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ADMISSIBLE ESTIMATORS OF VARIANCE COMPONENTS
OBTAINED VIA SUBMODELS

By WiToLD KLONECKI AND STEFAN ZONTEK

Polish Academy of Sciences

Simultaneous estimation of the vector of variance components under
unbalanced mixed models w.r.t. the ordinary quadratic loss function is
~ considered. A new method of constructing invariant quadratic admissible
estimators, both with and without the condition of unbiasedness, is pre-
sented. Using this method, admissible estimators for the factorial models
with imbalance at the last stage and the unbalanced (p — 1)-way nested
factors design are constructed.

1. Introduction. In recent years the problem of estimation of the vari-
ance components in mixed linear models has been intensively investigated. An
excellent reference is a recent monograph by Rao and Kleffe (1988). This paper
is devoted to the problem of constructing admissible estimators of variance
components (with and without the condition of unbiasedness) under the
ordinary quadratic loss function. Most relevant are the papers by Olsen, Seely
and Birkes (1976) and by LaMotte (1982). Theorem 3.14 of LaMotte, which
gives necessary and sufficient conditions for admissibility in the general linear
model, is of great theoretical importance, but unfortunately is too complex to
provide an explicit characterization of admissible estimators of variance com-
ponents in mixed models. To apply them requires, in most cases, solving a
system of linear equations with the number of unknowns proportional to the
square of the number of observations. For more details the reader may refer to
the work of Kleffe and Seifert (1986) and Klonecki and Zontek (1989a). An
explicit complete characterization of admissible estimators of variance compo-
nents is now available only for some special mixed models—models with two
variance components [Gnot and Kleffe (1983)] and models with commuting
covariance matrices [Klonecki and Zontek (1987)]. Also explicit formulae of
locally best (unbiased and biased) estimators can be derived for a broad class of
mixed models [see Rao and Kleffe (1988)].

In this paper we present a new method of constructing admissible estima-
tors of variance components that is applicable to many important applications
for unbalanced models. Its novelty lies in the idea of using known admissible
estimators under some simple models to construct admissible estimators under
some other, more complex models. Although it does not give all admissible
estimators, it allows assessment of admissibility of a large class of estimators,
in particular of some unbiased estimators based on the so-called cell means
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statistics [Yates (1934); Rankin (1974); Searle (1971); Tan and Tabatabai
(1988) and Hocking (1988)]. For details see Klonecki and Zontek (1989b). An
important feature of the method is that it allows construction of admissible
(biased) nonnegative estimators when a nonnegative estimator is available in
the specified submodel. Another attractive feature of the method is its adapt-
ability to computer algorithms.

The paper is organized as follows. Section 2 recalls definitions and estab-
lishes notation used throughout the paper. In Section 3, the definition of a
submodel is presented. It also contains the main result of this article, a
relationship between an admissible estimator under a specified submodel and
the corresponding admissible estimator under the primal model. In Section 4,
a necessary and sufficient condition for an admissible estimator to be nonnega-
tive is establish as well as some formulae one can apply to construct admissible
estimators in some special cases. Section 5 is devoted to estimation with the
condition of unbiasedness. It shows that a formula relating admissible unbi-
ased estimators in submodels to corresponding admissible unbiased estimators
in the primal models also can be established. In Section 6 admissible estima-
tors are provided for the model with two variance components: for some
factorial models with imbalance in the last stage and the unbalanced (p — 1)-
way nested random factors design. Also given are comments on how to
construct nonnegative admissible estimators.

