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Consider the problem of estimating the value of a functional A(f) for f
an unknown density or regression function. The straightforward plug-in
estimator A(f) with 7 a particular estimate of f achieves the optimal rate
of convergence in the sense of Stone over bounded subsets of a Sobolev
space for a broad class of linear and honlinear functionals. For many
functionals the rate calculation depends on a Fréchet-like derivative of the
functional, which may be obtained using elementary calculus. For some
classes of functionals, f is undersmoothed relative to what would be used
to estimate f optimally. Examples for which a plug-in estimator is optimal
include LY norms of regression or density functions and their derivatives
and the expected integrated squared bias.

When interested in computing estimates over classes of functions which
satisfy certain restrictions, such as strict positivity or boundary conditions,
the plug-in estimator may or may not be optimal, depending on the
functional and the function class. The functional calculus establishes condi-
tions under which the plug-in estimator remains optimal, and sometimes
suggests an appropriate modification when it does not.

1. Introduction. In a regression or density estimation setting, one is
often interested in the value of a functional A of an unknown function f. In
the regression context, one observes n independent and identically distributed
copies of the pair of random variables (X,Y) with Y = f(x) + ¢, where ¢ is a
mean zero error term; in the density estimation framework, one observes
X, ..., X,, independent and identically distributed random variables with
density f. In both instances f is assumed to satisfy some smoothness restric-
tions, but is otherwise unknown. We assume the X’s lie in [0, 1]. From the
observations one wishes to form an estimate A(f) of the value A(f).

For example, one may wish to estimate the value of f or a derivative of f at
a point x; in this case

(1.1) ACF) = £ (o)

for some r. Other examples include the mean-squared error of an estimate
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FOUx) of FOx):
ACE) = B[(FO(x) - Fo(x))].
integrated mean-squared error:
A = B[ f(70 - 7]

or the L? norm of the unknown function f or of the rth derivative of f:

(1.2) A(f) = {f(f.(”)2}

The last two functionals are of interest for the choice of smoothing parameter,
and the L? norm is of additional importance in the density estimation setting;
see Example 2. For nonparametric tests of independence and equidistribution,
Abramson and Goldstein (1991) study the equidistribution functional of a pair
of densities f and g:

1/2

Alfigl=2f-=

This paper addresses two questions: What is the theoretical upper bound on
the rate of convergence of an estimate A to A(f); and, Is there a convenient
class of estimators that achieve this upper bound?

The estimator A we consider is the plug-in estimator A(f) = A(f), where f
is a specific kernel estimator of f. In the regression setting we use a
Nadaraya-Watson-type construction:

LYKy (x, X;)
YK,(x, X))

where K,(x,t), given in the Appendix, is a certain boundary-corrected kernel
which satisfies a scaling property in b. The kernel is studied in Messer and
Goldstein (1992).

We take our definition of optimality from Stone (1980), and consider
optimality over a class of functions #'C #,, where ¥, is roughly the class of
functions with p continuous derivatives all of whlch are bounded by a con-
stant. We obtain optimality results over subsets # of %, which may satisfy
extra conditions, for example, classes of functions wh1ch satisfy boundary
conditions, which are bounded away from 0, or which integrate to 1.

Consider the contrast between the functionals (1.1) and (1.2). For the point
evaluation functional (1.1), Stone (1980) has established the well-known opti-
mal rate of convergence over Sobolev classes of functions: Roughly, the best
rate of convergence in probability of an estimator of f(x,) which is uniform
over functions f€ ¥, is n=®77/GP*D_On the other hand, for a “smooth”
functional such as [f2, it is well known that the parametric rate of n~1/2 is
achievable. For the functional (1.2), the same rate n~'/? is achievable under
certain circumstances.

(1.3) f(x) =



1308 L. GOLDSTEIN AND K. MESSER

This paper provides an easy method to divide functionals into two groups (a
slow “pointwise’ group, and a fast ‘“smooth” group), presents a convenient
plug-in kernel estimator which will achieve the optimal rate and determines
the order of the optimal bandwidth for that estimator. Our method uses a
straightforward Taylor series expansion of the functional A about f over an
appropriate Sobolev space, using a Fréchet-like derivative which we denote 7.
This expansion is similar to the von Mises (1947) type expansions for function-
als of a distribution function which are studied in Fernholz (1983) and
Pfanzagl (1985).

For a class of functionals which we call atomic, the linear term has a point
evaluation component, of which (1.1) is the canonical example. Determining
the index of the functional [the number r for functional (1.1)] then deter-
mines the optimal rate n~(?~"/@P*D achievable over #. In some settings the
index may depend on the boundary behavior of f. These results are given in
Theorem 4.1.

For another class of functionals which we call smooth, the linear term is
given by integrating against a well-behaved weight function. Smooth function-
als will be seen to be estimable at rate n~1/2 over ¥, using our plug-in kernel
estimator with an undersmoothed bandwidth.

In many cases the plug-in estimator will achieve the optimal rate over # for
an appropriate choice of bandwidth. This may be unexpected since the esti-
mate f of f will usually not lie in the restricted set #.

