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BOOTSTRAP ESTIMATION OF CONDITIONAL DISTRIBUTIONS

By JamEs BooTH, PETER HALL AND ANDREW WOOD

Australian National University

Techniques are developed for bootstrap estimation of conditional dis-
tributions, with application to confidence intervals and hypothesis tests for
one parameter, conditional on the value of an estimator of another. Both
Monte Carlo and saddlepoint methods for approximating bootstrap distri-
butions are considered, and empirical methods are suggested for im-
plementing these techniques. For example, in the case of Monte Carlo
methods, we suggest empirical techniques for selecting both the smoothing
parameter, necessary to define the estimator, and the importance re-
sampling probabilities, required for efficient bootstrap simulation. The
smoothing parameter depends critically on the number of Monte Carlo
simulations, as well as on the data. Both our theoretical and numerical
results indicate that pivoting can substantially improve performance.

1. Introduction. The basics of bootstrap distribution estimation are now
quite well understood and have been described particularly well in survey
papers by Hinkley (1988) and DiCiccio and Romano (1988). However, very
little is known about how bootstrap methods might be used to estimate the
conditional bootstrap distribution of the value of one statistic, given a value for
the other.

Fisher’s “conditionality principle” [e.g., Kendall and Stuart (1979), page
232] for statistical inference is well known. It states, when conducting infer-
ence about the first component of a parameter (6,,6,), based on a statistic
(S}, S;) where the second component is independent of 6,, that it suffices to
work with the conditional distribution of S, given S,. However, there are
other situations where conditional inference is advantageous. In some prob-
lems involving paired data, the cost of observing one of the variables is
considerably greater than the cost for the other, and the cheaper variable may
be principally of interest in shedding light on the more expensive one. For
example, this is typically the case when measurements are made of breaking
strength and, say, weight of structural members such as timber. The former
can usually only be determined by destroying the sample, whereas weight can
be measured very inexpensively, and often gives a good indication of breaking
strength. If sample sizes are standardized, then a training sample of both
variables can be used to provide confidence intervals for the population mean
of the more expensive variable, conditional on the observed value of a new
sample mean for the cheaper variable. More generally, by using resample sizes
different from the training sample size, bootstrap methods may be used to
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solve this problem even when the training sample size differs from subsequent
sample sizes.

Our aim in this paper is to develop methodology for bootstrap estimation of
conditional distributions. We treat the case where a confidence interval or
hypothesis test is derived for the value of one parameter, given the value taken
by an estimate of another parameter. Other situations, for example that where
the training sample and subsequent samples are of different sizes, may be
handled similarly. We suggest empirical rules for selecting the amount of
smoothing, and the method of resampling, so as to obtain accurate bootstrap
estimators of distributions. Particular attention is paid to the issue of pivoting,
which is particularly interesting in the present context; here, pivoting de-
mands standardization for correlation as well as variance. In the case where
the statistics of interest are means, we describe both Monte Carlo and saddle-
point methods for approximating bootstrap distributions, and compare these
two approximations with a normal approximation.

Section 2 introduces a variety of bootstrap methods for approximating
conditional distributions. Section 3 describes an illustrative example, Section 4
discusses saddlepoint methods and Section 5 summarizes large-sample theory
for Sections 2 and 3. Numerical examples are given in both Sections 3 and 4.

2. Methodology.

2.1. Introduction and summary. We develop a systematic approach to the
construction of resampling approximations to conditional probabilities. Section
2.2 notes that there are difficulties defining bootstrap estimators directly and
suggests that these be overcome by smoothing. Kernel methods are proposed
with the degree of smoothing governed by a bandwidth, A. Direct calculation of
these estimators would usually be impossible, and so approximate methods
based on Monte Carlo simulation should be considered. Section 2.3 develops
this approach in the case of nonpivotal percentile-type estimators and intro-
duces the notion of importance resampling. Choice of optimal importance
resampling probabilities is addressed in Section 2.5.

In Section 2.4 we argue in favour of pivotal methods, pointing out that for
appropriate choices of the bandwidth and the number of simulations, pivotal
methods can have an accuracy of O(n~!) rather than O(n~'/%). A detailed
justification of this claim will be given in Section 5. In the context of estimat-
ing conditional distributions, pivoting involves standardizing by an estimate of
the correlation coefficient as well as Studentizing by an estimate of the sample
standard deviation. Versions of these estimates have to be calculated for each
resample, and pivotal methods cannot be expected to perform well if stable
estimates are not available. Instability typically occurs when the statistic of
interest is formed from a ratio, such as the correlation coefficient or a ratio of
two means, and the denominator assumes values close to 0. In such circum-
stances, the simpler, nonpivotal methods described in Section 2.3 would be
preferred.
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Both pivotal and nonpivotal methods depend on choice of the bandwidth, 4,
and the number of Monte Carlo resamples, B. For optimal performance, A
must depend on B. This is an unusual aspect of the problem, since the
idealized bootstrap estimators defined in Section 2.2 depend on A2 but not on
B. It is only when considering practical calculation of those estimators that we
must introduce Monte Carlo simulations, and hence B. Section 2.6 suggests
practical rules for choosing % as a function of B.