2. Preliminaries and notation. A representation of the variance com-
ponent model with p variance components is

p
(2.1) X=DB+ ) Je;.
i=1
The design matrix D and the matrices oy, ..., J, are known and ¢,,..., ¢, are
mutually uncorrelated random vectors such that for all i = 1,..., p,
Ee; =0,

cove; = o;1,,

where I, denotes the r X r unit matrix. The regression vector B and the
variance components o; > 0,...,0, > 0 are unknown.
With this notation DB is a representation of the mean vector of X and

L P _,0,dJ;J] is the covariance matrix of X. This is usually written as

p
(2.2) X~ (DB, Y ffiJiJi')~
i=1
We are interested in estimation of the vector of the variance components
o =(0y,...,0,) when p > 2 and when g is treated as a nuisance parameter.
Attention is confined to estimators of the form & = (X'L,X,..., X'L XY,
where L, = NL; N, while N is the orthogonal projection onto the intersection
of the null space of D' and the space spanned by all columns of J4,...,dJ,.

p
These estimators are invariant to the fixed effects design matrix D. A maximal
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invariant statistic is

p
(2.3) NX ~ (0, Y UiMi)’

i=1
where M; = NJ,;J/N. For convenience we shall call this model an invariant
version of model (2.1). Estimators of o belonging to the considered class are
called invariant quadratic (IQE) and those that are also unbiased for o are
called invariant quadratic unbiased (IQUE).

To compute the quadratic risk of an IQE estimator one needs the fourth
moments of NX. Here it is assumed that they are as under normality,
although the normality itself is not needed. The problem of admissible
quadratic estimation of variance components under normality among all in-
variant estimators (not only quadratic) with respect to the ordinary quadratic
risk function was investigated by Farrell, Klonecki and Zontek (1989).

Throughout the paper we shall use the following notation. For any linear
operator V: 7, — 7, where 7; and 7, stand for finite-dimensional vector
spaces with inner products (to be denoted by ( -, - )), the image, the null
space, the adjoint operator and the Moore-Penrose generalized inverse are
denoted by Im(V), #(V), V# and V*, respectively. The symbol .7, ., stands
for the space of all linear transformations mapping %’ into %#”. We identify
A, ., with the space of all r X ¢ matrices. If V € .#, ,, we write V' instead of
V# and .#, instead of .#,,,. The space of all self-adjoint operators (symmetric
matrices) in .#, is denoted by .#. For any linear operator V in .#,,, we
denote by V ® V the linear operator which maps ., into ./ and is defined
for each C in ./, by (V® V)C = VCV'. For any given variance components
model (2.1), we denote by . the set of all linear operators which map %#” into
Im(N ® N).

Let #, stand for the space of all linear operators mapping ./, into itself. As
is customary, if We ¥#,, C € ./, and L € .2, then WC denotes the value of
W at C, while WL denotes the superposition of W and L. Also, if ¢ € #' and
A € 7, then Ad' represents the linear operator mapping %#‘ into ./, de-
fined for each b € #' by (Ad')b = (a'b)A. Clearly, if ¢t = 1 and a = 1, then
for every matrix A in ., symbol A* denotes the linear operator which maps
/, into Z and is defined by A*C = tr(AC) for every matrix C in ./,. We say
that operator B is associated with symmetric matrices By,..., B, if B =
L P_,B,e}, where e, is the ith column of I,. Moreover, symbol P,,r = 1,2,...,
stands for the orthogonal projection onto the null space of 1., where 1, is the
r vector of ones. The nonnegative orthant of %" is denoted by Z. Other
notation will be introduced as needed.

The operators of .2 provide a convenient shorthand method for writing
IQE estimators of o. They can be written as L*Y, where L € _#, while
Y = NXX'N, exposing the fact that IQE estimators can be treated as linear
estimators with respect to the random matrix Y. Under the adopted assump-
tion regarding the moments of NX,

EY = Mo,
CovY =2Mo ® Mo,
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where M stands for the operator in .~ which is associated with matrices
M, ..., M,. This will be written schematically as

Y~ (Mo,2Mo ® Mo).

When Im(M) is a p-dimensional subspace, which is henceforth adopted as a
constant assumption, o is invariantly estimable.

An IQE estimator is said to be admissible if it is admissible among the class
of all IQE estimators; it is said to be an admissible unbiased estimator if it is
an IQUE estimator and admissible among the class of all IQUE estimators.
When an admissible (unbiased) estimator of o is available, an admissible
(unbiased) estimator of any parametric-function of ¢ can be obtained by
applying a well-known lemma of Shinozaki (1975).

