The Annals of Statistics
1992, Vol. 20, No. 3, 1350-1360

CONSISTENT ESTIMATION OF A MIXING DISTRIBUTION

By Brian G. LEROUX
University of Washington

A maximum-penalized-likelihood method is proposed for estimating a
mixing distribution and it is shown that this method produces a consistent
estimator, in the sense of weak convergence. In particular, a new proof of
the consistency of maximum-likelihood estimators is given. The estimated
number of components is shown to be at least as large as the true number,
for large samples. Also, the large-sample limits of estimators which are
constrained to have a fixed finite number of components are identified as
distributions minimizing Kullback-Leibler divergence from the true mixing
distribution. Estimation of a Poisson mixture distribution is illustrated
using the distribution of traffic accidents presented by Simar.

1. Introduction. Given a family of densities {p(y, 6): 6 € ®} with respect
to a measure u, a density of the form

(1) pr(y) = [ p(5,0) dF(0)

is called a mixture density corresponding to the mixing distribution F. A
finite mixture density is given by
m

p(y) = X a;p(,9;),
j=1

where 0 < a, <1 and L7 ,a; = 1. Mixture distributions have seen frequent
application, especially mixtures of Poissons, binomials, normals and exponen-
tials. The mixing distribution sometimes represents a physical reality, but
otherwise, it can still provide an interpretive model for data. Parametric
mixing distributions are often used to model distributional features such as
overdispersion.

Much of the work on estimation of a mixing distribution has been concerned
with maximume-likelihood procedures. For an observed random sample
Y15 --+>Y, from the density (1) the log-likelihood function is given by

L.(F) =} log pp(y:).
i=1
Early work on the maximume-likelihood estimator includes Kiefer and
Wolfowitz (1956), Simar (1976), Laird (1978) and Lindsay A(1983); the latter
author proved that there is a maximume-likelihood estimate ¥ with K or fewer
components, where K is the number of distinct points in the sample. It is
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easily seen that Lindsay’s result holds if, for every i, the mapping 8 — p(y,, )
is continuous and vanishes at «, that is, for every & > 0 there is a compact
K, c® for which p(y;,0) <&, 6 & K_; this includes mixtures of Poissons,
blnomlals exponentials and mean- parametrlzed normals. Lindsay’s proof also
establishes the existence of a constrained maximum-likelihood estimate F

which maximizes the log-likelihood over all mixing distributions with m or
fewer components.

Asymptotic results for maximume-likelihood estimators of the parameters
defining a finite mixture are given by Sundberg (1974), Redner (1981), Redner
and Walker (1984) and Hathaway (1985). To discuss the consistency of ¥, the
topology of weak convergence is imposed on the space of mixing distributions.
Thus, F' is consistent for the true mixing distribution F* if, with probability
1, F converges weakly to F* as n — o (F - F*), that is, F(6) - F*(8) for
all continuity points 6 of F*. Consistency 1n this sense implies, under mild
conditions (see Lemma 2), that the estimated density py converges to the true
density pp«. Consistency results for F are given by Kiefer and Wolfowitz
(1956), Simar (1976), Jewell (1982), Heckman and Singer (1984) and Pfanzagl
(1988).

On the subject of selecting the number of components, McLachlan and
Basford (1988) discuss hypothesis-testing procedures and Henna (1985) gives a
consistent estimator of the number of components.

In Section 2 maximum-penalized-likelihood methods are proposed for select-
ing the number of mixture components and an example of their use is given.
Asymptotic results are presented in Section 3. These include the convergence
of maximum-likelihood estimators constrained to have a fixed number of
components, the large-sample behavior of the estimator of the number of
components and the consistency, in the sense of weak convergence, of the
mixing-distribution estimator obtained by the maximum-penalized-likelihood
method.

