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SYMMETRIC UPPER PROBABILITIES

By LARRY WASSERMAN ! AND JOSEPH B. KADANE?

Carnegie Mellon University

As a first step toward developing statistical models based on upper and
lower probabilities, we study upper probabilities and upper expectations on
the unit interval that are symmetric, by which we mean invariant with
respect to equimeasurability. These upper probabilities are generalizations
of uniform probability measures. We give some characterizations of these
upper probabilities. Specifically, we show that symmetry of the upper
expectation functional is equivalent to the underlying set of densities being
closed under majorization. We also show that a function is the upper
distribution for a symmetric upper probability if and only if its lower graph
is star-shaped with respect to the origin and to the point (1,1). We derive
inner and outer approximations to symmetric classes of probabilities based
on the upper probability. The class of symmetric upper expectations that
are completely determined by their values on the indicator functions is
characterized. We provide a geometric characterization of a hierarchy of
upper probabilities including Fine’s generalized upper probabilities and
2-alternating Choquet capacities. In particular, we establish a 1-1 corre-
spondence between symmetric, 2-alternating capacities and nonincreasing
density functions. We prove that undominated generalized upper probabili-
ties do not exist in the symmetric case. Examples from robust statistics are
considered. An example is given that shows that symmetry of upper
probabilities does not imply symmetry of upper expectations. A corollary is
that symmetry of the Choquet integral does not imply symmetry of the
upper expectation functional.

1. Introduction. Walley (1981, 1991) developed a theory of statistical
inference based on upper and lower probabilities. If M is a set of probability
measures on a o-algebra %, then P(A) = supp., P(A) is called an upper
probability and EX = supp., [XdP is called an upper expectation. [Fine
(1988) has a more general definition; see Section 6.] Upper and lower probabil-
ities arise in robust Bayesian inference [Berger (1990), DeRobertis and
Hartigan (1981), Lavine (1988), Wasserman (1990), Wasserman and Kadane
(1990b) and Wolfeson and Fine (1982)], robust classical inference [Huber
(1973), Huber and Strassen (1973), Buja (1984, 1985, 1986), Bednarski (1981,
1982) and Rieder (1977)] and economic theory [Schmeidler (1989)], as well as
in other work on coherent inference [Smith (1961) and Williams (1976)] and in
the foundations of probability [Koopman (1940a, b), Good (1962), Fine (1988),
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Grize and Fine (1987), Kumar and Fine (1985), Papamarcou and Fine (1986),
Walley and Fine (1982), Puri and Ralescu (1983) and Suppes and Zanotti
(1989)]. They also arise in the theory of belief functions [Dempster (1967,
1968) and Shafer (1976, 1979)].

For further development of statistical inference based on upper and lower
probabilities, it is necessary to construct useful parametric models. The sim-
plest probability measure is the uniform probability measure. The question
then arises whether there exists a natural generalization of a uniform proba-
bility in the theory of upper probabilities. If so, this can be used as a basic
building block for a theory of modeling using upper and lower probabilities.
More specifically, once the uniform case is well understood, other upper
probabilities can be defined by way of the inverse integral transform. Thus, we
see the problem of studying a generalization of uniform probabilities as a first
step toward developing more general upper probability models.

The purpose of this paper is to define one such generalization and to study
the properties of these upper probabilities. Specifically, we study upper expec-
tations that are symmetric in the sense that they are invariant with respect to
equimeasurability. In terms of upper probabilities, this means that if A and B
have the same Lebesgue measure, then P(A) = P(B). This is a natural
generalization of upper probabilities that are invariant with respect to permu-
tations on a finite set. The finite case was studied in Wasserman and Kadane
(1990a). Here, we take the underlying space to be the unit interval. Our hope
is that by studying this special case in detail, insights will be gained that will
help the study of more general cases in the future. Furthermore, we feel that
the results are of interest in their own right.

The mathematical preliminaries for this investigation are set out in Section
2 and rely heavily on results from Ryff (1963, 1965, 1967, 1970). The relation-
ship between symmetric upper expectations and closure properties of the set
M are developed in Section 3. Upper distribution functions are studied in
Section 4. We obtain an intriguing, geometric characterization of symmetric
upper probabilities in terms of the upper distribution function. This result is
analogous to the result that links probability measures to their distribution
functions. Section 5 addresses the following question: Given a symmetric
upper probability, what sets M could give rise to P? Section 6 characterizes
Fine’s (1988) generalized version of upper probabilities and the set of 2-alter-
nating capacities [Choquet (1953)]. In particular, we show that in the symmet-
ric case, the class of undominated generalized upper probabilities [Papamarcou
and Fine (1986)] is empty. Some examples are considered in Section 7. Here,
the difference between Choquet integrals and upper expectations is brought to
light. This paper concludes with some discussion in Section 8.

