E) |, < cb( fma)™ /(B = B Fuin)™?)

on 8, ;, and P{S; ;} - ©asn — .
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The matrix norms define din Section 3 satisfy various inequalities (Lemma
4).
LEMMA 4. For any matrices A, ., By, ond Cpyp:

@) 1Al < EllAlly,

(i) [|ABCIl < | Al BlllIClI,
@ii) [[ABCIl < lAll IBIIICI,
Gv) |ABClly < lAllll BILIICIls.

Proor. Follows directly from the definitions. O
Now we give an upper bound for l%cv.

TuEOREM 4 (Upper bound). Under conditions (A-1)-(A-5) in Section 17,
there exists a constant ¢ > 0 such that

a~

Plk,, <cen¥Y"**} - 1, asn - o,

for any € > 0.

The key to proving Theorem 4 lies in showing that the variance V(k, n,) in
(19) is the dominant term.

In the sequel, let ¢ denote a generic positive constant which can change
from place to place, and assume that the conditions of Section 7 are in force.

Let

D;:(x) = Dk(x)/k,
SA, 1y = {|A(F,) — Ay(F)|. < n?/n'/?},
8D} 1, = (I Di(F,) = Di(F)|.. < n?/n'/?},

SD, , = {|Du(F,) = D,(F)|.. < 1/n%/4}.

LEmMa 5. (i) max, IID*(x)Il <c
i) 1D (F)ll.. < c/k
(iii) |ID(F)|l. < c/k holds on SD, , for k = O(n'/*).

Proor. Follows directly from the definitions. O

" LEMMA 6. Ifk = O0(nY*) and 0 <y < 1/2, then the following hold:

@ onS, ,NSD, ,NSA, ., |CVik,ny,ny)l <cnyk/ny?
(i) on Sn x N SDn x N SDn by |CVo(k, iy, no)l < cnyk?/ny?;
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(i) on S, , N SD, ,NSA, , ., |CVk,n)l <cnf’/ny;
(iv) on SDn g N Sn1 b ICV3(k nl)l <cV(k,n)/kY? + ¢/ n¥"k%® /n.

Proor. (i) By Lemmas 2-5,
CV(kyny,no)| < B Do(F,) 2] AR (F,) 23] Ax(Fy) — Au(F) ..

< 3k(c )2( R ( froan) ™

Y
nol/2+y < cnyk
< -
b

B\ (b, = ) (fin)™?
The proofs of (ii) and (iii) are similar to (i).
(iv) |CVy(k,n,y)| < (D4(F,,) — Di(F))Ay*(F)(Dy(F,,) — Dy(F))
+ Di(F,,) (A '(F,,) — AN (F))AY*(F)

X (AL (F,,) — A N(F))Dy(F,)
£ 0V, + CVy .

Let A, be the largest eigenvalue of A,(F), by Lemma 2(ii), |CV,,| <
N2V(k,ny) < cV(k, ny)/kY2 As in (), |CV, | < ¢n27k25/n,. O

LeEMMA 7. There are constants 0 < ¢! < ¢? such that

c'k®/n, — O(1/n,) < E(V(k,n,)) < c®3/n,.
Proor. See Jin [(1990), Lemma 11] for the detailed proof. O
To show V(k,n,) = Op(k3/n,), we need the variance of V(k,n,).
LemMa 8. Ifk = O(nY/*), then

o¥(k,ny) 2 E(V(k,n;) — E(V(k,ny)))* = O(k®/n?).

Proor. The proof is a long and tedious computation. Interested readers
can find it in Jin [(1990), pages 60-64]. O

Lemmas 7 and 8 give the following lemma.

LEMMA 9. Ifk = O(nY/?), then for any vy > 0

n,
nV—V(k ny) —p® n —®,

1k3

Now we prove Theorem 4.
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ProoF OF THEOREM 4. Since k. is the first local minimizer of
CV(k, F, , F,),

ni’

{kc‘, > cny/7*e)

C <CV(cn11/7, F Fnz) = CV(cn11/7+£, Fnlﬁ n2)>

ny?