Finally, Section 2.7 describes application of these techniques to the problem
of constructing a confidence interval for the true value of one parameter,
conditional on the observed value of an estimator of another. A numerical
example will be given in Section 3. :

It is helpful to summarize our notation. We suppose that there are two
unknown parameters 6,, ,, with estlmates 01, 02 having asymptotlc variances
ol 02 , and that the latter have estimates 62, 62. It is assumed that (61 —-60,))/0,
and (6’2 8,)/0; have an asymptotic joint normal N(0, 0; 1, 1; p) distribution.
We write p for a sample estimate of p. If estimates such as 6,,0,,... are
calculated for a resample rather than the original sample, then this fact is
indicated by an asterisk * if the resample was drawn uniformly from the
sample, and by a dagger ' if the resample was drawn by importance resam-
pling.

It is assumed that the number of resamples, B, is only of algebraic order in
the sample size, n. That is, B = O(n°) for some ¢ > 0. For example, B ~ "¢
is not allowed. The bandwidth formula which we given in Section 2.6 guaran-
tees that if B is no larger than algebraic, then A is no smaller than algebraic,
meaning that A~! = O(n°) for some c. This is important to both the theory in
Section 5 and the practical construction of the estimators and their Monte
Carlo approximation. In particular, the bootstrap estimates introduced in
Section 2.2 will perform erratically if A is geometrically small.

2.2. Definition of a bootstrap estimate. Let 01 and 0 represent estimates
of parameters 6, and 6,, computed from a sample 2" erte 6* and 6% for the
values assumed by 6, and 02 when the sample is changed to a resample a*
drawn randomly, with replacement, from 2. Let Pr’ and E’ denote probabil-
ity and expectation, respectively, conditional on 2" Formally, we might define

(2.1) g = Pr’(é’f < x|5§ = y)

to be the “naive” bootstrap estimate of ¢ = Pr(f, < x|6, = y). However, there
are both practical and theoretical difficulties with this proposal. Even if y
happens to be an atom of the bootstrap distribution, the value of § may bear
little relation to g. For example, if the data come from a continuous distribu-
tion and we take y = 6, then it will typically be the case that with probability
1, 02 = 02 if and only if the resample 2™ is identical to the sample . A case
in point is that where 6, denotes the ' sample mean. In this circumstance, the
value of § at (2.1) reduces to 1 if 6, <x and to O otherwise. That is, the
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“naive” bootstrap estimate of Pr(d, < x|6, = 6,,,) is just the indicator func-
tion of the event 6, < x, which is quite unsatisfactory.

A more appropriate estimate would be one which averaged over values §§ in
a neighbourhood of y. For example, we might take

(2.2) g=Pr(6f <zly -h <85 <y+h)

for an appropriate small number A.

To generalize the estimate at (2.2), let K denote a kernel function of the
type familiar in problems on nonparametric curve estimation [e.g., Silverman
(1986), Chapter 3, and Hirdle (1990), Section 3.1]. In particular, we ask that
JK =1 and [yK(y)dy = 0. Put

fy = hE[1(0% < x)K{(y - 635)/h)],
(2.3) fy = h B[ K{(y - 8%) /)],
G =01/ls.

If we take K(u) = I(Ju| < 1)/2, then the estimates at (2.2) and (2.3) agree
precisely.

2.3. Monte Carlo approximation. The kernel estimate at (2.3) may be
approximated by Monte Carlo simulation, leading to an estimate similar to
that employed in problems of nonparametric regression. Let 27,..., 2%
denote independent resamples drawn randomly, with replacement, from the
sample 2'={X,,..., X,}. Let (%, 6%,) denote the version of (6, 6,) computed
from Z;*. Then

n 1 B Yy - é;z

;Lﬁ=B—hiZII(0T,Sx)K{ A },
1 B [y—05

Ak K

He Bh lgl { h }

represent unbiased approximations to [, fi,, respectively, in the sense that
E'(@3) = f), for k = 1,2. This suggests that we take ¢* = 4% /4% as a Monte
Carlo approximation to §.

More generally, the Monte Carlo simulation might be done by ‘importance
resampling, as follows. Consider the probability distribution which ascribes
mass m; to the sample value X, for 1 <j < n, where X7, = 1. Let .,
denote independent resamples drawn randomly according to this rule, and
write M, for the number of times X; appears in 2;'. Let (], 63,) denote the
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version of (8, 8,) computed from 2", and put

At 1 B AT Yy - é;t r _M:/

al = B—hi§11(01i£x)K - jl:Il(nn-j) )
1 2B Yy - é; id +

AT T K L ) _Mu

b g R o

Then 4}, is an unbiased approximation to /i ¢ for £ =1,2, and so ¢ = 4l /4l
is a potential Monte Carlo approximation. Of course, we should choose
Ty, ..., T, S0 as to minimize the error in this approximation. Section 2.5 will
address this problem. .