For some naturally occurring kinds of degeneracy, however, the plug-in
estimator cannot achieve the optimal rate. This is true for the functional
A(f) = [f'g for certain g and #, as discussed in Example 7. We find that a
plug-in estimator is optimal as long as certain degenerate cases are excluded.
The conditions in Definitions 3.3, 3.4 and 3.5 guarantee that # is a rich
enough set so that the derivative of A does not vanish on #*, the set of local
variations for #. Such a condition is necessary for the existence of an upper
bound of the correct order. In Example 6, where a plug-in estimate is not
optimal, we discuss a method of finding a modified estimator that achieves the
optimal rate.

We now give a simple example of an atomic and a smooth functional in the
regression setting and a heuristic discussion of why in the smooth case
undersmoothing is advantageous. For an atomic functional consider A(f) =
[o(f)? over #'= #,. We have the expansion

AF) = ACH) = Tp(F=F) + O(1 7= Fllew),

where the linear functional Tp(h) = 2[¢/'f’ is the (Fréchet) derivative of A
evaluated at f, and || - |2, 1) is an appropriate Sobolev norm.

The derivative T, will determine the rate of convergence of A( ) to ACF) if
the remainder term is negligible. Investigating T, we have

1
(L) GTp(k) = [HF = = ['hf" + F(O)A(0) = F(DR(D).
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Then A(f) — A(f) has a term F'(0) f(0) — £(0)), taking h =f — f in the
above. Hence if f'(0) # 0 estimating the functional should be at least as hard
as estimating f(0). That is, T, is atomic: Its worst behavior for fe€ %,
produces a point evaluation component of “‘index 0.”” Hence the best rate over
¥, is the usual pointwise rate n"?/®*V with the bandwidth b ~ n=1/@P*D,
Theorem 4.1 shows that the plug-in estimator A(f) achieves this rate over 7,
and that this rate is optimal.

For a smooth functional consider A(f) = [} f 2, We have an expansion as
before where now (1/2)T/(h) = [ghf, and so A is smooth over #,. Theorem
4.2 then says the plug-in estimator A(f) with an “undersmoothed’’ bandwidth
achieves the optimal rate n~'/2 over %,.

In the smooth case we may almost always undersmooth and achieve the rate
of convergence n~1/2. To see why, suppose for convenience that the data are
equally spaced, and we use a simple translation kernel:

oo £ b

Let w; be the weight function of Tf, that is, T;(h) = [hw;. In the example
A(f) = [f? above, w, = 2f. Taking h = f- f

T(f-f) =f{—2f(—)—K(#) —f(x)}wf(x)dx
+—Z /b (i)wf(x)dx.

The first sum is not stochastic, and by the properties of the kernel is O(b”).
The second term, in which we have interchanged summation and integration,
is an average of independent mean zero terms; the variance of each term may
be bounded independently of b as b may be absorbed in the integral by a
change of variable. Hence the second term is O, (n~!/2), and we need only
ensure that b? ~ n~ /2 in order to achieve the desired rate. To make this
argument rigorous requires the bias to be O(b”) uniformly in x. Hence we use
the boundary-corrected kernel K,(x, t) of the Appendix.

A functional may be atomic or smooth over %, depending on #. Consider
the atomic example A(f) = [J(f’)? given above, but now take

={fe #,: f(0) =f(1) = 0}.

In this case, using (1.4), we have the representation
1 1 ”
STr(h) = -[Ohf for fe ¥,

and so A is smooth over #. This suggests that if f is known to lie in a
restricted class #, the extra information may be used to advantage.

Levit (1979) considers a type of plug-in estimator for the estimation of
functionals that can be written in the special form given in (3.16). He is able to
show the plug-in type estimator is efficient in this case.



1310 L. GOLDSTEIN AND K. MESSER

Has’minskii and Ibragimov (1979) have also studied estimating Fréchet
differentiable functionals of a density function f, in general function spaces
and with general loss functions. Their functionals do not involve higher
derivatives of f, and in our terminology are smooth. They begin with the
plug-in estimator A(f), with f an arbitrary estimator which attains the
optimal point-wise rate. As they do not undersmooth, they find their plug-in
estimator to be ‘‘as a rule, very bad.”

Pfanzagl (1985) considers differentiable statistical functionals of a distribu-
tion function in a general framework. The focus of his efforts is on obtaining
asymptotic bounds for the performance of statistical procedures; his emphasis
is not on the existence of such procedures. He briefly considers modified
plug-in estimators in Section 10.7, following Has’minskii and Ibragimov (1979).
Undersmoothing is not considered.

Hall and Marron (1987) and Bickel and Ritov (1988) consider estimation of
the functional (1.2); overlap with our approach is discussed in Example 2.
Donoho (1988) gives a method for computing one-sided confidence bounds for
some functionals of densities; optimality of rates is not discussed. Under
certain ‘“‘renormalization” conditions, Donoho and Low (1992) obtain general
optimality results for linear functionals on classes of functions themselves
specified by conditions on functionals. Donoho and Liu (1991) consider optimal
rates of convergence for linear functionals in general and include three nonlin-
ear examples as well; as in Donoho (1988), the class of underlying functions
considered there is broader than here.

The remainder of the paper is organized as follows: Section 2 presents the
notation and model assumptions used throughout the paper. In Section 3 we
specify conditions on the functionals we study, classify them as atomic or
smooth and provide simple propositions useful in verifying whether a func-
tional satisfies certain technical differentiability conditions. In Section 4 we
state our results on optimal rates of convergence, and in Section 5 we give
examples. Proofs are presented in Section 6, and a formula for the kernel and
its properties are given in the Appendix.