2. Selecting the number of components. For those applications for
which a finite mixing distribution is plausible, special consideration might be
given to the problem of selecting the number of mixture components, m.
Although F itself provides an estimate of m, it can include more components
than are necessary for a good fit to the data A procedure that penalizes
overfitting might be preferable to maximum likelihood. On the other hand, if a
continuous mixing distribution seems ‘more physically meaningful, then an
estimate of a mixing density function might be preferable.

In any case, a simple explanatory model for the data is provided by a small
number of mixture components, and this could be useful in comparative
studies involving estimates for two or more samples. In this regard, a finite
mixture might uncover features that would remain hidden by fitting a para-
metric family of mixing distributions.

The elimination of unnecessary components might also lead to more precise
estimates of the parameters in a finite mixture. Related to this possibility,
Chen (1991) proves that the best possible rate of convergence of estimators for
an overparametrized mixture (i.e., with more components than in the true
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model) is n , compared to the rate n~ which is achieved when the
number of components is correctly specified.

The procedures for estimating the number of components are based on the
general theory of model selection [see, e.g., Linhart and Zucchini (1986)).
Consider the sequence of nested models for the parameter F* defined by the
possible numbers of components. We propose the choice of 7, for m, where

m, maximizes

over m; here a,,, is a penalty term, satisfying a,,,, , > a,,,, which discour-
ages the selection of a model with an excessive number of components and can
depend on y,,...,¥,. The resulting mixing distribution estimator ﬁmn is called
a maximum-penalized-likelihood estimator. We will consider, for example, the
Akaike information criteria (AIC [Akaike (1973)]), given by a,,, = dim(#,),
and the Bayesian information criterion (BIC [Schwarz (1978)]), given by
a,,, = (1/2)log n)dim(%#,,), where dim(.%#,,) = m — 1 + m dim(6).

ExampLE. The following frequency distribution of the number of automo-
bile accident claims in a single year for 9461 policies was given by Simar
(1976):

Number of accident claims 0 1 2 3 4 5 6 7
Number of individuals 7840 1317 239 42 14 4 4 1

Simar fits a Poisson mixture to these data and claims the maximum-likelihood
estimate is the distribution given by the following parameter values:

Probability Rate
0.75997 0.08854
0.23617 0.58020
0.00370 3.17606
0.00016 3.66871

But the mean of this distribution, 0.21665, is not equal to the sample mean,
0.21435, and so this distribution cannot define a local maximum of the
likelihood [see Lindsay (1981) or Titterington, Smith and Makov (1985),
page 86].

We present below the constrained maximum-likelihood estimates for one,
two and three components and the corresponding values of the log-likelihood
(excluding the y! term in the Poisson probability) and the penalized-likelihood
criteria, AIC and BIC:

Estimates

Number of Log-
components Probability Rate likelihood AIC BIC
1 1 0.21435 —-5151.38 —-5152.38 —-5155.96
2 0.93780 0.14694 —5008.56 -5011.56 -5022.29
0.06220 1.23069
3 0.41830 0.00000 —-5001.30 —5006.30 -5024.19

0.57302 0.33554
0.00868 2.54498
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The estiinate with three components satisfies the directional-derivative in-
equality of Lindsay (1983), and so it must be the maximum-likelihood estimate
(the reported estimate has directional derivative 0.04 at A = 0.1, due to
roundoff error).

BIC leads to a choice of two components, while three are indicated by AIC.
The choice of the number of components might instead be based on a direct
comparison of the fitted frequency distributions. The table below lists the
fitted frequencies for the following estimates: (1) Poisson distribution, (2)
constrained maximum-likelihood estimate with two components and (3) maxi-
mum-likelihood estimate:

Observed
Count frequency (1) (2) 3)
0 7840 7635.6 7831.9 7840.0
1 1317 1636.7 1337.1 1317.0
2 239 1754 212.9 239.1
3 42 12.5 57.5 42.1
4 14 0.7 16.6 13.3
5 4 0.0 4.0 59
6 4 0.0 0.8 2.4
7 1 0.0 0.1 0.9
8+ 0 0.0 0.0 0.4

The fitted Poisson frequency distribution makes it clear that one component is
certainly not sufficient. The two-component estimate provides a much im-
proved fit, but might be judged inadequate because it underfits the number of
individuals with six or more claims, if these large numbers of claims were
considered especially important. On the other hand, the maximum-likelihood
estimate might be overfitting.