2.4. Pivoting. The issue of pivoting, or Studentizing, has received consid-
erable attention in work on the bootstrap [e.g., DiCiccio and Romano (1988)
and Hall (1988)]. In problems where a “stable’” estimate 672 of the variance of
0, is available, there are advantages in approximating the distribution of
6, - 0,)/, rather than that of 6,. These advantages persist in the problem
of estimating conditional distributions, as we shall show in Section 5.1. In
particular, if 5 is a sample estimate of the asymptotic coefficient of correlation,
p, between 51 and 52, then a bootstrap approximation to

p=p(u,w)
- Pr[(l =% H{(8y - 02)67" - pw) < u|(6, - 6,) /6, - w]

will typically be in error by only O(n ~!), whereas a bootstrap approximation to
q = Pr(h, < x16, = y) will usually be in error by terms of size n~!/2. The form
of standardization in (2.4) derives from the fact that if ( V, W) is approximately
normal N(0,0;1,1, p), then conditional on W = w, (1 — p2)~ 2V — pw) is
approximately normal N(0, 1).

To develop a bootstrap approximation to p based on importance resampling,
let &;;, | denote the versions of &, and 5 computed from the resample 2",
and put V.= (8, - 6,)/8,, W = (8, — 8,)/6,, U = (1 — 32~ V%V - pw), AR
0% = 8/8],, W' = @}, - 8,)/64,, UT = (1 — o) V2(V;" - plw) and

12

(2.4)

w— WS

A N 1 B n
(2.5) AJTI:)‘Tl(u:w)Z_ZI(UiTSu)K Z I—[(n'rr-)iM‘Tf,
Bh ;2 , h =17

A A 1 B w — WT n T
2.6 AL =it =— Y K{— % My,
( ) 2 Z(w) Bh i§1 { h }Jl:[l(nwj)
Then the desired approximation is p" = p'(u, w) = AT /A%, We also define

(2.7 po(u) =p(u,0),  pi(u) =p'(u,0) = X(u,0)/4,(0).

In respect of 52, although not for 91, the issue of pivoting is often vacuous.
This is because we generally wish to compute the probability that (6, — )/
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&, < x, conditional on the observed value of 6,, which we denote by 6,,,. In
calculating the bootstrap approximation to this probability, we effectively
condition on the event that 0* lies within a neighbourhood of 02, or equiva-
lently, that (()2 6 ) / lies w1th1n a neighbourhood of 0. Irrespective of how
the Studentizing of 0* is performed, or indeed whether Studentizing is carried
out or not, we are effectively conditioning on the event that 8% — 6, is close to
0. This event is determined by choice of the bandwidth 4. Therefore, when the
probability being calculated is conditioned on the observed value of (32, Studen-
tizing of 52 has a bearing on the scale of the bandwidth 4 but hardly at all on
the accuracy of the bootstrap approximation.

2.5. Choice of resampling probabilities for importance resampling. We
assume that the sample values in 2= {X,,..., X,,} are d-variate and that
6, = g,(w) for £ = 1,2 are smooth functions of the population mean u = E(X).
Let X =n 'L X;, put 8, = g,(X), let 2 denote the Ith element of the
d-vector z and define

d a n
8ri(2) = (‘9/‘92(1))&(2)’ ij = Z (Xj ) )gkl(X) §1§ = Z D/%j
- Jj=1
and ¢, = §;,'D,;. In thls setting, 62 = n~ 287 is an estimator of the variance
of 6,. Note too that X ;€4; = land that g = Zsl ;€2; estimates the correlation
between 6, and 8,.

Let U, W be as in Section 2.4 and define Y = (1 — p) /25,46, — 01).
Suppose we wish to estimate p = Pr(U < u|W = w), using the approximant p’
defined in Sectlon 2.4; or to estimate p, = Pr(Y < ulf = 0201)5) using the
approx1mant Db; or to estimate g = Pr(0 < xIO = ) using the approx-
imant ¢’ introduced in Section 2.3. In the case of pj, take w =0 in the
work which follows, and in the case of ¢, take w = (y — 6,)/6, and u =
1 -2 V2(x - ()1)01 — pw}. Let @ denote the standard normal distribu-
tion function. It will be shown in the Appendix that the asymptotically optimal
choice of the resampling probabilities ; is

(2.8) m; = exp{— (A&, + Agey;) + C},
where C is chosen to ensure that X7, = 1, and A,, A, are chosen to minimize
29 [(1 - 20(u)}@(u - A,(1 - p2)"/"} + D(u)’]

X exp{(A;p + A)w + AX(1 - p?) + 5(Asp + 4,)°).

If w = 0, then this reduces to taking A, = —A,p and choosing A, to mini-
mize

(2.10) [{1 — 20(u)} o{u — Ay(1 - p?)%) + cp(u)z]exp{A%(l - p?)}.

In (2.9) and (2.10), p may be replaced by its sample estimate /5 without
affecting the asymptotic optimality of these choices of A; and A,.
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TaBLE 1
The value of t(u) which minimizes b(¢, u) in (2.11) for a range of values of u

u t(u) u t(u) u t(u) u t(u) u t(u)

0.1 -0.06 0.7 —-0.43 1.3 -0.76 1.9 —-1.05 2.5 -1.30
0.2 -0.13 0.8 -0.49 14 -0.81 2.0 -1.09 2.6 —-1.35
0.3 -0.19 0.9 —0.55 1.5 —-0.86 2.1 -1.13 2.7 -1.39
0.4 -0.25 1.0 —-0.60 1.6 -0.91 2.2 -1.18 2.8 —-1.43
0.5 -0.31 1.1 —-0.66 1.7 -0.96 2.3 —-1.22 29 —-1.47
0.6 -0.37 1.2 -0.71 1.8 —-1.00 2.4 -1.26 3.0 -1.51

Note: For nonpositive values of u, use t(—u) = —t(w).