2. Mathematical preliminaries. Let Q = [0, 1] and let & be the Borel
subsets of . Let & be the set of all probability measures on & and let M be
a nénempty, convex, weakly closed set of probability measures on 4. It follows
that M is tight and hence weakly compact. The set M generates an upper

probability P and an upper expectation E by P(A) = supp., P(A) and



1722 L. WASSERMAN AND J. B. KADANE

EX = suppc y PX, where PX = [X(w)P(dw). The lower probability and lower
expectation P and E are defined by replacing the supremum with an infi-
mum. Since P(A) = 1 — P(A°) and EX = —E(—X), we will concentrate on P
and E. For bounded, measurable X, the Choquet integral of X is defined by
CX = [fP(X > t)dt, where X=X + b and b is a constant chosen to make
X + b > 0. CX does not depend on the choice of b [see Choquet (1953) and
Huber and Strassen (1973)].

Let u be Lebesgue measure and let L' be the space of Lebesgue integrable
functions. The dual space of essentially bounded functions is denoted L*; ¥ is
the set of bounded, continuous functions. If X and Y are measurable func-
tions, we say that X and Y are equimeasurable and we write X ~Y, if
u({X > t}) = u({Y > ¢}) for every real number ¢. Here, {X > t} = {w; X(w) > t}.
Equimeasurable functions are studied in Ryff (1963, 1965, 1967, 1970) and
most of the statements in this section are proved in those papers. Also, see
Hardy, Littlewood and Pélya [(1952), Chapter 10] and Lorentz [(1953), Section
3.4]. If we replace ) with a finite set and u with counting measure, then X
and Y are equimeasurable if Y can be obtained as a permutation of X. Thus,
equimeasurability is a continuous version of permutation.

Corresponding to each measurable function X, there exists a unique right-
continuous, nonincreasing function X* such that X ~ X*. We call X* the
decreasing rearrangement of X. If X,Y € L', we say that X majorizes Y and
write Y < X if [(Y = [3X and [[Y* < [(X* for all 0 < ¢ < 1. The integrals
are with respect to Lebesgue measure. Generally, we will write [Y for
[3Y(w)u(dw). A linear transformation T: L' — L' is doubly stochastic if
TX < X for every X € L. The set 2 of doubly stochastic operators is a
convex, self-adjoint semigroup. (If T € 9, its adjoint T* acts on L*, but T*
may be extended uniquely to act on L!.) An important result in Ryff [(1965),
Theorem 3] is that if X,Y € L}, then X <Y if and only if X = TY for some
Te 2. For XeLl,let AX)=(TX; T € 9).

A measurable function o: Q — Q is measure-preserving if u(E) =
w(o™Y(E)) for all E € #. For each X € L, there exists a measure-preserving
function o such that X = X* o ¢. Define T to be the operator induced by o so
that TX* = X. Then the adjoint T* satisfies T*X = X*. A useful fact is that
for every g € L! and every A € %, there is a doubly stochastic transformation
T,, say, such that [,g = [4YT,g. We shall let y, denote the indicator
function for A.

For X: Q — Q define gr(X) = {(w,y) € Q X Q; X(w) = y}. Recall that a
set A is star-shaped with respect to a point p if for each point g € A, the line
segment joining p and ¢ is contained in A. We say that the function X is
star-shaped if (w, g) € gr(X) implies (aw, ay) € gr(X) for a € [0, 1]. This is
equivalent to gr(X) being star-shaped with respect to the origin. We shall call
X doubly star-shaped if gr(X) is star-shaped with respect to the origin and to
the point (1, 1). -

3. Symmetry and closure. From now on, assume that each P € M is
absolutely continuous with respect to Lebesgue measure. This implies that P



SYMMETRIC UPPER PROBABILITIES 1723

is nonatomic in the sense that w(A) = 0 implies that P(A) = 0. Let m =
{f=dP/du; P € M}. We will further assume that each f € m is essentially
bounded. We say that M is symmetric if EX = EY whenever X,Y € L* and
X ~ Y. If M is symmetric, then we shall also say that m and E are symmet-
ric. We say M is weakly symmetric if u(A) = u(B) implies that P(A) = P(B).
In this case, we shall also say that P is weakly symmetric. In Example 4
(Section 7) we show that weak symmetry does not imply symmetry. We view
symmetric sets M as a natural generalization of the concept of a uniform
probability measure. We say that m is closed with respect to majorization if
fem and g <[ implies that g € m. The rest of this section is devoted to
proving the following theorem.

TueoREM 1. E is symmetric if and only if m is closed with respect to
majorization.

To prove the theorem, we first present some lemmas.
LeEmMa 1. P € M if and only if PX < EX for every X € C.

PrROOF. P € M obviously implies that PX < EX for every X € €. Now
suppose that P & M. Then M and {P} can be strictly separated by a continu-
ous linear functional / on &. By Lemma 2.1 of Huber (1981), [ is represented
by some X € C so that I(Q) = QX for every @ € #. Thus, PX > EX for
some X € ¢ which establishes the other direction of the proof. O

LEmMA 2. Suppose E is symmetric. Let X, Y € L* and suppose that Y < X.
Then, EY < EX.

