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ALLOCATION INDICES
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For a multiarmed bandit problem with exponential discounting the
optimal allocation rule is defined by a dynamic allocation index defined for
each arm on its space. The index for an arm is equal to the expected
immediate reward from the arm, with an upward adjustment reflecting any
uncertainty about the prospects of obtaining rewards from the arm, and
the possibilities of resolving those uncertainties by selecting that arm.
Thus the learning component of the index is defined to be the difference
between the index and the expected immediate reward. For two arms with
the same expected immediate reward the learning component should be
larger for the arm for which the reward rate is more uncertain. This is
shown to be true for arms based on independent samples from a fixed
distribution with an unknown parameter in the cases of Bernoulli and
normal distributions, and similar results are obtained in other cases.

1. Introduction. The classical multiarmed bandit problem models se-
quential clinical trials of alternative treatments as Bernoulli processes, or
arms, with different unknown success probabilities. The arms are pulled one
at a time and the aim is to achieve a high overall success rate by at each stage
selecting the next arm to be pulled on the basis of current information about
the different success probabilities. The problem will be discussed in the
Bayesian discounted setting introduced by Bellman (1956), and since then
considered by several authors, in particular by Berry and Fristedt (1985), who
give an extensive review. Our investigation extends to arms defined by se-
quences of independent normal and negative exponentially distributed random
variables with unknown parameter values. The main application to date of
these more general bandit problems has been to the selection of compounds for
testing in research leading to the formulation of new drugs [see Bergman and
Gittins (1985) and Gittins (1989), which we will refer to as G].

In selecting the arm to be pulled next there are two objectives: to obtain a
high reward from this pull and to acquire information which may be used to
make it more likely that subsequent pulls are on the whole profitable. It is the
tension between these two objectives which makes multiarmed bandit prob-
lems interesting. Here we investigate the relationship between the importance
of acquiring further information and the amount of information which is
already available.
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For a multiarmed bandit problem with exponentially discounted rewards
(geometrically discounted rewards for a discrete-time problem), the optimal
strategy is to select the arm for which a certain index, which depends on the
state of the arm, is the largest (Gittins and Jones, 1974). The properties of
these dynamic allocation (or Gittins) indices have been investigated by several
author and are described in G.

In this paper we shall be interested in bandit sampling processes (G,
Chapters 6 and 7). A bandit sampling process is a sequence of independent
random variables X, X,,..., which are identically distributed with an un-
known distribution belonging to a parametric family of distributions 2. The
prior distribution Il for the parameter 6 of 2 becomes transformed into
successive posterior distributions in the standard Bayesian fashion as observa-
tions take place [e.g., see Barra (1981)]. The current distribution for § may be
regarded as the current state of the bandit sampling process. When II belongs
to a parametric family of distributions which is closed under sampling the
state of the process is defined by the parameter values for the current
distribution for 6.

Each observation on a bandit sampling process is assumed to take one unit
of time, and to yield a reward which depends on the observed value. The
reward at time ¢ (¢ = 0,1,2,...) is multiplied by the discount factor a’, where
0 <a < 1. For an initial state I1 and stopping time defined in terms of the
filtration {#: t > 1}, where %, denotes the o field o{X,: i < t}, let

7—1

= R_(11)
1) R(I)=EY a'r(X,), W(I)=EY o, v(ll)= ,
(1) R =E L a'r(X) (M =EX ', v(l) = s

where r(X,) is the expected reward associated with the observation X,. Write
also

(2) v(I1) = supr, (1),  »7(II) = supw,(II),

T r<T
for any fixed T > 1, the second supremum being over stopping times r for
which P(r < T') = 1. Thus v(Il) is the maximum average reward rate up to a
stopping time. It follows that if the alternative to continued sampling is to
receive rewards at a constant rate A, and these rewards are also discounted by
the factor a’ at time ¢, then it is optimal to sample if and only if »(IT) > A.

A family of alternative sampling processes each with the same discount
constant a, and exactly one of which must be sampled at each time, depending
on the current states of the alternative processes, forms a multiarmed bandit.
The object is to sample so as to maximize the expected total reward.