Table 1 lists values of ¢ = ¢(x) which minimize
(2.11) b(t,u) = [{1 - 20(u)}@(u — t) + D(u)®]e!

for selected u’s. An empirical approximation to the value of A; which mini-
mizes (2.10) is given by A; = (1 — 52)~2¢(u). Note that b(¢, u) = b(—¢, —u),
and so #(—u) = —t(u). This explains the symmetry of the efficiency curve
e(u) specified in (2.12) and contrasts markedly with the pronounced asymme-
try found in the case of importance sampling estimates of unconditional
probabilities. See Johns (1988) and Davison (1988) for the latter.

We show in the Appendix that the quantities at (2.9) and (2.10) are
asymptotically proportional to the conditional variance of the estimator ob-
tained by importance resampling, and should be replaced by ®(u)1 — ®(u)}
in the case of uniform resampling. The asymptotic efficiency of importance
resampling relative to naive uniform resampling is therefore given by

P(u){1 - P(u)} .
mint([{l —20(u)}P(u —t) + (D(u)zletz)

(2.12) e(u) =

The graph of this function is symmetric about « = 0 and cup-shaped, asymp-
toting rapidly to + as |u| — ». For example, ¢(1.645) = 2.85 and e(1.96) =
4.33. This indicates that an improvement in efficiency by at least a factor of 2
is achievable in many situations of practical interest, by using our importance
sampling procedures.

We should remind the reader that, owing to the smoothing used to con-
struct pj, this approximant can be biased as well as having error about the
mean. Our use of the term “‘efficiency’’ above pertains only to a comparison of
variance, not mean squared error.

2.6. Choice of bandwidth. The key to a simple solution to the bandwidth
problem is to observe that, since (6, 2) is asymptotically normally distributed,
unknown distributions which appear in formulae for optimal bandwidths may
be replaced by their normal approximations. We shall illustrate this technique
by treating the pivotal case, when conditioning is on the observed value of 02
That is, we suggest a formula for the bandwidth - used to compute pj,
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defined at (2.7). This quantity represents a bootstrap approximation to p, =
Pr{(1 — p2) V26746, — 6,) < ulfy = by,,.).

We assume that the kernel K is of second order, meaning that [K = 1,
[yK(y)dy = 0, 2«; = [y2K(y)dy # 0. Arguments in Section 5 and the Ap-
pendix produce formulae for the error about the mean, and the conditional
bias, of the bootstrap approximant p'. Thus, defining p, to equal the ratio of
the conditional expected values of the numerator and denominator in formula
(2.7) for p}, we may prove as in the Appendix and Section 5, respectively, that

(213)  ph=po+ (Bh)"(xsB/6(0)}"*Z + o,{(BR) %},

(2.14) po = Bi(,0) = h3,p*(1 = p?) ud(u) + O,(h°) +0,(n7 ).

In these formulae, x, = (K% ¢ = @', B is given by (2.10) in the case of
importance resampling and by 8 = ®(z){1 — ®(u)} in the case of uniform
resampling, the random variable Z is asymptotically distributed as normal
N(0,1), and p,(u,0) denotes an Edgeworth approximation to p,. It is defined
as the standard two-term Edgeworth expansion of p,, up to and including
terms of size n~1/2, except that population moments are replaced by sample
moments [see (5.2)]. Thus, p, does not depend on A, and p, — p, = Op(n_l);
see Sections 2.4 and 5.1.

If we regard p, as the target of the bootstrap approximant pj, then it
follows from (2.13) and (2.14) that the asymptotic mean squared error is given
by

-1 -1 4 2 2y~ 1 2
(BRh) 'kyB(0) ™" + h4{k1p(1 - p2) Tud(u)) -
This quantity is minimized by
-2/5

h=[(4Bo®) k] (kin(1 - %) Tul(w))
which suggests the empirical bandwidth

h = [(4Bo(0)} "aB] (ki (1 - 57) Nulg(n)}

In the latter expression, 3 would be obtained from the formula (2.10) for g8 by
replacing p by p.

For nonzero w, ¢(0) in (2.13) should be replaced by #(w), p,(u,0) by
Pu,w) in (5.2), and ¢(u,0) = p*(1 — p?) 'up(u) should be replaced by
Y(u, w) defined below (5.5). The corresponding empirical bandwidth is given
by

2/5

2/5
h = [(4Bo(w)) "]l (u, w) 1)
where p replaces p in ¥(u,w) and B, and B is now given by (2.9). In the
nonpivotal case, the situation is somewhat different because of the presence of
the unknown parameter p in the leading term of the Edgeworth expansion of
q = Pr(8, < x|6, = y); see the discussion at the end of Section 5.1.
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2.7. Construction of confidence intervals. Suppose we wish to construct a
confidence interval for 6,, conditional on the observed value of 6,. We shall
describe a solution to this problem based on the bootstrap approximant A},
defined at (2.7). Methods which utilize nonpivotal statistics, such as those
discussed in Section 2.3, may be developed similarly. However, since nonpiv-
otal techniques are usually only first-order correct, meaning that they approxi-
mate probabilities with errors of size n~!/? rather than n~!, then they will
not usually perform as well as pivotal methods in problems where stable
estimates of variance and correlation are available.