2. Notation and model assumptions. For s a nonnegative integer, let
C5[0,1] denote the set of continuous functions on [0,1] with s or more
continuous derivatives. For f€ C®[0,1]and 1 < ¢ < x, let

s

1/q
(2.5) 1 Fllg,s,0 = > {/;)1( f(j))q d)\j} ;

Jj=0

where A is a vector of measures (1,,...,A,). When A is the vector of Lebesgue
measures, we shall drop the dependence on A and write || fllg sy | flle,s) is
defined similarly.

Let p > 2 be a nonnegative integer. The kernel K,(x, ¢) of order p we use is
given by (A.24) of the Appendix. K{"/)(x, t) will denote the i, jth mixed partial
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derivative in x and ¢. For a function A,

(2.6) ho(x) = [Ky(x,t)h(t) dt.
0
The regression and density functions considered will be assumed to lie in a
subset 7 of a set 7,. For regression functions
(2.7) #y = (f € Co0,1): I flle, y < M)

for M a constant fixed throughout, and in an abuse of notation clear in
context, for density functions

= {fe cr[o,1]: f= 0, [Olf= LA lle, py <M}‘

The functionals we consider are (perhaps extended) real-valued functions on
C?[0, 1] and are well behaved on 7.

All estimators of A(f) considered are of the form A, = A(f,), where f, is
the following kernel estimate of f with b = b,:

1. In the regression case

. 1
(2.8) fu(x) = p(x) & Z Y, Ky(x, X;),

when observing (X,,Y)),...,(X,,Y,) independent and identically dis-
tributed random variables, where X has density p, and f(x) = E[Y|X = x].
The quantity j, above is the density estimate given in case 2 using the
same bandwidth b.

2. In the density estimation case
A 1z
(2.9) Fux) = = ¥ Ky(x, X)),
i=1

when observing X, ..., X, independent and identically distributed random
variables with density f.

We construct estimators that are optimal over # in the sense of Stone
(1980). Let A be a functional on ¥, and let {A } denote a sequence of
estimators of A(f) such that A is based on a sample of size n from an
unknown distribution that depends on f € 7. A positive number vy is called
an upper bound to the rate of convergence over # if for every sequence {A }
of estimators

(210)  liminf sup P(|A, — A(f)|>en™) >0 forallc>0
n e’

and

(2.11) lim lim inf sup P(|A — A( f)l > cn 7) = 1.

c—0 n fey
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The number vy is called an achievable rate of convergence over 7 if there is a
sequence {A ,} of estimators such that

(2.12) lim limsup sup P(|A, — A(f)|>cn™) = 0.
coe g, fey

The number vy is called the optimal rate of convergence over # if it is both an
upper bound to the rate of convergence and an achievable rate of convergence.

Roughly then, if y is an [upper bound to the rate of convergence /achievable
rate of convergence], then [for any sequence of estimators A, /there exists a
sequence of estimators /A\n such that] the true value A(f) will lie [outside /in-
side] an interval around An with probability tending to 1 when the length of
the interval is tending to O [faster /slower] than n~?.

We now state the assumptions of our models.

In the regression setting we adopt essentially the assumptions of Model 1 of
Stone (1980).

AssUMPTION 2.1. In the regression setting:

1. (X,,Y), i =1,...,n, are independent copies of the pair of real-valued
random variables (X,Y) with f(x) = E[Y|X = x], an unknown member of
vec,

2. The distribution of X is absolutely continuous with respect to Lebesgue
measure on [0, 1], with density p € CP|0, 1], and there exist constants 8 and
n such that 0 < B < p(x) <mn < o,

3. The conditional distribution of Y given x satisfies the assumptions of Model
1 of Stone (1980). In particular, the conditional variance of Y given X,
Var[Y|X = x] = 0%(x) satisfies 0 < k < o(x) < { < o,

AsSUMPTION 2.2. In the density estimation case we observe X, X,,..., X,
independent with density f € #'C #,. In the atomic case, Theorem 4.1, we

assume further that inf, . 1, f(x) > 0.

We will use the notation ¢ = O(q) in a stronger sense than is conventional.
We will write ¢ = O(q) when there exist constants C and 8 depending only on
M of (2.7) (and hence, in particular, which may be chosen independently on
f€ ¥) such that

lt| < Clq| for all g with |g] < 6.

Similarly, for statements in probability about random variables T, @, whose
distributions may depend on f, we write

T, =0,(Q,),
when

lim lim sup sup P(|T,| > ¢c|Q,|) = 0.
coe 4 ey
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In what follows p will denote the degree of smoothness of f and the order
of the kernel K,(x,t). C will denote a positive constant which is not necessar-
ily the same at each occurrence. We often will write b for b,,.

3. Classification and differentiability of functionals. Section 3.1
presents a Riesz-type representation for bounded linear functionals T and
defines atomic, index and smooth, first for bounded linear functionals T on
%,, and then for the class of differentiable functionals A which we study.

The functionals A are required to admit the ““Taylor’” expansion (3.13) with
first term T';(h) linear in the perturbation % and remainder depending on only
the first m derivatives of kA, 0 <m < p. Generally the order m of the
functional keeps track of how many derivatives of A are involved in the
remainder.