3. Consistency results. The following conditions will be referred to in
the sequel:

1. p(y,0) is continuous on E X O, where E and O are Borel subsets of
Euclidean spaces.

2. For any compact C C E and ¢ > 0, there exist a, b € ® such that p(y, 8) <
g, 0 € ® \[a,b], ye C (AN B denotes the set of points in A and not
in B).

3. There are Borel sets Z Cc E and Q c O such that w(Z) >0, [, dF* > 0,
p(y,0) =00n Z X (® \ Q), and p(y,0) > 0on E X Q.

4. p(y,0) < h(y), 0 € ©®, y € E, where h is continuous on E and
[pp+llog Rl du < oo,

5. [pp«(¥log p(y, 0] dul(y) < =, 8 € Q (x~ = max{—x, 0}).

Conditions 1 and 2 together are slightly stronger than the sufficient condition
for the existence and finite characterization of F' mentioned in Section 1.
Condition 3 is satisfied for densities which are strictly positive over their entire
range. The integrability conditions, 4 and 5, are slightly stronger than the
requirement of finite entropy, that is, [pg«llog ppsldu < », which is fre-
quently imposed in large-sample studies of maximum-likelihood estimators.
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ExaMpLE 1 (Poisson). p(y,0) =6%"% 6>0, y=0,1,..., and du(y) =
1/y!. Condition 3 is satisfied with Z =({1,2,...}, Q = (0,x), provided
dF*(0) < 1. Condition 4 is satisfied with A(y) = y%e ™, if ¥ pp«(y)y logy < ;
a sufficient condition for this is (8% dF*(8) < », and condition 5 is then also
satisfied.

ExampLE 2 (Exponential). p(y,0) = 6e% y > 0,60 > 0, and u is Lebesgue
measure. Condition 4 is satisfied with A(y) = e”! max{y~}, 1}, if
Jopr+(y)og(1/y) dy < =; a sufficient condition for this is (6 dF*(#) < ». Con-
dition 5 is satisfied if [pr«(y)ydy < «, or equivalently, [(1/60) dF*(8) < .

ExampLE 3 (Normal mean). p(y,0) = e @~ 9°/20° 4 g c (—w, ), and u is
(270?)"1/% times Lebesgue measure. No restrictions on F* are necessary in
this case.

The family of mixture densities given by (1) is identifiable if

(3)  [p(3.0)dFy(0) = [p(,0) dFy(0) ace.du(y) = F, = F,.

This holds in many cases, including the above three examples. Identifiability
implies that the Kullback-Leibler divergence from pp to pp, that is,
K(Fy, F,) = [pp, log(pgp /pF,) du, is positive if F, and F, are different; this
property is stated below for future reference.

LemMmA 1. Let F be a distribution function and F, be a subdistribution
function (which corresponds to a measure with total mass of 1 or less) on ©.
Then K(F,, F,) >0 and, if the identifiability property (3) holds, then
K(F\,F,) >0 if F, # F,.

3.1. Consistency of the maximum-likelihood estimator. A new proof of the
consistency of F' will be given based on the following technical result.

LeEmmMA 2. If conditions 1 and 2 hold, then the following are true:

() For any subdistribution function F on O, pyp is continuous on E.
(ii) If F, and F are subdistribution functions on ® and F,(0) — F(0) for all
continuity points 6 of F, then pp — pp uniformly on compact subsets of E.