Recall that pi(u) approximates py(u) = Pr{(1 - p*)~ V2516, - 6,) <
ulfy = 0,,.). Given 0 < a < 1, put

= (ﬁo)_ (a) = inf{u:ﬁf)(u) 2 a}'

Then #', is a bootstrap approximation to the value u, such that
N~ 12, 1/ A A
PI‘{(]. - pZ) 0-1 1(01 - 01) < ua|02 = 020178} = .

Therefore, an approximate one-sided «-level confidence interval for 6,, condi-
tional on 6,, is

(8, - (1= 7)ot ).
An approximate two-sided a-level interval is

Ao\1/2 A A 1/2 0 4
(91 - (1 - Pz) 01“(1+a)/2,01 - (1 - Pz) 01”?1 a)/z)

3. Application to bivariate means. A simulation study to examine our
approach in the case of bivariate means was conducted. The results, which are
summarized in Table 2, were obtained as described below.

One thousand samples of 50 bivariate observations were generated. The
generic sample 2= {( XV, X?),..., (XY, X?)} consisted of independent ex-
ponential variates X{®, i = 1,...,n, with common theoretical mean 1, and

TABLE 2
Coverage properties of the pivotal bootstrap, saddlepoint and normal methods

Sample size N=10 N =20 N =30 N =40 N =150
L U L U « L U L U L U

True value 50% 95.0% 5.0% 95.0% 5.0% 95.0% 50% 95.0% 5.0% 95.0%

Method

B(200) 124% 99.0% 7.6% 98.8% 55% 98.1% 55% 972% 58% 97.5%
B(500) 123% 98.9% 7.5% 988% 4.8% 98.1% 51% 972% 58% 97.7%
B(1000) 12.8% 98.7% 1.8% 98.9% 4.6% 98.0% 52% 97.3% 57% 97.4%
SP 29.9% 97.1% 18.5% 98.4% 15.4% 98.0% 14.0% 97.0% 14.0% 97.7%
Normal 26.3% 99.2% 16.5% 99.1% 14.3% 98.6% 13.0% 97.5% 12.6% 98.1%

Note: Columns labelled L (U) give the proportion of times that the true parameter value was
smaller than the lower (upper) confidence limit.
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their logarithms X" = log(X®), i = 1,...,n. Our objective was to obtain,
conditional on 6, = ¥ X®/n, a nonparametric confidence interval for the
parameter

6, = E(X") = [ log(x)e * dx = —0.57721... .
0

_ Using the fact that (Dy,..., D,) = (X{®/b,,..., X®/§,) is independent of
6, and has a uniform distribution on the simplex

it is seen that

A

0

1 éz =4 n-t Z log(Dl) + log(éQ).

Of course, 6, = £ X /n. In the simulation study we chose 6, = E6,) = 1.

For each of the 1000 simulated samples, the calculations outlined in Section
2.7 were performed and two-sided confidence intervals, of nominal level 0.9
and symmetric on the probability scale, were constructed. Three choices of B,
the number of bootstrap resamples, were considered: B = 200, 500 and 1000.
The reduced sample sizes n = 10, 20, 30 and 40 in Table 2 were obtained by
selecting the first 10, 20, 30 and 40 observations respectively from the size 50
samples.

The results in Table 2 indicate that the pivotal bootstrap approach is
insensitive to the choice of B in the range 200 < B < 1000. The differences in
coverage ‘“‘on the left” and ‘“on the right” are due to the fact that the
underlying distribution is highly skewed. The bootstrap does well on the left
when n > 30, but on the right the bootstrap confidence intervals tend to be
too long although there is improvement with increasing n. The performance of
the saddlepoint method which is described in the next section is slightly better
than the pivotal bootstrap on the right, but is vastly inferior on the left.
Indeed, on the left the saddlepoint method is even worse than an approxima-
tion based on the assumption that the sample 2" is selected from a bivariate
normal distribution; specifically,

Pr{()?(l) - 01)/[(1 - ﬁz)nfrf/('n - 2)]1/2 sy} =Pr{T,_, <y},

where T, _, has a ¢-distribution with n — 2 degrees of freedom.

Our main conclusion from this example is that pivoting is important and
may in practice lead to a substantial improvement in performance. This
conclusion is based on the suggestion in Section 4 that the saddlepoint
approach accurately approximates the nonpivotal bootstrap with a suitable
choice of bandwidth. As in other, more traditional applications of the boot-
strap, the advantages of pivoting are more substantial for more highly skewed
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distributions. The exponential population in this example has relatively large
skewness.

4. Saddlepoint methods. In Section 5.1 we note that the problem of
bandwidth selection is more complicated for the nonpivotal estimate, 4,
because the relevant limiting conditional distribution depends on an unknown
parameter, p. Recall that when K(u) = Klu| < 1}/2, §" is an approximation
to ¢ in (2.2) based on a finite number of resamples. In the setting described in
Section 3, the nonpivotal estimate § may be approximated directly (i.e.,
without resampling) using the saddlepoint method advocated by Davison and
Hinkley (1988), Section 5. This method may be described as follows.