Essentially, the linear term T:(h) will classify functionals as smooth if T,
has no point evaluation component and as atomic otherwise. For atomic
functionals the index r, defined below, is the highest derivative of A for which
the derivative of A contains a point evaluation.

We state degeneracy conditions which will be used to rule out exceptional
cases. Section 3.2 gives our notion of differentiability for functionals (essen-
tially Fréchet differentiability with a slightly different remainder condition),
and presents some simple propositions which may be used to verify the
differentiability of a given functional.

3.1. Classification. For a linear functional T' on CP?[0, 1], define

ITl, = sup |Thl.
“h“(m,p)él

We say T is bounded on C?[0,1]if [|T], < .
We consider functionals A that have the following expansion for f € # and
h € CP[0, 1] with ||A ||, =) sufficiently small:

(3.13) ACF+h) = A(F) + Tp(h) + O(lIAliE, m, »),

where T, the derivative of A at f, is a bounded linear functional on C?[0, 1],
m is an integer 0 <m <p and A is a vector of finite measures that may
depend on A but not on f. /

By an application of the Hahn-Banach theorem, we extend T; to the
product space I17_,C[0, 1], and then use the Riesz representation theorem to
derive that T has representation(s)

p
Ty(h) = ¥ [h9dy; for b e CP[0,1],

j=070

where the u; are finite signed Borel measures on [0, 1] which may depend
on f.
We now define the notions of atomic, index and smooth.
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DerFiNITION 3.1. If for some integer s, 0 < s < p, T has a representation
such that for all A~ € C?[0, 1],

T(h) = L ['hdu,,
j=0"0

where u, has a discrete component 6., then we say that T is atomic. We
define r, the index of T, to be the largest s that can appear in any such
representation.

By extension, if A has atomic derivative T, of index r at f we say A is
atomic of index r at f and write the discrete component of the measure
M, =i, ; in the above representation as &, ;. Finally, A is of index r on
< ¥, if max; .y index(T;) = r.

DeriniTION 3.2. If, for all € CP[0, 1],
1
T(h)= | h
(h) = [ hw

for some bounded measurable function w, we say that T is smooth. By
extension, if A has smooth derivative at f we say A is smooth at f, and that A
is smooth on ¥ if T, is smooth for all f€ 7.

Note that smooth is not the same as index 0.

Next we define #*, the set of local variations used for taking directional
derivatives at any f € #. The space depends on the class 7 in which f is
known to lie:

DeriNITION 3.3. Given %, define #*, the space of local variations for %,
by

¥*={heCPl0,1]:Vfe ¥, [+ eh € ¥ forall ¢ > 0 sufficiently small}.

We state the following degeneracy conditions which will be used to rule out
exceptional cases. For a degenerate functional, the upper bound proof breaks
down and faster rates may obtain. Basically, the first condition says that
degeneracy exists if the rate-determining measure is annihilated on the set of
local variations. The second condition will be used to exclude ‘‘thin” classes of
functions. It ensures that # is rich enough so that #* contains small ‘“bump
function” perturbations. We shall prove that when A is not degenerate, a
plug-in estimator is optimal. Any nonconstant functional on #'= ¥, is auto-
matically not degenerate.

DEerINITION 3.4. Let A be an atomic functional of index r on #. We say
(A, %) is strongly degenerate if for all f€ # such that T is of index r:

['h"ds, ;=0 forallhe »*.
0
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(Recall that &, , is the discrete component of the measure K, ; in the
representation of T, the derivative of A at f, as given in Definition 3.1.) We
say (A, #') is not degenerate if for all x, € [0, 1] there is a function ¢ of
compact support with (0) # 0 such that

(3.14) aPy(a(x —xy))1(x €[0,1]) € 7*

for all a sufficiently large; otherwise we call (A, #') degenerate.

In the atomic case, it is clear that (A, #) is degenerate whenever it is
strongly degenerate. Condition (3.14) may be used to rule out finite-dimen-
sional classes of functions. For example, take # to be all polynomials of degree
less than or equal to k. Then any atomic functional A is degenerate, but not
necessarily strongly degenerate, on #: For example, take A(f) = f(0) with
r < k + 1. That this pair (A, #') is degenerate is consistent with the fact that
the rate given in Theorem 4.1 is not optimal, and plug-in estimators do not
achieve the optimal rate n~1/2.

For a discussion of strong degeneracy, see the end of Example 6.

DeriNiTION 3.5. Let A be a smooth functional on #. We say (A, #) is
degenerate if for all fe ¥,

['hw,=0 forall he #.
0
For example, A(f) = [, f is degenerate on #'= {f: f1, = 0}.

3.2. Differentiability of functionals. Definition 3.6 gives our notion of
differentiability, essentially that expansion (3.13) is uniform over #. The
propositions which follow may be used to verify the differentiability of a given
functional.

DEeFINITION 3.6. Let 0 <m < p.

1. We say A is differentiable of order m on ¥ %, if for every f€ ¥, A has
an expansion of the form (3.13) and

sup ||Tf||p < .
e

2. We say A is smooth of order m on #'C %, if A is differentiable of order m
on # and for all f< #, A has smooth derivative Ty with w = w; and

(3.15) sup [w, ||, < .
few

In many examples, A is of the special form

(3.16) A(F) = folg(u, FO(u), FO(u),..., F™(u)) du

for some g: R™*2 - R.
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The following proposition shows that such functionals are differentiable
when g is sufficiently smooth.