Proor. First suppose that X > 0. Then, Y > 0. By Ryff [(1965), Lemma 4],
IfY < [f*Y* for every f€ m. Also, by the same lemma, [f*Y™* < [f*X*
since Y <X. Let o be the measure-preserving transformation for which
f=/f*o0. Then, for every f € m,

/'stjf*Y*sff*X*=j(f*oo-)(X*oO‘)
=ff(X*oo') <E(X*o0) = E(X*) = E(X).

The penultimate equality holds since X* oo ~ X*. Thus, EY < EX. The
extension to nonpositive X is obtained by adding a sufficiently large constant
to X and then using the fact that doubly stochastic transformations are linear.

O

Proor oF THEOREM 1. First we show that symmetry implies closure with
respect to majorization. Assume E is symmetric. Let f € m and suppose that
g < f so that g = Tf for some T € 9. Let T* be the adjoint of T. Then, for
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any X € L*, [Xg = [XTf = [T*Xf < E(T*X) < EX. The last inequality is
from Lemma 2. It now follows from Lemma 1 that g € m so that m is closed
with respect to majorization.

Now suppose m is closed with respect to majorization. Let X, Y € L” be
such that X ~ Y. By Ryff [(1965), Theorem 1], there exists T € 2 such that
Y = TX. For every fe m, [fY = [fTX = [T*fX < EX. Hence, EY < EX. A
similar argument establishes that EX < EY so that EX = EY and hence, E is
symmetric. O

4. Upper distribution functions. Let M be weakly symmetric and
define the upper and lower distribution functions F and F by F(w) = P((0, w])
and F(w) = P([0, w]). Let &# be the set of concave dlstrlbutlon functions F on

Q such that F(w) < F(o) for every o € .

LEmma 3. If M is weakly symmetric with upper distribution function F
then F(w) = supg c 5 Flw).

ProOF. By definition, F(w) > supy 5 F(w). For every w € Q, there exists
f e m such that F(w) = [¢f. Let F(w) = [¢f*. We claim that F € # and
that F(w) = F(w). That F is concave follows from the fact that f* is
nonincreasing. There exists a measure-preserving transformation o so that
f* o0 =f. Hence, for every ¢ € (),

F(t) =_/:f* =j(.)1f*X[0,t]=j;l(f*”’)(/\’[o,tﬁo') =j;)1f(X[0,t]°U)

= [ r0.0) < P(o710,41) = P([0,¢]) = F(#).

Thus, F € #. And F(o) = [¢f* > [¢f = F(o) implies that F(w) = F(w),
which establishes the equality. O

LEMMA 4. Let F be the upper distribution function for a weakly symmetric
set M. Then, for every a,0 € Q, Flaw)> aF(0) and Flaw +1—-a)>
aF(w) +1 - a.

Proor. By Lemma 3, F(w) = supyc 5 F(w), where each F € # is con-
cave and satisfies F(0) = 0 and F(1) = 1. Hence,

F(aw) = sup F(aw) = sup F(aw + (1 - a)0)
FeX Fe
> sup aF(w) + (1 —a)F(0) =« Sup F(w) = aF(0).
Fe
Similarly,

F(aw +1—a) > sup (aF(w) +1 - @) =aF(w) +1 - a. i
Fe
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For every t € [0, 1], define a density function f; by

F(t) /¢, 0<w<t,

filw) = (1-F(@))/1-1), t<w<l.

Note that f, = f*. Let F(w) = [¢f,.

THEOREM 2. Let F: Q — Q. Then the following three statements are equiv-
alent:

G F is the upper distribution function for some weakly symmetric M.
(ii) gr(F) is doubly star-shaped.
(iii) For every t € Q, F(w) < F(w) forall v € Q. -

Proor. We begin by showing that (i) implies (ii). Suppose (w, y) € gr(F).
Then ay < aF(w). By Lemma 4, aF(0) < F(aw) so that (aw, ay) € gr(F).
Hence, gr(F) is star-shaped with respect to the origin. A similar argument
shows that gr(F) is star-shaped with respect to (1, 1).

To show that (i) implies (iii), note that F,(¢) = F(t) by definition. Since
gr(F)is star-shaped with respect to the origin and since F, is linear on [0, ¢], it
follows that F(w) < F(») on [0, £]. Since gr(F) is star-shaped with respect to
(1,1) and since F, is linear on [¢, 1], it follows that F(w) < F(w) on [t, 1].

Finally, we show that (iii) implies (i). Let m be the closed, convex hull of
Ure oA(f) and let M = {P = fdu; f € m). By Theorem 1, M is symmetric.
By construction F is the upper distribution function for M. O

As a result of Theorem 2, it is simple to check, graphically, whether a set
function is an upper probability. Although characterizations for upper proba-
bilities exist, they are usually cumbersome. The symmetry assumption thus
brings about considerable conceptual simplification.