Let a(X*) denote the density of the discrete bootstrap distribution of the
bivariate sample mean 6 = (X, X®)T, and let f(X*; ) denote the “tilted”
bootstrap distribution

(4.1) f(X*;B) = a(X*)en(BTX*an»’

where B = (B, Bx)T and «(B) = log{(1/n)L" 1eBTX :}. Then an approximation
to (2.2) is obtained by applying Skovgaard’s (1987) saddlepoint formula for the
conditional distribution of X® given X® =y when B, = 0 under the model
(4.1). Specifically, this yields

1
(4.2) = a(0) + ¢(z){— - E}’

where ¢ = @' and ® is the standard normal distribution function;

¢ = sgn( :él [—Zn ﬁzwvy - "(é«») = Bix = Boy + K(B)}]w

&= Bl{|J(B)|/|]22(B(0))|}1/2 and ](ﬁ) = ‘32"/63 8B Jao(B) = 32'(/‘932, ﬁ solves
ok /3BT|g_p = (x,y) and 3(0) (o, Bz(m) solves 8K/032IB ~Bo = Y- A modified
form of the approximation is needed if Bl = 0. In their example Davison and
Hinkley found the saddlepoint approximation (4.2) worked well for a band-
width & = 0.256,.
Table 3 shows the accuracy of the saddlepoint approximation to ¢ for the
ﬁrst sample of size n = 10 in the simulation study of Section 3. In Table 3 the
“exact”’ values of ¢ are given corresponding to quantiles obtained by inverting
the saddlepoint conditional distribution for 01 given 6% = 1 with h = 0.05,
0.10 and 0.25 times &,, the standard error of 6, = X®. By “exact” we mean
that the values were the fraction of times that 0* fell below the saddlepoint
quantile out of those resamples for which 1 — A < 0* <1+ h in a total of 10°
uniform resamples. Table 3 suggests that the saddlepomt approximation to ¢
is good for A = 0.05 and 0.10 times &,, but not for A = 0.25 &, the value
suggested by Davison and Hinkley. Thus, our numerical results corroborate
those of Davison and Hinkley (1988), although a different bandwidth was
required. It seems we are left with little insight into the smoothing mechanism
implicit in the saddlepoint method.
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TABLE 3
Comparison of the saddlepoint approximation (4.3) with the nonpivotal approximation (2.2)
at various bandwidths

Saddlepoint Percentage points of ¢
percentage points h = 0.055, h = 0.100, h = 0.255,
0.005 0.00522 0.00534 0.00943
0.010 0.00809 0.00925 0.01850
0.025 0.02347 0.02371 0.03897
© 0.050 0.06077 0.05563 0.06943
0.100 0.11007 0.10396 0.12112
0.200 0.21388 R 0.20023 0.22487
0.800 0.80490 0.80081 0.78312
0.900 0.89463 0.89148 0.87970
0.950 0.94940 0.94359 0.93155
0.975 0.97131 0.97316 0.96351
0.990 0.98905 0.98945 0.98397
0.995 0.99452 0.99401 0.98979

5. Large-sample theory.

5.1. Main results and summary. Recall from Section 2.4 that p =
p(u,w) = Pr(U < u|W = w), where

U= (1 - ﬁz)_1/2(V_ pw), V= (91 - 91)/&1’ W= (52 - 92)/5'2

and p is a sample estimate of the asymptotic coefficient of correlation between
51 and 52. We begin this section by outlining properties of the bootstrap
approximant p', defined in Section 2.4.

As noted in Section 2.4, the definition of U is deliberately chosen so that, as
n — o, p > ®(u), where ® is the standard normal distribution function. In
more detail, p admits an Edgeworth expansion of the form

m
(65.1) p(u,w)=o(u) + Y, n2Q,(ulw)p(u) + O(n=(m*b/2),

=1
where ¢ = ® and @Q,(u|lw) is a polynomial of degree 3/ — 1 in u, with
coefficients depending on population moments. Section 5.2 will describe the
origins of this expansion. Replacing the population moments in @, by sample
moments, giving a new polynomial Ql, we obtain from (5.1) an Edgeworth
approximation to p:

(5.2) Bn(u,w) =&(u) + lé_n: n=l2Q,(ulw)d(w).

At this stage in our argument (5.2) is no more than a definition of the
empirical Edgeworth approximation p,,. Section 5.3 will prove that, apart
from random fluctuations arising from the resampling procedure, and except-
ing terms of order n~(™*1/2 4+ b2 the bootstrap approximant p' is identical
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to p,,. In this sense, the bootstrap estimate can be viewed as an empirical
Edgeworth approximation, much as in more standard problems of bootstrap
inference.