ProprosITION 3.7. Let A be given by (3.16) for 0 < m < p. Let Wbe a set in
R™*2 such that
{(u, FO(u) + ROu),..., F™(u) + A™(u)):
ue[0,1], f€ #, Ihllewm <e} CW.
Suppose for some & > 0, g has two continuous derivatives on the convex

closure of W. Then A is differentiable of order m on ¥

ProprosiTION 3.8. If m = 0 in Proposition 3.7, then A is smooth of order 0
on ¥.

The following proposition shows that differentiability properties are re-
tained under compositions.

ProposiTiON 3.9. Let A be differentiable of order m and [of index
r/smooth] on #. Let s = max(m,r) in the atomic case and s = m in the
smooth case. Suppose that for some e >0, g is twice continuously dif-
ferentiable on I, a bounded, closed interval containing {A(f+ h): fe ¥,
12l e, my < €} with g'(x) # 0 on I. Then T'(f) = g(A(f)) is differentiable of
order s on ¥, and [of index r /smooth].

We state one last result to be applied to Example 4 involving the asymptotic
variance of U-statistics; there, the case d = 3 will apply.

ProposiTION 3.10. If : [0,1]° - R is a bounded measurable function,
and A c [0, 11¢ is measurable, then the functional

ACS) =f"'fA'lf(x1,~-,xd)f(x1)~~- f(x,)dx, - dx,

is smooth of order O for every #'C %,.

Proor. The proof is a consequence of the relations

d
T,(h) = Z_jlf Lw(X)h(xi)gf(xj)dx
and

|ACf+h) = ACF) = Ty(R)]

d
='/ [P TL k(s f(x) dx

i=21J|=i,jed, ke
2
1
< cUO Ih(x)ldx] < CIRI2 < ClIRI2

for [|kll. < 1. O
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4. Statement of results. For atomic functionals we have the following
result.

THEOREM 4.1. Let A be a differentiable functional of order m and index r
on ¥cC W where p > max{m + 2,r + 1,2m —r + 1}. Let cz>cl>0 be
constants and let b, € [e;n™Y2P*D con 1/‘2”“)] If (A, #) is not degener-
ate, then A(f,) achieves the optimal rate n=P="/@P+D on ¥,

For smooth functionals we have the following result.

THEOREM 4.2. Let A be a differentiable smooth functional of order m on
< ¥, and p = max{2,2m + 1}. Let c be a positive constant and let b, €
[cn‘l/(4'"+2) cn_l/zp] If (A, #) is not degenerate, then A(f,) achieves the
optimal rate n= 2 on ¥.

REMARK. One can get a rough idea of the magnitude of the constant term
in the n~1/2 rate of convergence in the smooth case by considering the case
where p is large and p is known. In this instance, with & = o(n~1/2P) it can be
shown that the variance in the linear term dominates and the constant is
asymptotic to [(f2 + cHw? ! — (Jfw)?

In the smooth density case, under conditions and using the results of Levit
(1979), Goldstein and Khas’minskii (1992) are able to show the plug-in estima-
tor achieves the best constant Var w.(X), where X has density f and,
moreover, is locally asymptotically minimax.

5. Examples. Here we present five natural applications of our results and
one last example to illustrate degeneracy.

ExampLE 1 [A(f) = f"Ax,)]. We recover results about optimal pointwise
estimation of regression and density functions in Stone (1980) by considering
the point evaluation functional A as a nondegenerate differentiable functional
of order 0, say, and index r. Hence, by Theorem 4.1, A is estimable at the
optimal rate n~*~"/@P*D over ¥, for p > max{2, r + 1}. Note that Theorem
4.1 yields this same rate for functionals g(f"(xy)) such as (£ (x,)? or
exp( f"Xx,)) by Proposition 3.9.

ExampLE 2 [A(f) = [¢If"|?]. The LJ norm functional A satisfies Propo-
sition 3.7 for ¢ > 2, and hence is differentiable of order m for any #'c 7,.
This functional is important in the choice of a smoothing parameter for
estimation of a density or regression function.

Taking g even for illustration, the derivative T of A at f is given by

Ty(h) = ‘Ifolh(m)( Femyth,

If m = 0 this demonstrates that A is smooth. Hence, for p > 2m + 1, the
optimal rate of n~'/2 is achieved by the plug-in estimator whenever (A, #) is
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nondegenerate. This is satisfied whenever #* = (J. However, A may be
smooth even when m > 1 for certain #. For example, take ¢ = 2, and
integrate by parts:

1 1
- = (m)£(m)
ST(h) = [hmf

= ROPD(1) FO(1) — Rm=D(0) F(0) — flh(m—l)f(ml)~
0

We see therefore that T, is of index r = m — 1 on %, and that by Theorem
4.1 the optimal rate over %, of n~(»~(2=D/@P*D js achieved by the plug-in
estimator, for p > m + 2. However, if p > 2m + 1 and f is known to lie in
the class of functions #2™ which satisfy boundary conditions:

wem {fe Wpi f‘j)(O) =f(j)(1) =0,m<j<2m — 1},

then all atomic terms in T, drop out. In fact,
1 1
- — (_1\" @2m)y, .
Tk = (=1)" [ £emh;

hence 7, is smooth. In this case the functional A is easily seen to be
nondegenerate on #2™ and hence is estimable at the optimal rate n /2 by
the undersmoothed plug-in estimator. Generally, if f lies in the class of
functions #* which satisfy f“(0) = fYX(1) =0 for m <j <i <2m — 1 but
@ is nonzero at, say, 0, then A is of index r = 2m — i — 1 and the interme-
diate rate n~(P~@m~1-/@p+D ghtains. This rate is achieved by the plug-in
estimator with no undersmoothing, by Theorem 4.1. By Proposition 3.9 simi-
lar remarks apply to the estimation of the L? norm itself on any set that
excludes a neighborhood of the zero function.