(21) = {CVl(cnllﬂ, ny,ny) + 2CV2(cn11/7, ny,ny) + V(en¥",n,)

+2CVy(cny/”, ny) + CVy(en¥",n;) + Bias(cn}/", n,)
> CVy(eny/ ™, ny,ny) + 2CVy(enY "%, ny,ny) + V(enY" 4, n,)

+2CVy(eny/ "¢, ny) + CVy(cnY "¢, n,) + Bias(cn}/"*,n,)}.
Take y + 2¢e <1/7. Recall that n, = O(\/z ). By Hoeffding’s inequality,
for k, = cn’/7 or cn'/7*,
P(S5 1) = P{| Au(F.) = Au(F)|, > €1 fain(b, — b,) /18E, )}
< 3k, exp{—cn,/k2} >0 asn — .
Similarly, P{SD,”LI, kn}’ P{SA° }, P{SACHZ’ kmv} and P{SD}’¢ ko ,} tend to zero

nykp,y 2
as n — o«
Hence, by Lemma 6 with &, = cn'/? or cn
(23) CVi(k,,ny,ny) =o0p(ny*"™), i=1,2and4.
By Lemma 6, on SD, , NS, , with k, =cnY”,
ny/ 7" 7CVy(enY ", ny) < ent/"V(enY ", ny) /nY Y + eny 857 /n,,
Take y + 2.5¢ < 1/14. By Lemma 7

E(n‘i/7V(cn11/7, nl))/nll/l‘”"’ < cn‘i/7(cn11/7)3/n11+1/14+7 -0

(22)

1/7+e
1 ’

and similarly for &, = cn'/"*¢. Hence, with &, = cn}/" or cnl/"*¢,

(24) CVy(k,,n,) = Op(nl_4/7+7)-
Lemma 1 gives, for k£, = cn¥/7 or cn¥/"**,
(25) Bias(k,, ) = op(ny¥/7*7).
By Lemma 7, |
E(nY"7"V(eny",n,)) < eny/ """ (en¥/")’/ny = ¢/n - 0.
Hence,
(26) V(cn11/7, nl) = OP(n1_4/7+7)-

Finally, let y = ¢ and denote &, = n}/"*¢. By Lemma 9,

n,
73 V(kysny) > .

(27) ny""V(enY ", ny) = cn215k3
n
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Applying (23)-(27) to (21),

P{k,, > cn¥/ ¢} - 0. o
As for a lower bound of %, we have the following theorem.

THEOREM 5 (Lower bound). Under conditions (A-1)-(A-7) of Section 1,
there exist constants 0 < B < 1/16 and ¢ > 0 such that

P{cn{’sfcw}—>1 asn — .

The key to proving this theorem is to show that Bias(k, ¢) in the decomposi-
tion (19) becomes the dominant term when £, converges to infinity at a slow
rate.

First we find a uniform upper bound on || A} '(F,)|;. For a given determinis-
tic sequence {K,}, define

SU, = { sup |AL(F,) — Ap(F)|. < €1 fain(b, — bz)/18K,,},

k<K,

»Y

SAU,,, = { sup | Au(F,) = A(F)|. < w7/mi72),
k<K,
SDU}, = {ksulg) | Df(F,) — DE(F)|. < nv/nl/z}’

SDU, = { sup | Du(F,) = Dy(F)l. < 1/n/4}.
k<K,

We shall need the following analogues of Lemmas 3, 5 and 6.

Lemma 10. On SU,,

sup || A7 /() [y < Ko Fana) ™[ ((Br = B) (Frmin) ™)

k<K,
LemMa 11. (i) sup, . g, max; | Df ()l < ¢;

(i) sup, g, IDR(F)ll. < ¢;

(iii) sup, _ g, |ID4(F, )IIw < ¢ holds on SDU,, for K, = O(n'/*).

LemMma 12. IfK, = O(nl/ YY) and 0 <y < 1/2, then the following hold:

() on SU, N SDU, N SAU, ., sup,_ g, |CV(k,ny,ny)l <cnyKi/ny?
(i) on SU N SDU N SDU,:g2 4> SUD, g |CVy(k, g, ny)l < cny K3 /niy%;

(iil) on SU N SDU N SAU, ., sup, g, [CV(k,n)| < cnK,/ny;
(iv) on SU N SDU N SAUn , sup, _ g [CVy(k, n))| < cntK3/ny/%

Proor. See Jin [(1990), Lemmas 14-17] for the detailed proofs. O
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Here the variance term V(k, n,) is no longer the dominant term. We do not
need sharp bounds for V(k, n,). It is easy to obtain the following.

Lemma 13. On SDU,,
sup |V(k,n,)| < cK2/nY>
k=<K,
Denote
Ran(k,nq,ny) £ CVy(k,ny,ny) + 2CVy(k, ny, 1)
+ V(k,n,) + 2CVy(k,n,) + CVy(k,n,).
Then,
CV(k,F,) = Ran(k,n,,n,) + Bias(k, ).

From Lemmas 12 and 13, on the intersections of SU,

SAU, ., and SAU,,,, with K, = O(nY*) and 0 <y < l/né, we have

(28) ksul}g |Ran(k,nq,n,)| < cn¥K2/ny/?.
S n

SDU, , SDU}

ng,y?