Recall from Section 2.4 that p' = &', /A',, where A\ and X, are given by (2.5)
and (2.6) and are computed using kernel methods. Let us take the kernel K to
be of second order, which is the most common type in practice. Then [K = 1,
JyK(y)dy = 0 and 2k, = [y2K(y)dy # 0; for example, K could be a den51ty
function such as the standard normal density. In Section 5.3 we shall prove
that for each m > 1,

b= E'(A)/E'(Xy) = 4, /4,

(5.3) X

=P + BP0 (u, w) + O,(h® + n=1/2h2 4 p=(m+1/2)
where

Ay =E'(N) = B[ I(U* < u)K{(w - W*) /h}],
(5.4)

Ry =E'(R,) = h'E'[K{(w - W*)/h}],
(5.5) v(,0) = (20(1 = p%) " w - p2(1 - p?) u)b(u)

and ¢ denotes the standard normal density.

These results imply that the error in the bootstrap approximation p'(x, w)
to p(u, w) can be as little as Op(n_l), for judicious choice of B and A. That
represents a significant improvement on the error in the normal approxima-
tion, p(u, w) = ®(u), which is of size n~'/% To check our claim about the
order of p' — p, note that since @, — @, = O ,(n~1/2), then, subtracting (5.1)
and (6.2), p — p,, = O,(n" ") for m > 1. Henceby(53) P - p= O0,(n~' + h?).
As noted in the Appendlx the Monte Carlo approximation p' of p is subject to
additional random fluctuations of order (Bh) /2, arising from the Monte
Carlo resampling. Therefore,

p"—p =0, n""+h2+ (Bh) 3.

Thus, provided B and & are chosen so that A* + (Bh)~! = O(n~'), we have
pr—-p= 0,(n™").

This result, that the error in the bootstrap approximation can be as small as
0,(n™1), is not available for the nonpivotal methods introduced in Section 2.3.
We shall demonstrate why by discussing the problem of estimating q =
Pr(d, < x|02 ¥).

Let o2 denote the asymptotic variance of 0, and define s = (x — 6 /o1,
t=(y —0,)/05 S=(0,-6)/0, T = = (0, — 6,)/0,. Then S, condltlonal on
T = ¢, is asymptotically normal N(p¢,1 — p2). Therefore,

g =Pr(S <slT =1) = o{(1-p2) (s —pt)} + -+,

where the quantity represented by ¢...’’ comprises terms of order n and
smaller in an Edgeworth expansion. This result plays the role of (5.1) in the
present context, the crucial difference being that here, the first term depends

-1/2
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on the unknown p. In the version of (5.2) for this case, the first term is
changed to ®{(1 — p?)~%(s — pt)}. Thus, when the versions of (5.1) and (5.2)
are subtracted, we obtain

(I){(l _p2)—1/2(s —pt)} _ (I){(l —ﬁz)_1/2(s —ﬁt)} = 0,(n"1/%),

rather than simply Op(n’l) as was formerly the case. This quantity is of size
n~12 not n~!, since p — p is of size n =172,

5.2. Expansion of p. Under mild assumptions, for example Cramér’s con-
dition [e.g., Bhattacharya and Rao (1976), page 207], a moment condition
on the parent population and the assumption introduced in Section 2.5
that 6, = g,(n) for a smooth function g,, the joint distribution of U =
(1 - p) V%@, — 667" — pw) and W = (6, — 0,)/5, admits an Edgeworth
expansion of arbitrarily high order:

sup (1 + |I8CII2)
Cce?¥

(5.6)

Pr{(U,W) e C}

—fc{¢p,w(§,n) + X anz(f,n)cﬁp,w(f,n)} dédn
=1

= O(n—(m+1)/2)_

Here, ¢ denotes the class of all convex sets C, ||0C| is the Euclidean distance
of the boundary of C from the origin [Bhattacharya and Rao (1976), page 170],
¢, ., is the bivariate N{—(1 — p®)~%w,0; (1 — p?)~1, 1; p} density, and Q, is
a polynomial of degree 3/ whose coefficients depend on population moments.
If, in addition, the conditional distribution of U given W is well defined, for
which we ask that the parent population be continuous, then an expansion of
p = Pr(U < u|W = w) is obtainable directly from the Edgeworth expansion at
(5.6):

p=Pr(U <ulW=uw)

58 w6 w) + BT 2Qu(E w) (£ w)) dé
2 (b (£ w) + S nTI2Qu(£, )0, (€, w)) dé

4 O(nf(m+1)/2)

=®(u) + § n*l/2Ql(u|w)¢(u) + O(n—(m+1)/2),
=1

say. Here, ® and ¢ are the univariate standard normal distribution and
density functions, respectively, and @,(u|w) is a polynomial of degree 3! — 1 in
u. This establishes (5.1).

5.3. Expansions of p. Under the conditions leading to (5.6), that is,
Cramér’s condition, a moment condition and the “smooth function model”’ for
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the unknowns 6,, the bootstrap version of (5.6) is valid:

sup (1 + [l9C|*)|Pr'{(U*, W*) e C)
Ce?€

(5.7) -/, {dm,w(f,n) > n1/2Qz(§,n)¢ﬁ,w(§:”’7)} dédn
=1

= Op(n—(m+1)/2)‘

Here, § is a sample estimate of p, 6; and p* denote the versions of 6, and
p computed for a resample 2* rather than the sample 2, U* =
(1 = ) V%05 — 667" — p*w), W* = (% — 6,)/65, and @, is obtained
from @, on replacing population moments by corresponding sample moments.