3. Main results.

3.1. Submodels. The concept of a submodel involving p — 1 variance
components of model (2.1) involving p variance components is crucial for the
considerations of this paper. For simplicity of notation the discarded variance
component is fixed throughout the paper as a,.

DEerFiNITION 3.1. If S is any matrix such that

p—1
(3.1) Im(S) = Im( ) Mi),

i=1
then each variance component model with p — 1 variance components whose
invariant version reduces to

p—1
(3.2) X* ~ (0, )y oiMi*),
i=1

where M* =(S®S)™M;,i=1,...,p — 1, is called a submodel specified by
matrix S of model (2.1).

Since, in view of this definition, (3.2) is a maximal invariant statistic of all
submodels specified by matrix S, every IQE estimator of variance components
under any submodel resulting from matrix S is a linear function of Y* =
X*(X*) only. It should also be noted that the maximal invariant statistics
(3.2) specified by different matrices S satisfying (3.1) must not be identical.
Also we would like to point out that matrix N* = S*S plays for each
submodel specified by matrix S the same role as matrix N in the primal
model (2.1). Examples illustrating the concept of a submodel are given in
Section 6.

We now show that one can construct an admissible estimator of o =
(01,...,0,_1,0,) under model (2.1) when there is available an admissible
estimator of o* = (o4,..., 0,_1) under its submodels with variance compo-
nents oy,...,0,_, specified by an appropriate matrix S.
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3.2. Construction of an admissible estimator via submodels. To establish
the theorem on which the construction is based we need the following lemma.

Let & = L*Y be any (invariant) estimator of ¢ under model (2.1) and let S
be a matrix fulfilling condition (3.1). Then 6* = [(S ® S)YLT']*Y*, where
T =(I,_,10) € .#, ), represents an estimator of o* = (o7,..., o, 1) un-
der model (3.2). We now show that the quadratic risk r(é,0) = E(6 — o)
(6 — o) of estimator 6 at point o = T'o* under model (2.1) is not smaller
than the quadratic risk r(6*, o*) of estimator 6* at point ¢* under model
(3.2).

Lemma 3.1.  For any vector o* in RBP~1,

(3.3) r(o,T'oc*) =r(6* 0%)
holds with equality for all o* € #P~! if and only if
S'(Le,)S = 0.

Proor. First observe that r(&, o) can be written as
r(¢,0) =2tr L*(Mo ® Mo)L + o’'(M*L — 1,)(L*M - I,)o.

Writing L as L = LT'T + Le,e,, the first term on the right-hand side be-
comes

2tr TL*(Mo ® Mo ) LT' + 2e, L*(Mo ® Mo)Le,
and when o = T'0*, the second one takes the form of
o'(M*L - I)T'T(L*M - L) o + (o'M*Le,)"

Using the fact that Mo = (S ® S)M*o*, where M* is the operator associ-
ated with matrices Mf",..., M} |, we obtain

r(6,T'o*)
= tr{2TL*(S ® S)[(M*o*) ® (M*c*)](S ® S) LT'}
+(o*)[(M*)*(S® SYLT' - I, ,|[TL*(S ® S)M* — I,_,]o*
+ 2¢, L*(S ® S)[(M*0*) ® (M*0*)](S ® S)' Le,
+[(o*) (M*)*(S @ S) Le,|”
= r(6*,0%) + E[(S'Le,S,Y*)].

In view of this formula the first assertion of the lemma is evident and the
second one is obtained from the fact that Y* ~ (M*o*, 2M*c* ® M*c*) and
that Im(S") = Im(M*1,_,). O

Theorem 3.1 provides a formula for an admissible estimator of o under the
primal model in terms of an admissible estimator of o* under a submodel
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specified by a matrix S. As before, X* stands for the invariant version
of the submodels specified by matrix S and Y* = X*(X*)". Moreover, B,
(N - SS")M, and q = tr(B,M,). We also assume that M, and SS* com-
mute. This condltlon is met tr1v1ally when J, isthe n X n unlt matrix.