PrOOF OF THEOREM 5.  Since k., is the first local minimizer of CV(k, n,, 1),
(ke < cnf} c {CV(key,n1na) < CV (ke + 1,ny,n,))
= (kazCV(key,nyyng) < R CV(ke, + 1,ny,n,))
— {kr(Bias( ke, #) — Bias(ko, + 1,0))
< he(Ran(ke, + 1,1y, n,) — Ran(kq,, ny,m5))},

where «a, is given in (A-7) of Section 7. Taking K, = cn? and y = B, we have
from (28)

(29) |1%ng Ran(fecv,nl,nz)| < cnrt OB /nl/2
(30) |I%§$ Ran(k,, + 1,n,, n2)| < c'nfert B /ni/2,

It is clear that there exists B, 0 < 8 < 1/(2a;, + 8) < 1/16, such that the
right-hand sides of (29) and (30) converge to 0. Also, for this 8, by Hoeffding’s
inequality, we have

PSUz) = P( sup [44(F.) = Au(F). > €1 f(b, - b)/18K, |

<cK}? exp{—c’nl/K,%l}

= cn? exp{—c'ni"%} >0 asn > .
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Similarly, P{SDU‘}, P{SDU,

nag,vy
n — «. Hence,

}, P{SAU,; ,} and P{SAU,, ,} tend to zero as

|I%§$ Ran(l%w,nl,nz)| —»p 0 asn —> x,
|fe§ga Ran(l:zcv + l,nl,n2)| -, 0 asn —> .
That is,
]%ng(Ran(l;cv,nl,nz) - Ran(l'éCV + l,nl,nz)) —»p 0 asn > .
On the other hand, by Lemma 3 and assumption (A-7),
lim inf k,(Bias(k, ¢) - Bias(ke + 1,4)) > 0 as.

This leads to P{k,, <cnP} > 0asn - o O

.

It is clear that Theorem 2 is a consequence of Theorems 4 and 5.

11. Adaptiveness of the estimates. In this section we prove Theorem
1. As mentioned in Section 8, we only have to prove (16)-(18).
Decompose (17) into

no V2 Z {(x¢ = X)Var(X) " 5 1(9) al(F,) Bi(e)
~(X! =~ BQ)Var (0T H9)¢(e)
— Z{(X ~ E(X)")Var H(X)I7(#)(ak,(F,) By(e)) = 9()}

(31) +n 2 Y (X B(X) )aly(F,) By(e)
i=1

x (Var(X) "' - Var~}(X)17?)
— — . . 12
—Vn (X = BCX) WVar(X) gk (9) 5 X ak(F) Bi(e)

2A 4+ A, + A

To show (17), we only have to prove
(32) n72 ¥ {(X! - B(X))(ak(F,) Bufe) = é(e)} = op(D),
i=1

and

S| =

(33) Y {a%.(F,)By(e) — d(e)} = 0p(1).

i=1
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To see this, notice that (33) implies

n

x atfe',,(Fn)Biz',,(ei) =op(1).

34 !
(34) =)

Also it is not hard to check that (32) and (34) imply A; = 0p(1) for i = 1,2,3.
Since £/, is the number of knots used in constructing the adaptive estimates
(see Section 8), to show (16), (18), (32) and (33), we need to extend Theorem 2.

LemMMA 14. Under (A-5) and (A-11) in Section 7, if there are constants
¢y, €9, @, B > 0 such that

+
cn® <k, <cynPte,
for any € > 0, then there exists ¢y, such that
a ! ! ., Bte
cn® <k, <cynfre,

for any € > 0.

The proof of Lemma 14 is fairly straightforward and is omitted. From
Theorem 2 and Lemma 14 we can see immediately that the following lemma
holds.

LemMa 15. Under conditions (A-1)-(A-12) of Section 7, there exist con-
stants 0 < B < 1/32 and c¢;, ¢, > 0 such that

P(enP <k, <cn/™*) > 1 asn— =,
for all € > 0.

Now (16), (18), (32) and (33) will follow from the following theorems.

THEOREM 6. Under the conditions in Section 7, for any constants cy, Cq,
B >0 and 0 <& < 1/42, the following hold:

n
(1) sup n‘w( Y (a%(F,)By(e;) — ¢(ei))} —p 0
cnP <k'<cynl/t-e i=1
for Model I
(ii) sup — Y ai(F,)Dy(e) + I(¢>)‘ —p 0
cinP<k'<cyn'/®7® niaa
for Models I and II;
(iii)
n
sup n~2 Y (Xit - E(X)t)(atk’(Fn)Bk’(ei) - d)(ei))‘ -p0
cinP<k'<cyn'/®7e i=1
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for Model II,;

(iv) sup

cinP <k <con

1 n
7 L (a(B) Buen) - ¢(ei>)’ -

1/6—¢

for Model II.