Since a given reward is more valuable the earlier that it occurs, because of
the discounting, a first guess at an optimal policy might be always to sample
from the process yielding the largest immediate expected reward, which is to
say from the process with the largest current value of v!(I1). This policy is
often called the myopic policy, because of its lack of long-range vision. It
ignores the contribution to the total reward which may arise from a reduction
of uncertainty about the corresponding parameter 6. Theorem 3.6 of G shows
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that the optimal policy actually is always to sample from the process with the
largest current value of »(II), which is therefore defined to be the dynamic
allocation index for the process in state II. We define the difference v(I1) —
v(IT) to be the learning component of the index. Theorem 4.1 of G shows that
the learning component is an increasing function of the discount factor a. This
is not surprising as the larger the value of a the more important are the
results of future sampling, and hence the greater is the value of gathering
information which enables future sampling to be done more effectively. The
main contribution of the present paper is to show that for two important cases
the learning component is a decreasing function of the amount of information
already available about the parameter 6. Again, this is as might have been
expected.

Part (i) of the following theorem is Theorem 3.4(iii) of G; part (ii) is a simple
extension of this result.

TaeEOREM 1. (1) v (IT) = v(ID) if = = inf{z: v(I1,) < v.(I1)}, where 11, is the
state of the process after t observations from the state 11, and 7= if
v(I1,) > v(I1) for all t.

(i1) VT(T)(H) = vT(I1) if 7(T) = min[T, min{¢: VT_t(l_[t) < vT(ID}.

[Thus +(T) < T and is such that the maximum expected reward rate which
can be achieved between w(T) and T is less than vT(I1).]

In this paper, two particular types of sampling process will be considered.
For a reward process the reward received if X,,, is observed at time ¢ is
a'X, ;. For a target process the discount factor is 1, and the reward is equal to
1 on the first occasion when X,,, exceeds some threshold or target value L,
and is otherwise equal to 0. For a target process there is an additional state C,
the completion state, signifying that the target has been reached, and so no
further reward is possible. With a family of alternative target processes the
aim is to minimize the expected number of observations until the target is first
reached. This objective turns out (G, Section 6.2) to be achieved by using
dynamic allocation indices defined in terms of the reward structure just
described.

For a Bernoulli process observations are independently equal to 1 or 0 with
probability & and 1 — 6. The conjugate prior distributions for 6 are beta
distributions, with probability density functions of the form

I'(n)

a—1 n—a—1
F(a)F(n—a)B (1-0) , 0<6<1,
where « and n — a are both positive. The state of the process is given by the
parameters (a, n), so that, for example, the dynamic allocation index »(I1) may
be written as v(a, n). Each observation increases n by 1 and increases a by
the value of the observation (either 1 or 0). The expected value of the next
observation in the state (a,n) is a/n, the expected value of 6, and for a
reward process this is also equal to the expected value v(a,n) of the next
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reward. Our first result (in Section 2) is that for a Bernoulli reward process the
learning component v(An,n) — vi(An, n) of the index is a decreasing function
of n for any fixed positive A. This is as expected, because the uncertainty
about 6, and hence the probability of useful further information about 6, both
decrease as n increases.

Our second main result {in Section 3) is for sampling processes drawn from
continuous distributions. This theorem is applied to normally and negative
exponentially distributed reward and target processes. For the normal reward
process the conclusion once again is that the learning component of the index
decreases as the number of observed values increases. In the other case the
results are similar, but cannot be interpreted in precisely this way.

2. Bernoulli reward processes. This is the classical Bayesian multi-
armed bandit problem. From the results given by Bellman (1956) it quickly
follows that

v(a,n +1) <v(a,n) <v(a+1l,n+1),

although his paper pre-dates the idea of using v as a dynamic allocation index.
These inequalities lead to a play-the-winner rule, since an optimal switch
between arms can only occur when a failure (i.e., a 0) is observed.

LemMA 1. via,n) < via,n) and vT(a,n) <v¥(a',n') for any integer
T=>2if a/n <a'/n',n <n, and at least one of these inequalities is strict.

Proor. Let {X,: ¢t =1,2,...} be the observations starting from the state
(a,n) and 7(T) = min[T, min{t: v7"(a + S,,n + t) < vT(a, n)}]. where S, =
L, ., X;, sothat v ;(a,n) = v7(a,n) [Theorem 1(ii)]. From the definitions (1)
and (2) the following results for T = 1 and 2 are easily obtained.