TueOorREM 3.1. If (L*)*Y* is an admissible estimator of o* under a
submodel specified by matrix S of model (2.1), then for any vector a € R?,
with its last coordinate equal to 1, expression L*Y, where

1 '
- _r#
(3.4) L=Lo+ 5~ p Bo[(I, - LM)a],
while Ly = (S*® S*YL*T, represents an admissible estimator of o under
model (2.1).

Proor. To begin, notice that if L is given by (3.4), then using the readily
proven formulae S'ByS = 0 and (S ® S)LT’' = L* we get from Lemma 3.1
that

r(L*Y,T'o*) = r((L*)*Y*, o*).

Now suppose to the contrary that L¥Y is better than L*Y. Since by Lemma
3.1,

r((L*)*Y*,0%) = r(L*Y, T'0*) > r(L%Y, T'c*)
>r([(S®S) LT Y+ a%),

[((S® SYL,T'*Y* must be as good as (L*)*Y*. But since (L*)*Y* is
admissible for o* by assumption, we get that (S ® SYL,T’ = L* and, again
using Lemma 3.1, that (S ® S)'L,e, = 0. This in turn entails that

SS*® SS*)L, = (S*®S*)(Se® S "L(T'T + e,e!
pP°p
=(S*® S*)L*T = L,.

Hence L, € &/= L, +{l1Z: Z € £}, where [I=N® N - SS*® SS*. Also
observe that L € o7 If Im(S) = Im(N), then II = 0 and %/ consists of exactly
one element. This contradicts the assumption that (L*)*Y is better than L*Y
so that in this case the proof is terminated.

Otherwise it is sufficient to show that for any «, as specified in the theorem,
L*Y is the unique locally best estimator at point ¢ = @ among the class
{L*Y: L € o/}, because this contradicts the assumption that L¥Y is
better than L*Y. The former follows from the fact [see LaMotte (1982)] that
@2W + w)L = IMaa’, where W=Ma ® Ma and w = Maad’M*, which
readily can be verified by noting that under the assumption that SS* and M,
commute the following formulae hold: IW(S*® S*) = 0, II2W + w)B, =
(2 + ¢@)By and IIMaa’ = Bfa'. O
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4. Corollaries. We shall now deduce from Thecrem 3.1 a number of
results that may be useful for constructing nonnegative admissible estimators
of variance components.

4.1. An alternative formula for (3.4):

COROLLARY 4.1. If
(4.1) lo(21,_, + K*o*) '] (B*)*Y¥,

where K* = (M*)*B*, is an admissible estimator of o* under a submodel
specified by matrix S of model (2.1), then for any vector a* € RP~1, expression

(4.2) [w(21, + Ko)™'| B*Y,

where

o 0 bo  [K* 0
w=((a*)l 1), K=M B=(k/ q),

k = TB*M,, while B = (S*® S*YB*T + B,e,, represents an admissible esti-
mator of o under model (2.1).

Proor. Substituting L* = B*0*(2I, ; + K*»*)~" and a = ((a*), 1)’ into
the right side of (3.4), we find it equal to Bw(2I, + Kw)~!. Noting that
k = (tr(M,B,),...,tr(M,B,_,)) and applying Theorem 3.1 gives the result
at once. O

4.2. A necessary and sufficient condition for estimator (3.4) to be nonnega-
tive. The condition is given in Corollary 4.2. Here a > b, where a =
(ay,...,a,) and b = (by,...,b,), means that a; > b,.

COROLLARY 4.2. Estimator (3.4) is nonnegative if and only if estimator
(L*)*Y* is nonnegative and

(1, = (L*)*M*|Ta = m,
where m = TL{M,,.
Proor. It follows straightforwardly from (3.4) by noting that
TLEM = ((L*)*M*|m)

and that L}Y and tr(B,Y) are uncorrelated. O
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From Corollary 4.2 we conclude that in order that (4.2) be nonnegative, it is
necessary and sufficient that (4.1) be nonnegative and that

2[(2Ip_1 + K*w*)_llla* > [w*(21p_1 + K*w*)_lllk.
Evidently, o* = (0*)'k/2 > 0 fulfills this condition.