We remark that weak symmetry implies that the Choquet integral C is
symmetric and CX = [X* dF. See Example 4, Section 7, for more on this
point.

5. Inner and outer approximations. Let P be weakly symmetric. In
this section we investigate the following question: Given only P, what can be
said about the M that generated P? Huber [(1981), Section 10.2] has some
results about this question. The weakly symmetric case provides interesting
and precise results.

Let I'(P) be the class of all symmetric m that generate P. Let m, be the
closed, convex hull of U, oA(f,) and let /2 = {f; [, f < P(A) for all A € &).
Also, let M, and M be the sets of probability measures corresponding to my
and .

LEmMA 5. If P is weakly symmetric, then m is symmetric.
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Proor. Suppose f € m and that g < f. We must show that g € m. There
exists a measure-preserving transformation o so that f* .o = f. Hence,

fowg = fowg* = fowf* - folf*Xlo,wl = fol( f* o) (X0,01°9)

- folfxa_l[o,w] < P(o71[0, 0]) = B([0, w]).

Thus, [¢g < P([0, »]) for every o. Now, [,g = [(T,g < P[0, u(A)] = P(A)
since Ty g < g < f. Therefore, g € n. O

LeEMMA 6. Let m € I'(P). Then, for every t €[0,1], f, € m.

ProoOF. There exists g € m such that [{g = F(t). Let G* be the distribu-
tion function for g*. Then G*(t) = F(t) and g* € m. Since F,0) = G*(0),
F(t) = G*(¢), F, is linear on [0, ¢) and G* is concave, it follows that Fy(w) <
G*(w) for w €[0,¢). A similar argument shows that that F(w) < G*(w) for
w € [t,1]. Hence, f, < g*. By Theorem 1, f, € m. O

THEOREM 3. Let P be weakly symmetric and let T(P) be the set of all
symmetric sets m that generate the upper probability P. Then, my = ), r(pym
and m = U, crpym-

Proor. By Lemma 6, it follows that m, c m, for every m € I'(P). Since
mg € T(P), it follows that N, crpym = m,. It is easy to show that m c m,
for every m € I'(P). By Lemma 5, 2 € T'(P). Hence, U, crpym = . O

Suppose now that a weakly symmetric P is given and we need to compute
EX for some X. Clearly the best we can do is to bound EX. This is a
generalization of the general moment problem [Kemperman (1968)] where the
expectation of a finite set of random variables is given and one must deduce
bounds on the expectation of another random variable. In our case, we are
given bounds on the expectation of indicator functions, namely, the upper
probabilities. Theorem 3 shows that EX is bounded above and below by the
upper expectation over the sets M, and M. It is easy to see that

E,X= sup PX= max(F(w)av x+(w) + (1 - F(w))EEX*(w)),
PeM, we) —_—

where avy(0) = [¢Y/w and avy(w) = [!Y/(1 — ). Thus, the lower bound is
easily computed. Regarding the upper bound, it is straightforward that EX <
EX < CX, where EX = supp.j; PX. Equality of EX and C holds if P is
2-alternating. [See Section 6 for the definition of 2-alternating; the equality is
proved in Choquet (1953).] Little seems to be known about EX if P is not
2-alternating, but see Example 3 in Section 7. Also, little attention has been
paid to the difference between the Choquet integral and the upper expectation
in case P is 2-alternating but M is strictly contained in M. Nonetheless, we
always have E,X < EX < EX < CX.
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Now we characterize those upper probabilities for which E, and E coincide.

THEOREM 4. Let P be weakly symmetric with upper distribution F. Then
the following three statements are equivalent:

(@) U,eaA(f) =m.
(ii) F € # implies that F < F, for some t € ().
(iii) F = F, for somet € ().

Before proving Theorem 4, we prove the following lemma.

LEMMA 7. Let f be a probability density function and let F(w) = [§f™.
Then, f€ m if and only if F € #.

Proor. Let f < m.Write f = f* o o, where o is measure-preserving. Then,
F(0) = [F*Xx0,01= [(F*°0)(Xp,01°9)

= [f(X0,01°9) = [FXom10,0) < P(071]0,0]) = P([0, 0]) = F(w),

and F is concave since f* is nonincreasing. Hence, F € 7.
Conversely, suppose that F € J# so that [{f* < F(w). Then,

jAf= I;M(A)TAfS jp(A)(TAf)* < ju(A)f*

0 0
< F(u(A)) = P([0,u(4)]) = P(A).

Therefore, f € m. O

Proor or THEOREM 4. (i) implies (ii). Let F € &#. By the previous
lemma, f € m, where f=dF/du and [{f = [¢f* since F is concave. By (D),
f < f; for some ¢t so that F < F,.

(ii) implies (iii). We will show that “not (iii)”’ implies ‘“‘not (ii).” Suppose
that, for every ¢ € Q, F is not identically equivalent to F,.