T=1 vYa,n)=a/n<d/n=vi(a,n),

rez @ {y iy oy
) 1 )
so that
V(e n) l+a(a+1)/(n+1) g‘

1 +aa/n n

It follows that v"(a, n) < vT(«/, n') when T = 2.

We will prove by induction that this is true for any T > 2. Thus suppose
v™a,n) <v™a',n) for m=2,...,T— 1, and for any («,n) and (o, n’)
satisfying the conditions of the lemma. We must show that v7(a,n) <
vT(«/, n'). The proof proceeds by defining a Bernoulli process {Z,: t = 1,2,...}
starting from the state («/,n’) and which dominates the X, process in a
suitable way.
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Note first that for t =1,2,...,T — 1 (when T > 2) it follows from the

inductive hypothesis that
if(a+8S,)/(n+t)<a/n,thenv’ “(a+S,,n+t) <vTa,n),

with strict inequality except when ¢ =T — 1. Since clearly v7 “a,n) <
vT(a, n) with strict inequality when ¢ = T — 1, it follows from the characteri-
zation of 7(T') given at the beginning of this proof that if 7(T) > ¢, then
(a+8S,)/(n +1t)>a/n, so that
(3) if 7(T) > ¢,then S,/t > a/n.

A sufficient description of the probability space P, on which the random
variable X, is defined (¢ = 1,2,...) is genierated by the set of probabilities and
conditional probabilities

P(X,=1),P(X,=1|X,), P(X; = 1|X,, X,), ...,
P(X,=1X,X,,...,X,_,).
For 1 < r <t¢, we have
P(X,=1X, =x, Xy =2%5,..., X,y =x, 1) = (a+s7,)/(n+r—-1),

where s*_, = L7_1x,.

We now define the Bernoulli random variables Y,, Z, on {r(T) > ¢}, using a
refinement P; of P, (¢ = 1,2,...). The definition is recursive, S7 = L!_,Z,
and lowercase x;, y,, 2; and s/ denote the values taken by the random
variables X, Y;, Z, and S?. Like P,, P, is generated by a set of probabilities

and conditional probabilities:

63
P(X1=1)=;,

a/n —P(X;=1)
P(Y,=1) =

Fi=1) =5
Z, =X, +(1-X))Y;
x a + s§
P(Xz = 1|x1,y1) = P(X2 = ]_|31) = _;l+_1,
(o +si)/(n +1) - P(X, = 1|s7)

P(Y, = 1y 1) = P(Y, = 1ls1) = P(X, = 0fs) |

Z, =X, + (1 _X2)Y2§

a+ s’
P(X, = 1xy, ¥, %1, Y1) =P(X, = 1]s} ) = Paa—
P(Y, = 1lxy, 51, s Xm1, Y1) = P(Y, = 1|s{_y)
B («/ +s;_)/(n +t—-1) - P(X,=1]s;_,)
- P(X, =0|s7_;) ’

Z,=X,+ (1 -X,)Y,.
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Clearly this definition leaves the conditional probabilities P(X, =
11X,, ..., X,_,) unaltered, so that P/ is indeed a refinement of P,. For it to be
a valid definition we must also have

0<P(Y,=1ls;. ;) <1, whens?  /(t—1)=a/n.

The second of these inequalities is a trivial consequence of the fact that
(@' +s7_)) /(W +¢t —1) < 1. The first one holds because

P(X,=1|Sf,=r)
' 'P()Q = l’Si~1=:r)

P(S7,=r)

LP(X,=1,8",=1,58,=r)
i=0 P(S;,=r)
4 P(S7,=1i,8,=r)

- Y P(X,=1|Sz,=i,8.,=r .
lgo ( t | t—1 t—1 ) P(St_1=r)
r P(S;,=i,871=7)

= P(X,=1|SF,=1 ,
igo ( t | t—1 P(Stz_1=r)

since P(X, = 1| x,¥1, X2, ¥9 - - - » X;—1, ¥,—1) depends only on s;_;, so that

P(S:,=i,8%,=r)
P(X,=1|S/,=r)<P(X,= 1|Stx_1=r);0 tP(Sf,1=tr)

=P(X,=1|Sf,=r)

a+r a +r
< .

n+t—1 n+t-—-1

The last inequality here is a consequence of the three inequalities r /(¢ — 1) >
a/n [from ()], «/n < a'/n' and n > n'. Next note that, on {7(T') > ¢},

P(Zt = 1|5tz—1) =P(X, = 1|5zz~1) + P(Yt = 1|Stz—1)P(Xt = O|3tz—1)
=(a +s8;_)/(n +t—1).