4.3. Admissible estimators for a special class of variance components mod-
els. The method of constructing admissible estimators via submodels pre-
sented here is especially attractive for those models (2.1) which have the
structure

(4.3) X=HX+e,,
where H is a matrix of full rank,
~ p ~ 1
i=1
while D* and JY, ..., J,_; are matrices of constants such that the null space

A [(D*)]is contained in Im(Jl*I; . IJ;‘_I). In this case N = I — HD*(HD*)".
The relevant matrix for model X is given by N* =1 — D*(D*)*.

CoroLLARY 4.3. If matrix S = NH fulfills condition (3.1), then (4.4) is a
submodel of (4.3) and the operator B defined in Corollary 4.1 takes the form

(4.5) B=(H*® H*)YB*T + (I, - HH")e),.

Proor. The first assertion follows from the easily proven fact that S*=
N*H* and that H*H is a unit matrix. The second part is obtained by noting
that SS*= HH*— DD*. O

5. Admissible unbiased estimators. It is interesting that for some of
the presented results on estimation of variance components one can establish
analogous results for estimation with the condition of unbiasedness. Before we
state them, it may be in order to make the following comments. If L*Y is an
admissible unbiased estimator of o, then Im(L) is a p dimensional subspace
contained in the smallest quadratic subspace containing Im(M) and if B is
any operator in .# such that Im(B) = Im(L), then B*M is invertible and
(B*M ) 'B*Y is the same as L*Y. The point that needs to be stressed here is
that every operator B in . such that dim Im(B) = p and Im(B) N A# (M%) =
{0} uniquely determines an unbiased estimator of o. The problem of construct-
ing admissible unbiased estimators of o is here addressed by indicating
operators B in .7 that lead to admissible unbiased estimators. It is also
worthwhile to notice that if L*Y is an admissible (biased) estimator of o and
if dim Im(L) = p, then (L¥M)~'L*Y is an admissible unbiased estimator of o.
The invertibility of L*M follows from Theorem 2.3 of LaMotte (1980).
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As before set L,=(S"® S"YL*T, B, =(N - SS")M,, q =tr(B,M,)
and assume that SS™ and M, commute. Now also assume that SS*M, # M,
in which case ¢ # 0.

THEOREM 5.1. If (L*)*Y* is an admissible unbiased estimator of o*
under a submodel specified by matrix S of model (2.1), then L*Y with

1 ’
L=Ly+ =B,[(I, - L{M)e,]
q
is an admissible unbiased estimator of o under model (2.1).

Proor. To establish the assertion it suffices to check that L*Y is an
unbiased estimator of ¢ and admissible among the class of IQUE estimators.
Since the former is evident and the latter can be established along the same
lines as Theorem 3.1, we omit the proof. O

The notation used below is as in Corollary 4.1.

COROLLARY 5.1. If [((K*)~(B*)*Y* is an admissible unbiased estimator
of o* under a submodel of (2.1) resulting from matrix S, then K is invertible
and (K~'YB*Y is an admissible unbiased estimator of o under the primal
model.

6. Applications. We shall now illustrate applications of the obtained
results to constructing admissible estimators of variance components for three
special variance component models.

6.1. Model with two variance components. For p = 2, equation (2.1) be-
comes X = DB + J,&; + J,&,. Assume here also that J, = I,,, in which event
N =1, - DD"*, and that Im(M;) # Im(M,). Since matrix S = NJ; fulfills
condition (3.1) and since S*= C*J|N, where C = J;NJ,, we notice that
X* ~(0,0,CC") is a submodel of the model with two variance components
considered here. Admissible estimators of o = (0, 0,) can now be obtained
via Corollary 4.1 provided we can compute explicitly the Moore-Penrose
g-iverse C™.