Cast 1. Assume that F is concave. Now, F, < F for every ¢. It cannot be
that F < F,, for this would imply that F = F,, contradicting the assumption.

Therefore we have found an element of 5%, namely, F itself, that is not
dominated by any F, so the implication in (ii) fails.

CaSE 2. Assume that F is not concave. We can find ¢ and u such that
0<¢t<u<1and F(w) < c(w) for w € (¢, u), where c(w) is the chord joining
the points (¢, F(¢)) and (u, F(u)). Let G = aF, + (1 — a)F,, where a € (0, 1).
It i§ easy to see that G € # and we claim that G is not dominated by any F,.
To see this, consider F,. For z <t¢, F(u) <F(u)<G(u) so F, fails to
dominate G. For z > u, F(¢t) < F (¢) < G(¢) so F, fails to dominate G. Now
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suppose that ¢ < z < u. For F, to dominate G on [0, ¢], z must be less than or
equal to the point a,, where w(aF(¢)/t + (1 — @)F(u)/u) intersects F. Since
F is strictly less than c(w) on (¢, u), a, is strictly less than the point b,, where
o(aF(t)/t + (1 — a)F(u)/u) intersects c(w). Some algebra shows that b, =
tu/(au — at + t). For F, to dominate G on [u, 1], z must be greater than or
equal to the point a,, where k(w)= aF(t) + alw — )1 — F@t) /(A —t) +
1-a)F(u)+ A —aXw — u)1 — F(u)/(1 —u) intersects F. Since F is
strictly less than c(w) on (¢, u), a, is strictly greater than the point b,, where
k(w) intersects c(w), and b, = (v —au — tu + at)/(1 — au + at — t). So far
we have that z <a, <b, and 2z > a, > b,. However, from the fact that
a €(0,1) and a(t — u)*(1 — @) > 0, we conclude that b, < b, so there can be
no z simultaneously satisfying z < b; and z > b,. Hence, there is no F, that
dominates G. Thus, the implication in (i) fails. -

(iii) implies (i). Let f <€ m_and let F be the distribution function for f*.
Then, by Lemma 7, F(w) < F(w) = F(w). Therefore, f<f, so that fe
Ut €Q A( ft) o

Thus, we have shown that the inner and outer approximations agree, just
when the upper distribution is of the form F, for some ¢. Upper probabilities
of this form arise in Bayesian robustness and are discussed in more detail in
Example 2 in Section 7.

6. Hierarchy of upper probabilities. The upper probabilities consid-
ered thus far can both be generalized and specialized. That is, there is a
hierarchy of upper probabilities. In this section we show that some of these
upper probabilities may be given simple geometric characterizations based on
their upper distribution functions. Fine (1988) considers upper probabilities
that are more general than those defined in this article so far. Formally, we
shall call P: & — [0,1] a generalized upper probability if it satisfies the
following:

1. P(@) =0, P(Q) = 1; _ _ _
2. AN B = & implies that P(A U B) < P(A) + P(B) and
P(A° N B°) < P(A®) + P(B°) — 1.

Fine (1988), Grize and Fine (1987), Kumar and Fine (1985), Papamarcou
and Fine (1986) and Walley and Fine (1982) give arguments to suggest that
generalized upper probabilities are of great importance and can be used to
model real-world phenomena.

A generalized upper probability is dominated if there exists a probability
measure P on & such that P(A) < P(A) for every A € &. As before, P is
weakly symmetric if u(A) = w(B) implies that P(A) = P(B). Throughout this
~ section we assume that P is nonatomic in that if w(A) = 0, then P(A) = 0.

Another important class of upper probabilities is 2-alternating upper proba-
bilities, also known as 2-alternating Choquet capacities. We say that P is
2-alternating if for every A, B € %, P(A U B) < P(A) + P(B) — P(A N B).
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These upper probabilities arise in analysis [Choquet (1953)], classical robust-
ness [Huber (1973), Huber and Strassen (1973), Buja (1984, 1985, 1986),
Bednarski (1982) and Rieder (1977)], Bayesian robustness [Wasserman and
Kadane (1990b)] and in other contexts [Walley (1981, 1991)]. Recall that the
Choquet integral is defined by CX = [3°P(X > t)dt for bounded X > 0. It is
known that if P is 2-alternating, then EX = CX [see Choquet (1953) and
Huber and Strassen (1973)].

Let %, be the set of weakly symmetric generalized upper probabilities, %,
the set of weakly symmetric dominated generalized upper probabilities, %,
the set of weakly symmetric upper probabilities and %, the set of weakly
symmetric 2-alternating upper probabilities. The class %, is the class we have
been using in the previous sections. It is well known that %, € %3 € %, C %;.
See Walley and Fine (1982), for example. We now investigate some properties
of these classes. The proof of the next lemma is straightforward and is
omitted.