This is the required condition for {Z,: ¢ = 1,2,...} to be a Bernoulli process
starting from the state (o', n').
By definition

RT<T)(a,n>=E[ 3 I{tsfm}Xta’—l]

1<t<T

<E

Y It T(T>}Zta”] = R e, 1)

1<t<T

and W, ;. (a,n) = W, (o, 7). Thus v"(a,n) = v, (a,n) < v (o, n).
Finally we note that v"(a/,n') = sup, ., . v.(e/,n), so that v (o', n) <

vT(a/, '), and hence v7(a, n) < vT(a/,n'). O
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Note. The fact that the event {7(T') = ¢} is measurable with respect to
o({X;: i <t} [and therefore with respect to o{(X;,Y;: i <#})] rather than
with respect to o({Z;: i < ¢}) does not upset the above proof. In terms of
the Z process this means that 7(T') is a randomised stopping time, and
sup, _rv.(e/,n') is unchanged if the set of stopping times over which the
supremum is taken is extended to include randomized stopping times. This
may be shown, for example, along the lines of the proof of Lemma 3.2 of G
[also cf. Chow, Robbins and Siegmund (1971), pages 110-112].

THEOREM 2. For a Bernoulli reward process, v(ia,n) < <(a',n') when
a/n <da'/n',n <n, and at least one of these inequalities is strict.

Proor. Suppose 7 is such that v (a,n) = v(e, n). Let

R=R_(a,n) = f o' 'E[ X, I{r > t}],

t=1

W=W(a,n) =), a' P{r>1t},

t=1

T T
R(T) =Y & 'E[X,I{r>t})], W(T)=Y a" " 'P{r>1¢.

t=1 t=1
Thus, since R/W = v(a,n) and R(T)/W(T) < v(a, n),
v(a,n) — vT(a,n) < R/W — R(T)/W(T) < (R — R(T)} /W(T)
<R-R(T)<d"/(1 -a).

Hence we have lim ., v7(a, n) = v(a, n). Thus it follows from Lemma 1 that
v(a,n) < v(a/, n'). Strict inequality holds because

vT(a', 1) = v"(a,n) = (R, 1) = Ror(a,n)}/ Wi (a,n)
>(1-a)E| Y «Kt<r(T)}(Z, -X,)a*
1<t<T
>a(l - al)E[I{X1 =1}(Z, - X,)]
=a(l-a)(a/n)P(X;=0,Y, = 11X, = 1),
which is positive and independent of T. O
Since v (nA,n) = A, the learning component of the dynamic allocation

index may be written as v(nA,n) — A. From Theorem 2 it follows that this is a
decreasing function of n for any fixed A (0 <A < 1).

Now suppose p is a constant (0 <p < 1) and a(n) is defined by the
equation v(a(n),n) =p (n > 0).
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CoroLLARY 1. a(n)/n is increasing in n.

Proor. Suppose that v(a(n,),n,) = v(a(ny),n,) = p and that n, < n,. It
follows from Theorem 2 that v(a(n,),n,) > v(nyni'a(n,), ny) < v(a(n,), ny).
Hence nyni'a(n,) < a(ny); that is, a(n,)/n, < alny)/n, O

We also have v(a(n),n)—aln)/n =0(1/n) [see Wang (1991)]. Thus
lim, ,, a(n)/n = p, and each isoindex curve in the space (a, n) is therefore
asymptotic to a line through the origin with a slope equal to the index value.

3. Sampling processes with continuous distributions. An analogous
result to Theorem 2 for continuous distributions is first given. This is then
applied to normal and negative exponentially distributed reward and target
processes.