It can fairly easily be shown that the operator associated with matrices

B, = NJ,(C*)*J;|N,
By, =N — NJ,C*JN,
can be substituted for B in (4.2). With this choice of B,
K- (tr(CC*) 0 )
tr B, tr B,

For model (2.1) with p = 2 variance components the class of all estimators
of form (4.2) together with the class of all unique Bayes IQE estimators
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constitutes the minimal complete class first obtained by Gnot and Kleffe
(1983).

6.2. Factorial models. Although the developments below apply to all un-
balanced factorial models having structure (4.3), we shall deal, for reasons of
simplicity, only with two two-way classification random models with imbalance
at the last stage, the model with interaction and the model without interac-
tion.

(1) Model with interaction. In the notation of (2.1) this model is specified by
the following matrices: D =1,, J;, =J3(I,®1,), J, =J1,® 1), J;=
diag(1, ,...,1, ) and J, =1I,, where ‘'® denotes the Kronecker product,
while n = £¢_,2%_1n > 1. This model has the structure (4.3) postulated
in Corollary 4.3:

ij’ l]’—

X=HX +e¢,,
where H = J,, while
X=1,8+(1,®1,)e, +(1,®1,)e, + ¢5.

Notice that J41, is the vector of cell sizes, whereas X is a balanced additive
model with one observation per cell and that in this case N = P, = M,. Also
notice that the matrix S = NH fulfills condition (3.1) and that X belongs to
the class of submodels specified by this matrix. For this model there exists a
best unbiased estimator and also there is available a complete characterization
of admissible estimators. As shown by Zontek and Klonecki (1990) estimator
(4.1) is admissible under model X when B* stands for the linear operator
associated with the matrices

1 1 1 1
Bf = M, Bj=—M; and Bj=N*- M- M
a

b2 a?
and when
1 0 0
wt=|®n 1 0 w;; > 0.

wg w3 1

To derive the corresponding admissible biased estimators given in Corollary
4.1 and the admissible unbiased estimator given in Corollary 5.1 one needs to
calculate K*, k and B, which are

a—-1 0 0
*=(M*)#B*= 0 b-1 0
(a-1)/b (b-1)/a (a-1)(b-1)
1 a b ’
L (R RN
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and
By =1, —Jsd5.
It is a matter of elementary calculation to show that the resulting admissible
estimator (4.2) is nonnegative when
b-1
2a ’

wy, =0, Wy =

a-—-1 b-1
+
2b a(b+1)

and when a* = (0*)'k /2. The first three conditions ensure nonnegativeness of
the estimator of o* under model X, whereas the last one ensures the
nonnegativeness of the estimator of o under model X. Since Jj=
diag((1/n,)Y, ,...,(1/n,)Y, ), expression J;°_ ;X represents the vector of
cell means. Consequently, admissible estimators obtained via Theorems 4.1
and 5.1 belong to the class of the so-called cell means estimators. The unbiased
estimator is that arising from the sum of squares suggested by Yates (1934).

(ii) Model without interaction. The equation of the two-way classification
model without interaction can also be written as

w3z = (1 +awz)wy

(6.1) X = HX + ¢,
where H = diag(1 .1, ), while

ny
X=1,8+(1,®1,)e; + (1, ®I,)e,.
Now, however, the matrix NH does not satisfy condition (3.1). A natural
choice of a matrix that fulfills it is S =P, H(I, ® 1,/]1, ® I,), where n =
tr H'H. Its Moore—Penrose g-inverse [see Zontek (1989)] is S*= N*W~18’,
where N* = diag(P,, P,), while W = S’S + diag(1,1,,1,1)).

A submodel specified by this matrix is X* = N*(¢/, ¢,), for which a com-
plete characterization of admissible estimators is readily obtained.

The operator B appearing in Corollaries 4.1 and 5.1 becomes

(6.2) B=(S®S)(We W) 'M*T + (P, — SW™'S")es,
where T = (1,|0,) and M* is the operator associated with matrices
M} = diag(P,,0), " M} = diag(0, P,).