Proor. (i) is straightforward. The proof of (ii) involves establishing that
the sequence {py,} is equicontinuous on a compact subset of E and using the
Ascoli-Arzela theorem. O

THEOREM 1. If conditions 1-5 and the identifiability property (3) hold,
then F - F* as n — o, with probability 1.
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Proor. It is well known that the empirical distribution based on a ran-
dom sample from a distribution function on a Euclidean space converges
weakly to that distribution function, with probability 1. Therefore, with
probability 1, the empirical distribution H, based on Yj,...,Y, converges
weakly to the distribution with density pp« with respect to u. Also, by the
strong law of large numbers, [ log hdH, — [pgp«log hdu, [ log pp« dH, —
[pp+ log pp+ dp, and [, dH, — [;pp+ du. The remainder of the proof is re-
stricted to the event of probability 1 where these limits hold; we show that
they imply ¥ -, F*.

Assume there is a subsequence of {ﬁ’ } and a subdistribution function F such
that ¥ — F along this subsequence at all continuity points of F. (Notice that
subsequences do exist with these convergence properties, by the Helly selection
theorem.) In the following all limits over n are assumed to be taken along this
subsequence.

We first show pp(y) > 0 for every y. According to condition 3, py(y) can be
0 for some y only if [, dF = 0, that is, if [, dE' — 0. But if this were true,

1 N .
—1,(F) < [Elog h(y) dH,(y) + log(deF)deHn
would imply [, ( F)/n — —o, which leads to a contradiction, since
1 A 1
(4) ~1(F) 2 —1,(F*) = [pp+log pp= du € (=, ).

Let C be compact. With pp > 0, Lemma 2 implies that log p;y — log pp
uniformly on C, and hence |[;log ppdH, — [, log ppdH,| < [cllog pp —
log prl dH, — 0. Since I log py is bounded and upper semicontinuous (I is
the indicator function of C), we have

lim sup fc log pprdH, < /CPF* log pr du,

by the weak convergence of H,. Therefore, lim sup, /. log py dH, <
JcPr+ log pr du, and this proves, using pp < h, that

limsup [ log(ps/h) dH,, < [ pp+log(ps/h) du

for every compact C. Now consider a sequence of compact sets which increases
to E. Taking limits along this sequence, Fatou’s lemma gives

lim sup fc pp+log(pp/h) dp < [pps log(pp/h) du.
TE

To summarize, we have shown
lim sup ln(ﬁ')/n = lim sup/log ppdH, < pr* log ppdu.

But, by (4), liminf, [ (F)/n > [pp« log pp+ diu. Hence, [pp«log ppdu >
[pp+ log pp« du, that is, K(F*, F) < 0, which implies F = F*, by Lemma 1.
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Since F = F* holds for any convergent subsequence of {F}, the result
follows. O

The proof of consistency applies to any estimator that achieves a likelihood
value at least as large as some constant times the maximum value of the
likelihood [see also Pfanzagl (1988)], but this fact is not useful for the study of
the estimator obtained by maximum-penalized-likelihood methods.

3.2. Approximation of mixing distributions. In order to discuss the con-
vergence of the constrained maximume-likelihood estimator in general, we
must produce a candidate limit distributien. If the true mixing distribution
has three components but we are estimating two, what are we estimating?
This question leads us to consider the error in approximation of F* by a
distribution with a specified number of components, that is,

K(F*,# )= inf K(F* F
(F*,%,) = inf K(F*,F),

where ,, is the set of subdistribution functions on ® with m or fewer
components. The following result shows the minimum divergence is attained
by a distribution function and is strictly decreasing in m for m < m™, where
m* is the number of components of F*.

LEMMA 3. Assume conditions 1, 2 and 4 hold. Then, for each m > 1,
there is a distribution function F} € &, for which K(F* F}) = K(F*, %, ).
(In the following, F* will denote any such distribution function.) If the
identifiability property holds, then, for every m > 1, K(F* F¥ )<
K(F* FX*)if F* ¢ &,.