In this section all densities are with respect to Lebesgue measure, possibly
in a space of dimension greater than 1. Suppose & is a parametric family of
distributions with densities f(-|6) with common support and that the sample
sum S, =Y,_,X, is a sufficient statistic. If 6 has the probability density
mo(60), the posterior density for 6 is of the form =(0lX,, X,,..., X,) «
mo(OIT, _, ., f(X,16). Since S, is sufficient it follows from the Neyman factor-
ization theorem that =(6|X,, X,,...,X,) may be written in the form
m(0]S,, n), because it depends on (X, X,,...,X,) only as a function of
(S,,, n). The state of the corresponding bandit sampling process may therefore
be represented by (S,,, n), suppressing the dependence on the common prior
density m,. Write f(x|S,,n) for the conditional density [f(x|6)w(6|S,,n)d6
and F(x|S,, n) for the corresponding distribution function.

Suppose now that the sampling process starts from the state (¥, n), and
suppose initially that the process is not a target process, to avoid the complica-
tion of the additional completion state C. Let S, = 0, S, = £, _, X, and define
inductively

X, 1 =G{F(X, .2 +S,n+¢t)}, t=0,1,2,...,
where G,(-) is the inverse function of F(-|¥ + S/, n’ + t), so that
F(G,(b)|¥ +8,,n +t)=b, 0<b<]l,

and S;=0, S, =X,_,X/. Thus the process {X;: t=1,2,...} is another
realization of the same sampling process, this time starting from the state
(3/, n'). Moreover we have defined a (1-1) correspondence between realizations
starting from (3, n) and (3/,n'), so that the filtration {%,: ¢t > 1}, where %
denotes the o field o({X;: i < ¢}), and the corresponding filtration defined in
terms of the primed process are identical, and we may therefore, in particular,
regard a stopping time which is defined in terms of one process as applying to
both.

Denote the expected undiscounted reward from taking a further sample

from the process when it is in state (S, m) by r(S,m). Our analogue of
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Theorem 2 holds under the following conditions:

.8/ >S5, when 3/n <% /n,n>n"and S,/i >3/n forl <i <t

.S, m) <r(T,n)if S/m =T/n and m > n.

. r(S, m) is an increasing function of S.

. v(S,m) < for all (S, m).

- supy Lo Elr(S+ X, + X, + -+ +X,,, m + M)| < o for all (S, m), where
M is a nonrandom positive integer.

OU ik WO N =

Note. For target processes, conditions 4 and 5 are always satisfied.
THEOREM 3. For a bandit sampling process with no completion state and
satisfying conditions 1-5,

(4) v(2,n) <v(2,n)if 2/n<X/n andn >n'.

We first prove the following lemma.

LEmMA 2. Under the conditions of Theorem 3,

vI(S,n) <o™(3,n), T=1,2,....

Proor. This proceeds by induction on 7. We have
vi(2,n) =r(3,n) <r(3,n) =vi(3,n),

so the lemma holds for T = 1.

Now suppose the lemma is true for T <V — 1, where V> 2. Let (V)
(< V) be the stopping time with respect to the filtration {%: ¢ > 1} such
that v_y(3,n) = v(3,n) and which is defined by Theorem 1(ii). Thus on
{r(V) > t},

VWHE 4+ S, +t) 2 vV(S,n) 2 vVTH(S,n),

the second inequality following from the fact that if A c B c R, then
sup(B) > sup(A). From the inductive hypothesis it therefore follows that

(2+8,)/(n+t)=3/n,
sothat S,/t >3/n (1 <t<V-1).

Now using conditions 1, 2 and 3, we have

R.p(3,n) = E[ Y Ht<t(V)}r(S +8,,n + t)a‘]

0<t<V
_ E[ Y Ht < (V) r(Y +Si,n + t)a‘] — R o(3, 1),
0<t<V
Trivially
W’(V)(E’n) = W’(V)(El’n,)7
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so that
V(3 n) = sup (Y, ') = vy (3, 1) = R (3, n) /W,y (3, 1)

= RT(V)(E’ n)/WT(V)(E’ n) = VV(E’ n).

Thus the lemma is also true for T = V. This completes the induction and the
proof of the lemma. O

To complete the proof of the theorem it is sufficient to show that
lim,_, . v7T(3, n) = v(2, n). This follows.along similar lines to the correspond-
ing stage in the proof of Theorem 2, using condition 5.

COROLLARY 2. Theorem 3 remains true for a target process, in which case
condition 3 is required only for states which can be reached from at least one of
the initial states (3, n) and (X', n') without first reaching the target.