Model X is a particular case of the crossed classification model without
interaction. For such models with empty cells admissible estimators have been
obtained by Zontek (1989).

It is also worthwhile to point out that, in this event, the admissible
unbiased estimator of o determined by (6.2) may differ from the relevant cell
means unbiased estimator derived from the sum of squares given by Westfall
and Bremer [(1991), formula (3-6)]. That corresponds to the operator

B=(H*® H*YQT + (P, - SW™'S")ej,
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where @ is associated with matrices
Q=P (I, ® 1,1) Py,  Qy=P,(1,1, ® ) Py,

The admissibility of this cell means the estimator cannot be established by the
method developed in this paper. As a matter of fact, for all the special cases of
model (6.1) that we investigated, numerical calculations seem to suggest that it
is inadmissible among the class of IQUE estimators.

The above considerations carry over to all factorial models with imbalance
at the last stage. If the highest order interaction term is included in the model,
then there exists a matrix S such that the specified random model (3.2) is
balanced and the unbiased admissible eéstimator obtained via Theorem 5.1
coincides with the cell means estimator as defined by Westfall and Bremer
(1991).

6.3. The random, unbalanced (p — 1)-way nested classification model. We
begin by showing that this model can be presented as a superposition of a
chain of nested submodels.

Let my=1<m;< -+ <m,=m,,; and for i =0,1,...,p let H; be a
block diagonal m; ; X m, matrix defined by
H, = diag(1, ,...,1, ),

where n,; > 1. With this notation m,,, = X7n,;,, Hy=1, and H, =1,
Followmg LaMotte (1972), we write the random, unbalanced (p - 1) way
nested classification model as

(6.3) X(P)=Hp_1X(p_1)+£p,
where

-1 _ -2
X )—HP,ZX(” )+8p

—1»

X(l) = HOB + 817

while B € &# and, as previously, &,.. stand for uncorrelated random

"p

vectors such that Ee; = 0 and Cove; = o; I,,i=1,...,p.
Let S; = P, H 1=1,...,p— 1 From Corollary 4.3 it follows that model
X® i=1,... 1 is a submodel, specified by matrix S;, of model X¢*+D,

The first model X® in this chain of submodels involves only one variance
component, namely, o, and expression [1/(m, + DKX®D)P,, X®, being of
form (4.1), is its admissible estimator. Using Corollaries 4.1 and 4.3 repeatedly
to the successive submodels we obtain an admissible estimator of ¢ under the
primal model. It will be of the form (4.2) with » being a lower triangular p X p
matrix with nonnegative entries and with unit diagonals and B being the
linear map associated with matrices

B,=(H -~ H}Y(I, —H,_H} )H --- Hf, i=1,...,p.

12 l
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It also should be evident that w can be chosen so as to yield nonnegative
admissible estimators.

If in model (6.3) the first 1 <t <p vectors ¢,,...,¢, are treated as fixed
effects, then the linear operator associated with matrices B, y,..., B, be-
comes a relevant operator B for the construction of the admissible estimators
under the resulting mixed nested model with p — ¢ variance components.
Therefore, for such mixed models, admissible nonnegative estimators also
easily can be constructed.

The problem of constructing admissible estimators for nested models was
also considered in an earlier work by Klonecki and Zontek (1989a), where some
alternative admissible estimators are presented.

7. Final comments. The method developed in the paper provides a class
of attractive alternatives to the MINQE(I) and MINQE(U, I) as well to other
estimators available in the literature. In fact, it includes nonnegative estima-
tors and, moreover, the estimators belonging to this class have generally a
better risk performance than the unbiased estimators [see Zontek and
Klonecki (1990)]. Selection of an estimator from this class can be based on its
risk, which is easily calculated. Our numerous calculations seem to indicate
that the risk function of an admissible (biased) estimator L*Y is flatter with
increasingly larger dimensions of Im(L). The problem of which estimators to
recommend in particular cases requires further studies.
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