Before proving Theorem 6 (i)-(iv), we state some lemmas. The proofs of
these lemmas are similar to those of Section 10. Let K, = O(n'/5~%). Denote

SU, = {ksulr; |AL(F,) = Ap(F)|. < c; Fminn(brn — bzn)/(18K,,)},
IS " K

- SAU, , = { sup |Ay(F,) — Ap(F)|. < n"’/nl/z},
k'<K,

n,vy
SDU}, = { sup | D%(F,) — DE(F)|. < n"’/nl/z}
SDU, = { sup |D,(F,) — D,(F)|. < 1/n1/4},
k<K,

SBU,

n,y

~{ sup 1Bu(F)] < w/nis?).
k<K,

By Hoeffding’s inequality, it can be shown that P{SU;}, P{SAU; },
P{SDU, .}, P{(SDU,} )°}, P{SDU,} and P{SBUJ } tend to zero as n — ®,

LEMMA 16.

K, fuan,n)””
(b = b12)(Fin,n) ™

(1) sup [|Ap(F)|, <
k<K,

(i) On SU,,

K o frnax,n)””
(brn - bln)( fmin,n)s/2 '

sup || Ay*(F,) |, <
k'<K,

LemmMa 17. () supy g, max, || DF(x)ll < c;
(i) supy _ g, IIDk,(F)IIw <cb (f)
(i) supy < g, I1Dy(F)lle < ¢b,(f') holds on SDU, for K, = O(n'/*).
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Proor oF THEOREM 6. We only give the proof of (i). The proofs of (ii)—(iv)
are similar. Interested readers can refer to Jin [(1990), Lemmas 24 and 25] for
the details.

w2 T (d(F,) BuCe) - ¢<e,.>)‘

=[n"172 T (~DY(F,) AZM(E) Bu(er) ~ b(e)

i=1

<|n7172 ¥ (DU(F) - DY(F,))AFA(E,) Bule)

i=1

+|n-172 Xn: D}tz:(F)(A;rl(F) - A;l(Fn))Bk'(ei)

i=1

-2 _é(ag,(F)Bk,(e,-) ~ ¢n(e,-))'

+lp-12 i:l(gbn(ei) - 4’(9;‘))\

SA +A,+ A5+ Ay
Let K, = O(n'/®7¢) and y = ¢. Then, by Lemmas 16 and 17 and by (13), on
the intersection of SU,, SDU,*., SBU, .,

n,y?

sup |A;| < sup |n”Y2 ¥ (Di(F) — Di(F,))Ap'(F,) By(e;)
k<K, ;

cnP<k < i=1
cznl/G—s
(35) < sup n'/2k| D§(F) — D§(F,) k| Ap*(F) |1 By (F) |l
/S n
f3/2
<c i -, 0, by (13).
G = bmirz, 7O WY
On the intersection of SU,, SAU, ., SBU, .,
sup |A|
1/6—¢

cinP<k'<cyn

< sup |n~V2 ¥ DY(F)(AFY(F) — Ay'(F,))Bu(e,)

k'<K, i=1

(36) <n'/? Sup (I D (F) Lkl A (F) 1131 A (F,) = Ap(F) |l

x| A (F) |a]| Bi(F) I}
3 b ’
<ec max, n n2( f )
(brn - bln) fnslin,nns

-5 0, by (13).
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Next, we work on Aj.

E( sup |A3|2)

ceynP<K'<cynl/8-e

(37) < r E(n_l/z i:l(atk'(F)Bk'(ei) ~ ¢.(e))

cinf<k'<cynl/8-¢

= T [U(@e(F)By(x) - $.(x)) f(x) dx.
cinP<k'<cynt/6-¢ Oln
Under conditions (A-5) and (A-12),
[ (@ F) By(2) = $o(2)) () dx-
(38) Bin
< (d(bnr Z,e)) < el @[/ < c/k”.
Combining (37) and (38) gives
E( sup |A3|2) <c h

cinP <k'<cynl/®-e cinP <k <cyn

1

2
1/6—¢ kl

-0

as n — 0. Therefore, sup, 5. <c,ni/6-|Asl =p O as n — .
Finally,

sup [Agl =18, =|n""2 X (d.(e;) — d(e))],
cinP <k <cynl/87¢ i=1
and
(39) A = ["g*fde + [ ¢*fdx -0
—® brn

as b, > —o and b,, » ». Therefore, sup, s <cyni/e- Ayl = A —p 0.
This completes the proof. O
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