The only differences between the proofs of the theorem and the corollary
are that for a target process 7(T') < o, and that in the proof of the lemma
where the stopping time 7(T') is applied to the primed process it is replaced by
7(T) = min[o’, 7(T')], where o and ¢’ are the times taken to reach the target
for the unprimed and primed processes, respectively. Note that R (%', n') =
R (7', n') and W, (3, n') < W, (3, n').

ExamMpLE 1 (Normal reward and target processes). Suppose that the
observations are normally distributed with mean u (unknown) and vari-
ance o2 (known). The conjugate prior densities for u are of the form
@mro?n ) V2exp{—n(u — 2n"12/(20?)}. When n is an integer this is the
posterior density after observations x,, x,,...,x, with total 3 starting from
an improper uniform prior density over the real line [e.g., see Raiffa and
Schlaifer (1961)]. Thus (3, n) identifies the state.

Condition 1 of Theorem 3 may by shown to hold. For the normal reward
process

+oc
r(z,n) = f af (x|2,n)dx =3 /n.
For the normal target process, invariance properties under changes of location
and scale mean that we may assume the target to be 0 (L = 0) and the
variance to be 1 without loss of generality (G, Theorem 6.21). Therefore,
r(3,n) = P(X > 0), where X is normally distributed with mean 2 /n and
variance 1 + n ™!, so that

r(3,n) = ®[S{n(1+n)} "7,

where ®(-) is the standard normal distribution function. Conditions 2-5 of
Theorem 3 easily follow for the reward process, as do condition 2, and the
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restricted version (see Corollary 2) of condition 3 for the target process
provided 3’ < 0.

For the reward process it follows from Theorem 3 that v»(An,n) is a
decreasing function of n for fixed A. Since the learning component may be
written as v(An, n) — A it follows that this too is a decreasing function of n for
fixed A. For the target process Corollary 2 gives the result that v(An,n) is a
decreasing function of n for fixed A provided A < 0 (which it normally will be
if the target has not been reached). Since r(nA, n) is a decreasing function of
n for fixed A this result may not be expressed in terms of the learning
component.

ExampLE 2 (Exponential reward and target processes). For an exponential
process, f(x|6) = 6e~%*. The conjugate prior densities for 6 are of the form
(I'(n))~'2"0""1e~%* When n is an integer this is the posterior density after
observations x,x,,...,x, with total 3 starting from an improper prior
density proportional to #~!. The conditional density of the next observation is

F(xlS,n) = [F(xl0)m (05, n) dO = n3" /(3 +x)"",
0
and thus (3, n) identifies the state of the process. When n > n/,

t+1

3+ S,

(n+8)/(n'+¢)
} -(2+8))

X . 1=(3+ S,’){l +

(2 +8S)(n+1)
(S +8,)(n 41y e

It follows that condition 1 is satisfied and X; > X,. For the exponential reward
process,

S.n) = [“ef(xlSn) dx = —
r( ,n)—fox(x ) X=
and conditions 2-5 are easily checked. Invariance arguments show that
v(2,n) =3n"'w(l, n) (G, Theorem 6.11), so it follows from Theorem 3 that
v(1, n) is a decreasing function of n.

For the exponential target process (L = 1),

r(E,n):flmf(xIE,n)dx= (2+1) ,

and conditions 2 and 3 are easily checked, so from Corollary 2 it follows that
v(An,n) is a decreasing function of n for any fixed positive value of A.

For both reward and target processes r(nA, n) is decreasing as a function of
n for fixed A, so our results may not be expressed in terms of the learning
component.
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4. A related conjecture. The most widely studied bandit problem, apart
from the case of geometric discounting, is the undiscounted case with a finite
horizon N. Suppose two independent Bernoulli arms in states (a,n) and
(a/, ') are available. It has been shown [Berry (1972)] that, as with geometric
discounting, a play-the-winner rule maximizes the sum of the first N observa-
tions. Berry (1972) conjectured that when a/n < a'/n’ and n > r/, the opti-
mal strategy is to pull the arm which is in state («/,n'). This conjecture is
similar to our Theorem 2, and a similar heuristic argument indicates that it is
true. Unfortunately the proof of Theorem 2 depends on the optimality of an
index policy, and this does not hold when the discounting is not geometric.
Berry’s conjecture remains unproven as far as we know.
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