Related discussions of the functional in this example appear in Has’minskii
and Ibragimov (1979), Hall and Marron (1987) and Bickel and Ritov (1988).
These last two references deal with the case of a density function on the entire
real line and investigate how the rate of convergence depends on the smooth-
ness of the underlying density. They show that rates slower than n~!/2 obtain
when the density fails to have sufficient derivatives, a case we do not consider.
Ritov and Bickel (1990) show in this latter case that without sufficient
smoothness the functional is not estimable at rate n~* for any « > 0. We
show that rates slower than n~1/2 obtain on a finite interval if certain
boundary conditions are satisfied, a case they do not consider. With sufficient
smoothness (p > 2m + 1) and boundary conditions, all authors obtain the
rate n~ /2

With m = 0 and g = 2 the functional appears in the variance of the
Hodges-Lehmann estimator and the Pitman efficiency of the one-sample
Wilcoxon test to the one-sample ¢ test [Lehmann (1975)]. It is also investigated
in nonparametric sequential ranks by Sen (1981) and Fenstad and Skovlund
(1990).
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ExampLE 3 [A(f) = 2/}fg/(f+ g)l. When inf g > 0 the equidistribu-
tional functional A is smooth of order 0 on 7, by Proposition 3.8. Hence
Theorem 4.2 shows that the plug-in estimator achieves the optimal rate n~ /2,

In Abramson and Goldstein (1991), the equidistribution functional A is
shown to be invariant under smooth invertible transformations of the data,
and to enjoy the following property: A = 1 if and only if f = g; if f # g, then
A < 1. In the one-sample problem to test whether or not observed data are
generated from the known density g, it is therefore of interest to estimate A.

ExampLE 4 [ACf) = [ol [at(y, x) f(y) dyPf(x) dx]. That A(f) is smooth of
order 0 on %, follows from Proposition 3.10 for d = 3. For p > 1, A is
therefore estimable at the optimal rate n~'/2 by Theorem 4.2. The functional
A is the asymptotic variance of the U-statistic

U= (g) Y u(X., X)),

i<j

where X, X,,..., X, are i.i.d. with density f on [0, 1],  is bounded measur-
able function and EU = 0 for convenience. See Lehmann (1975), page 367.

ExampLe 5 [A(f) = [4(f§7(x) — f"(x))? dx]. The function f, is as in
(2.6); take #'= ¥,

This functional arises when considering the conditional integrated mean-
squared error E[ [(f™ — f™)2X] with p = 1 for convenience, and in particu-

lar the conditional bias term

n

1
— ¥ K O(x, X) F(X) = F7(x).

For large samples the above sum may be approximated by an integral and
hence the conditional bias term by f;”X(x) — f™)(x). Hence the squared bias
component of the integrated mean- squared error for estimating f(™ using
bandwidth b, is approximately A(f). Therefore this functional is of interest
when one wishes to choose a bandwidth b, which estimates f™ well in the
integrated mean-squared error sense. An estimator of the optimal bandwidth
may be given by minimizing an appropriate function of A(F, b,y) over b,. Of
course, a bandwidth b, which estimates f‘™ well may not in general be the
same as a bandwidth b which estimates A(f) well.

A variational argument shows A to be differentiable of order m on %, for
p > m, with derivative

1
S Tr(h) = [{(Ag2(x) = h())( £57(x) = F™(x)) d

For m = 0, Fubini’s theorem shows A to be smooth and therefore estimable at
the optimal rate n~/2 For m > 1, integrating by parts as in Example 2, we
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see that T is of index m — 1 over %#,. Hence we have from Theorem 4.1 that

n~(P~m+D/@p+D) jg the optimal rate of convergence for estimating the asymp-
totic integrated squared bias over %, for p > m + 2. These rates are achieved
by the plug-in estimator A(f).

The case with general p is tractable but more complicated.

ExampLE 6. This example illustrates two cases for which the plug-in
estimator is not optimal. In the first we show how to construct a modified
estimator.

Let

ACF) = folf’g,

where g € C'[0,1] and g(0) = g(1) = 1. Then A is linear, so for fe€ %,,
h € CP[0, 1],

T;(h) folh'g

(5.17) .
= [ hg' + (R(1) = h(0)).

Hence A is differentiable of order 0, say, and is atomic of index 0 over %,.
Since A is not degenerate over %,, the optimal rate is the pointwise rate

n~P/@P*D and is achieved by the plug-ln estimator A(f) by Theorem 4.1 for
p =2

Now suppose [ is known to lie in the restricted class of functions
={fe 7, f(0) = f(1)}.