Lemma 8. IfP € %, ihen its upper distribution function F satisfies the
following:
(6)) E(O) =0 and F(1) =1
() F(x +y) < F(x) + F(y);
Gi) FA-x—-y)<FQ-x)+FQ1 -y) -1
Conversely, if F: Q — Q satisfies ()-(ii), then P € %,, where P(A) =
F(u(A)).

LEmMMA 9. IfF is the upper distribution function for P € %,, then F(w) > ®
for every o € ().

Proor. If wy,...,w, € Q are such that 0 < Yw; < 1, then from Lemma 8
it follows that F(Zw ) < LF(w;,) and F(1 — Lo, ) <TLF1 -w,)+ (n - 1.
Let £ > 1 be an integer and let w = 1/k. If F(w) < , then 1=FQ1) =
F(kw) = F(w + -+ +0) < kF(w) < ko = 1. This is a contradiction, so
Flw) > o.

If F1 — ) <1 — w, then

F(o)=F(1—-(k—-1)/k)=F(1—1/k — -+ —1/k)
<F1-1/k)+ -+ +F(1 - 1/k) + (k- 2)
=(k—1)F(1-1/k) + (k—2)
<(k-1)(1-1/k) +(k—2)=1/k = 0.

Again, this is a contradiction so Fl-w)2>1-o.
Now we proceed inductively. Suppose that F(r/k) > r/k and

Fl-r/k)>=1—-r/k forre({l,...,h}.
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Consider r = h + 1. There exists an integer s such that
1-s(h+1)/k=j/k, 0<j/k<h/k.
Suppose that F((h + 1)/k) < (h + 1)/k. Then,
F(1-j/k) =F(s(h+1)/k) <sF((h + 1)/k) <s(h + 1) /k.

But, j €(1,...,h}, so by assumption, F(1 —j/k) > 1 —j/k = s(h + 1)/k.
Thus we have a contradiction, so it must be that F((h + 1)/k) > (h + 1)/k.

From this we conclude that F(w) > w whenever o is rational. For any
w € Q and any & > 0, there exists a rational number r € () such that r < w <
r + e Then, F(w) > F(r) > r > w — ¢. Thus, F(w) > w. O

By Lemma 9, if P € %,, then P(A) = F(u(;é)) > w(A). Thus we have the
following corollary.

COROLLARY 1. %, = %,. That is, there do not exist nonatomic, symmetric,
undominated generalized probabilities.

The following example shows that %, is proper subset of %;.

_ ExampLE 1. Define F by F(0) = 0, F(1/4) = 1/2, F(1/2) = x, F(3/4) =
F(1) =1 and F is piecewise linear otherwise. Let P(A) = F(u(A)). Then,
Pe %, ifandonlyif1/2<x <land P€ %, ifandonlyif2/3 <x < 1.

Now we characterize the class %, of 2-alternating capacities.

_ THEOREM 5. Let F: Q- Q satisfy F(0) =0 and F(Q) = 1. Define P by
P(A) = F(u(A)) and let m ={f e L' [,f < P(A) for all A € #). Then the
following three statements are equivalent:

@ Pe %,
(ii) F is concave.
(iii) There exists a density function f such that m = A(f).

Proor. (i) if and only if (ii). To show that (i) implies (ii), we argue as in
Bednarski [(1981), Lemma 3.1]. Let x, y € o with y < x. Set A =[0,(x + y)/2]
and B =[0,y] U [(x +¥)/2, x]. Apply the 2-alternating condition to A and B
to deduce that F(x)/2 + F(y)/2 < F((x + y)/2) so that F is midconcave. The
boundedness of F implies that F is concave [Roberts and Varberg (1973),
Section 72].

To show that (ii) implies (i) we follow Buja [(1986), page 151]. Set x = u(A),
y=u(B),u=p(ANnB)and v =u(AUB),sothat u +v=x+y,u<x<v
and u <y <v. There exists @ € Q such that x =au + (1 —a)v and y =
(1 — a)u + av. Applying concavity, we have P(ANB)+ P(AUB)=Fu) +
F(v) < F(x) + F(y) = P(A) + P(B), so that P is 2-alternating.



SYMMETRIC UPPER PROBABILITIES 1731

(ii) if and only if (iii). To see that (ii) implies (iii), note that F is a
distribution function. Let f= dF/du. Since F is concave, f= f* almost
surely so take f=f*. We need to show that g € m if and only if g <f.
Suppose that g € m. By Lemma 5, g* € 2 so that [¢g* < [¢f. Hence, g < f.
Now suppose that g <f. Then, [,g = [#PT,g < [EDf = F(u(A)) = P(A).
Therefore, g € m.

Finally we show that (iii) implies (ii). For this it suffices to show that
F(o) = [¢f*. Clearly, F(o) = [¢f* since f* € m. For any gem g=<f
implies that /o8 < [38% < [f* sothat sup, . ; [¢8 = F(w) < [¢f*.