Proor. (i) Under the vague topology (the topology of convergence of
subdistribution functions at continuity points), .%,, is compact (as can be seen
from the proof of the Helly selection theorem) and the function F — K(F* F)
is lower semicontinuous. But a lower semicontinuous function attains its
infimum over a compact set.

(i) Assume K(F* F*, ) =K(F* F¥). Then K(F* F) > K(F* F}) for
every F € & __ ; in particular,

(1 —&)pps(y) +ep(y,0)
pF,’;,(y)

[pm(y)log( ) du(y) <0, 6€0,e>0.

Therefore, using Fatou’s lemma,

(1 —&)ppx(y) + ep(y,0)
PF;;(y)

1
0> [pp(y)liminf — 1og( ) du(y)

p(y,0)
PF;;;(.')’)

= [Pr() - 1) du(y).
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Now, from [pp«p(y,0)/ppx du < 1 for every 6, we get f(pF*)z/pF;; du <1
and

K(F*,F}) = pr* log(pp+/ppx) du < fpp*(pF*/pF;;, - 1)du <0,
which implies F* = F* by Lemma 1. O

The next result shows that the modeling error K(F*, F*) is negligible for
large m.

LemMA 4. If conditions 1, 2, 4 and 5 hold, then K(F* , F*)—> 0 as

m — o,

Proor. Fix y € E. For each m > 1, let there be a finite partition of ® into
intervals (or rectangles, cubes, etc.) A{™, ..., A7, An upper Riemann-Stieltjes
sum for the integral [op(y, 0) dF* based on this partition is ©;a{™)p(y, ™),
where (™ = [,m dF* and 6{™ belongs to the closure of A(’") and satisfies
p(y, 0('")) = supeeAm) p(y, 0). Therefore if F, = Y,a!™8,m), then Pr, = D+
and, using Pr, = pp+ and conditions 4 and 5, the dominated convergence
theorem implies [pps log pp du — [pp« log pp+ du as m — w. O

3.3. Consistency of constrained maximum-likelihood estimators. This sec-
tion considers the large-sample behavior of the constrained estimator F
defined in Section 1. In order for F to be consistent, it is necessary that F* *
be uniquely defined; this means F * uniquely satisfies the following two
requirements: F,' € & and K(F*, F,jl‘) = K(F*, %,). This clearly holds if
F* € & and the identifiability property (3) holds for m-component mixtures,
but general statements on this question seem very difficult to obtain. Fortu-
nately this issue is not critical for the study of the maximum-penalized-likeli-
hood estimator. However, the general asymptotic behavior of Fm is of interest
in its own right and we present the following result.

THEOREM 2. Assume conditions 1-5 hold. With probability 1, every limit F
of {F } (e, F — F at all continuity points of F) satlsﬁes K(F* F) =
K(F* F}X). IfF* is unique, then F, — F* as n —» « ,with probability 1.

PrOOF. As in the proof of Theorem 1 we get that, with probability 1, the
limit F of any convergent subsequence of {¥, } must satisfy

[prelog ppdu = [pplog py dus

or, equivalently, K(F*, F) < K(F*, F*). The results follow from this. O
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The above consistency theorem enables us to prove the consistency of the
maximume-likelihood estimators of the parameters of a finite mixing distribu-
tion, when the number of components is known. The following lemma, which
is easily proved, states the equivalence of weak convergence of mixing distribu-
tions and convergence of the associated parameters in the quotient topology
considered by Redner (1981). The quotient topology is defined relative to the
equivalence relation under which two sets of parameters are equivalent if they
define the same mixing distribution.

LEMMA 5. Let F* = L7 a; 8p,» where a; > 0 for every j, ZJ @, =1, and
the 6, are distinct points of 0. Let {F,} be’an arbztrary sequence in 9' that is,
F,=X7  af* "Bgu, where ay"') 20,0 €0, j=1,...,m. Then F, », F* if
and only if (a(k) ol e B(k)) - (ay,...,a,,0,...,0,) in the quo-

tient topology.