Deﬁne f(gy TI) = d’ﬁ,w(g? 77) + lel < mn71/2Ql(§’ n)d)ﬁ, wggy "7), Wh1Ch iS an
Edgeworth approximation to the density f of (U, W). Put fy,(n) = [f(¢, 1) d&.
We may deduce from (5.7) that

A = hflf K{(w —n)/h}f(&,m)dédn + O, (h~n-(m+1/2)
é<u,—o<n<x

/‘2=h*1/ K{(w_n)/h}fw(n) d,'7 +Op(h—1nf(m+1)/2).
—o<n<®

Changing variable from 7 to ' = (w — 1)/h in each integral and then Taylor
expanding the integrands, we deduce that

hi=[ flewyde+ i fOD(&w)dé+ O (h° + bl m1/2),
¢{<u éE<u

Ay = Fo(w) + B2, F$2(w) + O,(h3 + h~1n=(m+1/2)

Here, a‘® denotes the second derivative of a univariate function a, and a¢®2
denotes the second derivatiye with respect to the second variable in a bivariate
function a. Noting that f— ¢, , and fy — ¢ are both of order n~'/2, we
obtain

R/As = By + W 80) ™ [* 602 (6 0) d

(5.8) _¢,(w)fz¢<z>(w)f:‘fpyw(g, w) dg}
+ O, (h® + n71/2p2 4+ p~1p=(n+D/2)

where p,,, = fAW(w)’lf‘_fsu f&, wyde.

Let m' > 1 be given. Since & decreases to 0 no faster than n~° for some
¢ > 0, then we may choose m > m’ so large that h~1n=("+1D/2 = Q(p~("+D),
Furthermore, if p,, is the Edgeworth approximation defined at (5.2), then
Bimy = P = O(n~("*1/2) Hence result (5.8) implies (5.3) with m in the latter
replaced by m/'.
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APPENDIX

We treat only estimation of p = Pr(U < u|W = w); other cases are similar.
Let U',W', M| denote generic versions of U, W, M, respectively, and
write U*, W*, M* for versions of the former varlables under uniform resam-
pling rather than importance resampling. Define A} and A, as at (2.5) and
(2.6), let A, and A, be as at (5.4) and (5.5), and put m; = —log(nﬂ- ),

w— W n
Al:ﬁ;I(QTsu)K{T—}exp(zMljnj) Aq,

n

Ay = — z K{ hWT}exp( > ”nj) 3.

Then E,(Ak) =0for k= 1,2 and
D= (R + 80)/(ha + 8) = p + A (A, — ) +0,{(BR) V),

where p = A,/A,. The conditional variance y of (Bh)2(A, — pA,) is asymp-
totic to

(I(U* <u) - )’ K{(w - W*)/h}zeXP( i MJ*TIJ‘)]
i1

hE

(I(UT <u) - p)’K{(w - W) /h) exp(z Y Mjn,

j=1

— h—lE/

(A1)

~ (/Kz)fw(w)E' {(I(U* <u) - p}*

Xexp( Y Mj*nj) w—h<W*<w+ h}.
j=1

Now, U* = U = (1 - p) V2 M¥e,, — (1 — p2) V2w, W* = W =
L Mjey;. Define Ty =X Mn; and n; = Aje,; + Agey; + Agé; + C, where
(¢,,...,¢,) is orthogonal to each of (1,...,1), (eyy,...,¢&,,) and (eq1, ..., £5,),
Lé?=1, and C 1s chosen to ensure that L= 1. Then C=(02n) %2+
o(n- ), where s? = A% + A2 + A2 + 2A A2p, and E'(U§) = -1 -

P V2%w, E'(WF) =0, E(T*) = nC, Var'(Uf) = (1 - pz) 2 4 0(1)
Var (W*) =1+ 0(), Var'(T}) = s% + 0(1) Cov'(UF, W) =1 —p? V%
o(1), Cov'(TF, Ug) = (1 — pH)~1/2(A, + Ayp) + o(1), Cov'(TE, Wo*)—(l -
P2 V2(Ap + A,) + o(1).

Let (T,, U,, Wy) be normally distributed with mean (s2/2, —(1 —
p?)"Y%w, 0) and variance matrix

s (2-p%) XA+ Ap) A +A,

. (1-9%)" (1-0) "
* 1
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Then by (A.1)

y/{(/K2)fW(w)} ~ E[{I(Uo <u) - p)leT

W0=w] =B,

where
B = (1= 2p) B{I(Uy < u)e™W, - w) + pB(e™|W, = w).

Conditional on W, = w, (T, U,) is normally distributed with mean (s2/2 +
(A;p + Ayw, 0), variances (A% + A%(1 — p?),1) and covariance A1 - pH/2,
Therefore,

B = [(1 — 2p)®{u - A1 - 9% +p2]
X exp{(Ap + Ay)w + A3 + A2(1 — p%) + 5(Ap + Ay)7).

It follows that B is minimized by taking A; =0, and also A, = —A,p if
w = 0. This gives the formulae at (2.9) and (2.10), when it is noted that
p—P(u)—> 0as n - «,

If we stipulate that each 7, = n~!, then A =A,=A;=0, whence 8 =
(1 = 2p)®(u) + p% > d(u)1 — d(u)).
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