The equivalence between conditions (i) and (iii) is intriguing. We may
paraphrase the equivalence by saying that P is weakly symmetric and 2-alter-
nating if and only if 7 is the orbit of a single density function. In this sense,
2-alternating upper probabilities are very simple symmetric upper probabil-
ities. This characterization establishes, then, a 1-1 relationship between
2-alternating, weakly symmetric Choquet capacities and nonincreasing density
functions. As such, it generates a rich source of examples of 2-alternating
capacities. Furthermore, if f and g are two density functions, neither of
which is majorized by the other, then the closed convex hull of the union of {%;
h < f}and {h; h < g} generates a symmetric set m that by virtue of Theorem
5, cannot be 2-alternating. Thus, we have a source of non-2-alternating upper
probabilities.

ExampLE 1 (Continued). It is easy to see that P € %, if and only if
3/4 < x < 1. Thus, %, is strictly contained in %,. We have shown that %, c
U3 C Uy = %,, where the containments are proper.

In Section 5, we established that E, and E coincide, just when F = F, for
some ¢. Since each F, is concave, we have the following corollary to Theorem 5.

COROLLARY 2. If P is not 2-alternating, then E, and E cannot coincide.

In general, when P is not 2- alternating, | C will overestimate E for two
reasons. First, C will overestimate E since P is not 2-alternating. Second, E
will overestimate E since m _may be a proper subset of . When P is
2-alternating, we know that C = E. However, E may still overestimate E.
Only in the special case where F = F, can we deduce from the upper probabil-
ity that C, E and E all coincide.

7. Examples. In this section we consider three examples in detail. The
first two examples are special cases of classes of probability measures that
arise in Bayesian robustness. The sets of probabilities in those examples may
be thought of as probabilities that are approximately uniform. The second of
these (Example 3) emphasizes that even if an upper probability is 2-alternat-
ing, the Choquet integral may overestimate the upper expectation since m
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may be a proper subset of 7/=. The third example illustrates the difference
between symmetry and weak symmetry.

ExampLE 2. Let ! and u be real numbers such that 0 < <1 < u. Let
m ={f; | < f(o) < u, for u-almost all w}. This is a special case of the class
considered by Lavine (1988) in Bayesian robustness. Let L(A) = [u(A) and
U(A) = up(A). It is easy to show that P(A) = min(U(A),1 — L(A°)). Sup-
pose f€m and g < f. If g(w) > u on a set A of positive Lebesgue measure,
then [$Mg* > upu(A) > [¢Df* contradicting the fact that g <f. So g < u
almost surely. Similarly, if g(w) <! on a set A of positive Lebesgue measure,
then [{, 48* <U(1 = p(A) < [i,0)f* so that [J-+Wg* > [L-uhps
which again contradicts g < f. Thus, g is almost surely between ! and u so
that g € m. This establishes that m is symmetric. From the formula for P we
get

= uw, ifw <A,

F(“’)‘{1—z+lw, ifo>A,
where A = (1 — 1)/(u — 1). Thus, F = F,. Recall from Theorem 4 of Section 5,
that it is precisely upper distribution functions of this form for which the
inner approximation m, and the outer approximation 7 coincide. Therefore,
the examples of this form obtained by varying / and u generate the class of all
such weakly symmetric upper probabilities. From direct calculations we get
E,X = EX=EX = CX = CX* = uf{X* + I[]X* for X> 0, X € L*. In con-
clusion, this class is unusual in that it is 2-alternating, the inner and outer
approximation agree, and a simple formula exists for computing upper expec-
tations.

ExampLE 3. A similar example is obtained from another class of probabili-
ties used in Bayesian robustness by DeRobertis and Hartigan (1981). Let

m = {f € L'; esssup f(w)/essinf f(w) < &},

where & > 1. To see that m is symmetric, note that if T is doubly stochastic,
then esssup Tf < esssup f and essinf Tf > essinf f. Thus, if f€ m and
g < f so that g = Tf, say, then g € m.

For t € [0, 1] define the density f, by

[R/(A+ 1), ife <t
flw) = 1/(tA+ 1), ifw>¢

where A = k — 1. Clearly f, € m. It is easy to see that [¢f, = P([0, w]) for if
there is a g such that f{g > [¢f,, then we can find a set of positive Lebesgue
measure over which g(w)/g(«") > k. By direct calculation, F(w) = kw/(wA +
1). This is concave so that, by Theorem 5, P is 2-alternating. However, we
claim that m is strictly contained in /. To see this, let f=dF/dw =k/
(Aw + 1)2 Then, f(0)/f(1) = k% so f is not in m. However, f= f*, and for
any A, [, f = [ENT, f < [#Df* = F(u(A)) = P(A). Hence f <€ m. Thus, de-
spite the fact that P is 2-alternating, the Choquet integral will typically
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overestimate E. This is a point that is often overlooked. Interest usually
centers on establishing that P is 2-alternating. The Choquet integral may be
calculated explicitly and, in fact, CX = [X* dF.