THeOREM 3. Let F* = L7 a,8,, where a; > 0 for every j, L] a; = 1,
and the 0, are distinct points of @. Assume that the identifiability property 3)
holds for m-component mixtures and condztzons 1-5 are satisfied. Let &; 0 be
maximum-likelihood estimators of @, 0;, j = 1,..., m. Then, with probabzlzty
1, (al,...,am,()l,... ) = (ay, ..., a,,,0...,0,) in the quotient topology,
asn — o,

m»

ProoF. In this case F,; = F* is unique (see the pAaragTaph before Theorem
2). Therefore, Theorem 2 gives F —, F* where F, = X7 1&;5; . The con-
clusion follows by the hypotheses on the parameters, using Lemma 5 D

3.4. Consistency of maximum-penalized-likelihood estimators. By combin-
ing the results of the previous sections, we can prove F is consistent, where
m,, is chosen to maximize a criterion of the form (2); we will need one more
preliminary result.

LEMMA 6. Assume conditions 1-5 hold. Then, with probability 1:

@) lim, !¢ n(F)/n = [ppxlog ppx dpu.
(i) lim,, ! n(F )/n = [ppxlog pp« du, for every m > 1.

Proor. (i) was proved in the proof of Theorem 1. (ii) is proved in the same
way (see the proof of Theorem 2). O

THEOREM 4. Assume conditions 1-5 and the identifiability property (3)
hold. Let F* have m* components (m* = oo if F* is not a finite distribution).
If, for every m <m*, a,,.,,>a,, forall nand limsup, a,,/n =0, with
probability 1, then liminf, M, 2 m* (h,, = ©if m* = ©) and F w, Zw F
as n — o, with probability 1.
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Proor. (i) First assume F* is a finite distribution with m™ components.
By Lemma 6,

1(F ) -1
(5) litlzn ( ) n ( ) pr* log(pF*/pF*) du

=K(F*,F)) forall m <m*,

with probability 1; the rest of this part of the proof is restricted to this event of
probability 1. According to the condition on the rate of growth of a,,, and the
fact that K(F*, F*) > 0, (5) implies

L(F) =1 (F,)>a,,—a " for all m < m* for large n;

mn

therefore, liminf, 7, > m*. By the definition of 7 ,,

ln(ﬁ'ﬁzn) —ap 2, (F*) —a,

But 71, > m*, and hence [ (F, ) =1, (F*), for large n. The argument of the
proof of Theorem 1 can now be used to obtain F -, F*

(ii) Now assume F* is not a finite distribution. By Lemma 6,

A

- 1,(F
hm ln( m+1) ( )
(6) n n

pr* log(pF;,ﬁH/PF*) du
=K(F* F}) - K(F* F}, ) forallm=>1,

on an event of probability 1, which we restrict to for the remainder of the
proof. But K(F*, F, ,,) < K(F* F¥) for every m by Lemma 3, and so (6)
implies

ln(ﬁ'mﬂ) - ln(ﬁ'm) > @pi1n — Qp, forall m > 1forlarge n.

This inequality implies that for each m > 1, for large enough n, m, > m and
1 (F, ) = L(F). Therefore, in particular, 7, — . Let F. converge to F
along a subsequence As in the proof of Theorem 1, 1,( F D= 1 (FX) for large
n implies

fpp* log pp du > fpp* log ppx dp.

But, by Lemma 4, [pp« log ppx du — [ppx log ppx du as m — . Therefore,
F = F* and the proof is complete. O

The results of the above theorem state that the estimator 7 ,, in the limit,
does not underestimate the number of components of the true mixing distribu-
tion, and in case the true number of components is infinite, the estimator is
consistent in the sense that it converges to «. This property holds also for the
number of components in ¥ (this result does not appear to have been reported
previously although it is a consequence of the consistency of F'). The question
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of whether 7, is consistent for a finite number of components (possibly under
an additional condition on a,,,) is worthy of further research.
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