Now we show that m, = m. To do this, we show that for every nonnegative
X e L” and every f€ m, there is an f, such that [f,X > [fX so that
E,X = EX. First suppose that X and f are nonincreasing. Let ¢t = (1 —
f()/(f(0) — f(1)). Then [f,X > [fX if and only if [(X(f, — f) = [ X(f - f).

Now,
t t 1 1
[XG=D=XO [(f~F) =X@O) [ (f=f) = [ X(F=1),

as required. Now remove the restriction that X and f be nonincreasing.
Then, (Xf < [X*f* < [X*f, for t = (1 — f*(1))/(£*(0) — £*(1)). We conclude
that

EX = E,X* = max [{wA + 1}'1{Awa* + X’}]
we 0

where X = [lX. Thus, m, = m C .

It is interesting that even though the Choquet integral fails to produce the
correct upper bound, we still have a simple formula for computing the upper
expectation. To see the difference between E and C, consider X(w) = w. Then

o 1-v k(k -1 - log(k
CX=Cx* =k —dv = ( f( )
o (Au+ 1) (k — 1)

On the other hand,
EX = E,X* = max [{wA + 1},‘1{Awa* +X’}]
wel0,1] 0
Aw(l —w/2) +1/2 k32 — k
veb 1l WA + 1 TRk -1)

It seems that C does worst at estimating E around % = 17.

ExampLE 4. Here we construct a set that is weakly symmetric but is not
symmetric. Let a =1+6,b=1and ¢=1- 6, where 0 <§ < 1. Let A, =
[0,1/3), A, =[1/3,2/3)and A; =[1/3,1]. Let g equal c on A, b on A, and
a on Aj. For every measurable set A we will define a density function f,. To
do so, we first define a function y, by

w([w,1] N A), ifweA,
Ya(w) = ¢ .
p([w,1] N A°) + u(A), ifw &A.
Now set f,(w) = g(1 — y(w)). Loosely speaking, f, may be described in the
following way. Over the set A, f, is identical to that portion of g over

[1 — u(A), 1], and over A°, f, is identical to that portion of g over [0, u(A)].
Note that each f, is equimeasurable with g and takes on the values a, b and
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c equally often. Also note that within A, f, is increasing and similarly, within
A°, f, is increasing. If A = [0,¢], then f, is that density obtained by shifting
g to the right by ¢ units, mod 1.

Let m consist of all convex combinations of such densities. It follows
immediately that [, f, = [}, 4,8 and

u(A)a, if p(A) < 1/3,
P(A) = [ fa={a/3 +b(u(A) - 1/3), if1/3 < p(A) <2/8,
4 a/3 +b/3 + c(u(A) —2/3), if2/3 < u(A).

Let f be the decreasing rearrangement of g. We claim that the L! distance
between f, and f is at least §/3 for every A.To see this, first consider the
case where u(A) < 1/3. Then f;*({1—8) cA; UA, and u(f {1 -6} =
1/3. However, f> b on A, U A,. Hence, [|f — f4[ > 6/3. Now suppose 1/3 <
u(A) < 2/3. Then f, takes value b or ¢ for some subset of A, of measure at
least w(A) —1/3, and f, takes value a or b for some subset of A; of
measure at least 2/3 — u(A). Thus, [|f — f4l = 8(u(A) — 1/3) + 8(2/3 —
w(A)) = 6/3. Finally, suppose that u(A) > 2/3. Then f, equals b or c on A,.
Since f is equal to a on this set, we again have that [|f — f,| > §/3.

We therefore conclude that f is not in m, that is, the rearrangement of g is
omitted from m. Hence, m is not symmetric. That the upper probability can
be symmetric without the upper expectation being symmetric emphasizes, in
an explicit way, that upper expectations are not determined by their upper
probabilities in contrast to the relationship that holds between probability and
expectation. This issue has nothing to do with regularity conditions since
similar examples may be constructed on finite sets. It is easy to see that weak
symmetry implies that the Choquet integral is symmetric. Thus, we have
shown that symmetry of the Choquet integral does not imply symmetry of the
upper expectation functional.

8. Discussion. By studying the symmetric case we feel we have shed
some light on the structure of upper probabilities. More work will be needed to
see how these results can be carried over to the nonsymmetric case. Also, it
would be interesting to investigate other types of invariance.

We restricted ourselves to the nonatomic case in this articles, but many
examples in robustness have measures with singular components. The &-con-
taminated neighborhoods studied by Huber and Strassen (1973) and Berger
(1984) are of this type. It should be possible to extend our results to that
setting. :

We have emphasized upper expectations because they are quantities of
direct interest in robust statistics and they are fundamental in generalizations
of the betting approach to probability [see Walley (1981, 1991) and Williams
(1976)]. Choquet integrals seem to have attracted more attention than upper

_expectations. Armstrong [(1990), Section 9] contains some results on symmet-
ric Choquet integrals. Also, see Talagrand (1978). As we pointed out in Section
7, symmetry of the Choquet integral does not imply symmetry of the upper
expectation functional.
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