Since the derivative of A does not depend on f, A is still of index 0 over #.
This is unlike all our previous examples, where the derivative depends on f.
This functional is strongly degenerate on #: The atomic part of (5.17) is
identically 0 for h € #*. Hence the hypothesis of Theorem 4.1 is not satis-
fied. Indeed, the smooth rate n~'/2 is achieved over # by the estimator

14
-—[fg.

0
The plug-in estimator A(f) by contrast can only achieve the slower pointwise
rate n~P/@P*D_This is because the estimate / lies in #,, not #, and for this
example that difference is crucial: For f € %, the hlgher terms of the deriva-
tive T;(h) do not vanish for all A € %, but only for h € 7™,

One can think of the modified estimator A given above as a plug-in

estimator of a functional A’ which is smooth on Wp and which coincides with
the functional A on the restricted set 7.
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Our second example is given by again considering A(f) = [(f")? with
derivative

1 1., , )
g Trh == [ hf" + £/(0)h(0) = f'(1)h(1)

as in (1.4). Taking ¥={f e 7, f(0) = f(1) = 0} forces #* c {h € CP[0, 1]:
h(0) = k(1) = 0}. Since there exists f € ¥ with f'(0) # 0, A is of index 0 on
¥. The pair (A, #) is strongly degenerate since the atomic terms of the
derivative vanish for A € #*, that is,

[ hdso, = F(O)h(0) = F/(1)h(1) = 0

for all h € #* and f € # such that T, is of index 0. Hence one would not
expect the plug-in estimator to achieve the optimal rate.

6. Proofs. We give the proofs for the regression setting. The proofs in the
density estimation case are similar, but much simpler in the smooth case.

Proor oF THEOREM 4.1. Upper bound. Since A is of index r we may
choose f, € # such that Ty, has a representation for A € C?[0, 1]:

(6.18) T (k) = ¥ [ b9 dp,,
0 2o

where without loss of generality u, ({x,}) = n > 0 for x, € [0, 1]. We argue as
in Stone (1980). Since A is not degenerate on #, we may choose ¢ of compact
support so that it satisfies the rescaling condition (3.14), taking ¢ > 0
without loss of generality.

Let N > 0 and & € (0, 1] be arbitrary, let = 1/(2p + 1), and define g, by

8.(x) =8NPn~™PY(N~'n"(x — x,))1(x € [0, 1]).

Let f, = f, + g,. Condition (3.14) gives that f, € # for n sufficiently large.

Equations (2.2) and (2.3) in Stone (1980) follow as in Stone (1980). Using
the same classification argument as in Stone (1980), it follows that for any
sequence of estimators {A }:

lim inf sup P, |/A\n _ A(f)l > A(fn) — A(fo)) > 0.
no fe¥, 2

P

Using the differentiability of A, we now compute that

ACf) = A(fo) _ 1
(f.) _ (Fo) _ STr(&) + (112, &, . »)-

Let E, = support(g,); note that E, |{x,} since ¢ has compact support.
Consider the final term in the sum (6.18):

fo ‘g du,.
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Let the Jordan decomposition of w, be given by u, = " — u, . Since 7 and
w, are mutually singular u. ({x,}) = 0. Therefore lim, ,, u, (E,) = 0. Take
n, so that n > n, implies

" (0)

4yl

Hence, breaking up the integral into two parts corresponding to ;7 and u,
we derive that for n sufficiently large

ue(E,) <

[g(r) du, > _5Np n —(p T (0).

The remaining terms in the sum (6.18), those with j < r, and the remainder
term in the expansion of A, O(llg, ||, =, ), are all o(n~®~"7). Hence for n
sufficiently large

ACF) = Afy) _ n0N""9(0)
2 - 16
Since N is arbitrary, this demonstrates that (2.10) and (2.11) follow as in

Stone (1980).
Achievability. We first state the following lemma.

n- -7,

LEMMA 6.1. Let u be a finite measure, 0 <j < p. Then

E[[ol( for — f(j))2 du] = O(b%P + n~1p=@i* Dy,
1, ., S 2 . _ (o
E[/ (P9 — p0) d,LL] = O(b2P=D 4 p~1p=@J+ D),

0

Proor. The proof follows by standard arguments as in Nadaraya (1990),
Theorem 1.5, Chapter 4, page 121. O

We now show achievability.

Using the elementary Sobolev inequality || flle, m) < 2l fli2 m+1), the condi-
tions on b, and Lemma 6.1, we have IIf flleo my = =0, (a,) with a, — 0.
Therefore, since A is dlfferentlable of index r and order m, we have the
expansion as in (3.13):

AF) = ACH) = To(F= )+ O(I 7 = Fllam,)

for n sufficiently large.
From Lemma 6.1 and Markov’s inequality, we have that

fl(f‘(n — fOY A, = 0,(b2PD + n~ @i+ DY,
0

and then from the bounds on b, that ||f — fll% . ) = OP(n_z(P_’”)/(ZP“)) =
Op(n—(p—r)/(2p+1))‘
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It remains only to consider the linear term. Choose a representation for T,
as in Definition 3.1. Consider a term with a nonzero measure:

fl(fA(j)—f(j))d:U«j’ O<j<r,
0

and take the Jordan decomposition w, = u; — ;. Set |u ;I =wnj +u;. With-
out loss of generality we may assume that |u ;| is a probability measure on
[0, 1]; this will not change the order of the bounds:

1/2

fol( PO~ FOYd,

< [0 = portalu < ([1(F - 7o) dlu,)

by Jensen’s inequality. The above is O,(n~*~//@P*D) which for j <r is
0,(n~(°P=7/@P*D) a5 was to be shown. O

Proor orF THEOREM 4.2. Upper bound. We argue as in Stone (1980). Since
A is not degenerate, we may choose f € # and h € #™* such that T,(h) # 0.
Say T;(h) > 0. With N > 0 and 6 > 0 arbitrary let g,(x) = §Nn~'/2h(x) and
fo="Fo+ &, ., € ¥ for n sufficiently large. Equation (2.1) in Stone (1980)
holds. Proceeding as in the previous theorem and using the differentiability of
A, we have that

A(fu) = A(fo)
2

1
= 5 Tr(gn) + O(llg, &, m, 1)

SNT,(h)
—‘—4 n

-1/2

1
EﬁNn’l/sz(h) +0(n 1t >
for n sufficiently large. Since N > 0 can be arbitrarily large, (2.10) holds using
a classification argument as before.

Equation (2.11) follows as in Stone (1980).

Achievability. We first state the following lemma.

LEMMA 6.2.

1
16 = ool my = OP(W)

and

1

Let f be given by

(6.19) f(x) =

o) L Kol X F(X,).
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Then

1
| 7= Fllamr = 0,627 + WH).

Proor. Take 0 <j < m, let F be the distribution function of X, and F,
the empirical distribution function of X, X,,..., X,.

We have
| 1 .
— L K{O(x, X) - pf)(x)
i=1

|59(x) — p§ ()]

S

_ folKl(;M)(x, t)d(F,(t) - F(t))’

| [ 0@ - R a
0

<CD,b U*D

by absorbing a factor of b by a change of variable. As usual, D, = sup,|F,(¢) —
F(t). Since D, = O,(n~'/?), the term above is O,(1/ \/—b”l) where the
constant in the o, term does not depend on «x. Smce the term j=m is
dominant, this proves the first assertion of the lemma.

Next, use that

. 1r . .
“ AJ) _ (J)”w =“; Z Kl()J,O)(.’ Xi) — p(j)

i=1

-3

Z KO-, X;) — p§ +”p§’j) - }O(J)“00

and invoke Theorem A.1. The proof of the second assertion is now completed
by noting that the term j = m is dominant. The proof of the last assertion is
similar. O

We now show achievability.
Again, using an elementary Sobolev inequality and Lemma 6.1, we have, for
n sufficiently large, the expansion

AF)=ACH) =T (F=£) + O(I F = Fllzsm.»),

where T((h) = [chw, with sup, . 5 llw/ll. < .
Lemma 6.1 shows that the remainder term || f — f”(z mn =0, (n=12),
Now

Ti(F=F)=T(F=F) + T{(F~ 1),
where f is as in (6.19).



OPTIMAL PLUG-IN ESTIMATORS 1325

By the properties of the kernel given in Theorem A.1,

n

np(x) El (Kb(x’ X;) (X))

f(x) —f(x) =
(6.20)
1
= [ Ko(x,6) f()p(2) | + O(67).
Applying T, we find that T',( F — ) is the sum of the contribution from the

last term above, of order O(b”) = O(n~'/2), plus a simple average of n mean
zero, independent terms. In the latter, since a factor of b may be absorbed in

folK,xx, X,) F(X,)wy(x) dx,

we see that the variance of the summands may be bounded independently of
n. Therefore this average is seen to be O,(n~'/?) by (3.15).
It remains to consider T, applied to

1 n
O );igKb(x,X»f(X,-)

1 n
— K, (x,X,)e,;.
np(x) i§1 o )

We treat the first sum in (6.21) first. Let

f(x) = Ff(x) = (
(6.21)

+

1 n
e(x) = w gle(x, X)) F(X)we(x)

and consider the functional

1e(x)
Fe) = /0 q(x)

Then T, applied to the first sum in (6.21) may be written as (I'( p) — T(py) +
(T'(py) — T'(p)). Let

dx.

n

s F-rl<a),

Bl —mle <15 -l <
2) b lloo 3) blloo

where B = inf_ p(x) > 0 as in condition (2.1.2). By Lemma 6.2 and the tri-
angle inequality, P({2,) — 1. The following assertions hold on Q,. A Taylor
expansion of the function I'(p, + tq) about ¢ =0 evaluated at ¢ =1 for

q =p — p, yields

Q, = {w: inf p(x) >

1 (ﬁ_Pb)Z
0 {py +5(p —py))’

for some s €[0,1]. On Q, the denominator in the second term is bounded
away from 0 and || fll. and therefore [lell.. is bounded. Therefore the second

n lﬁ—Pb
L'(p) —T(py) = —QA ¢ +
b
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term above is of the order ||p — p,lI3 = 0,(n""/?) by Lemma 6.1, Theorem A.1
and the triangle inequality.
The first term is equal to

(6.22) /(p p)(f = (pF)s) 25 +/(p o) (PF )yt 2

Consider the first integral. Note that w, and 1/p} are bounded on (), and
apply the Cauchy-Schwarz inequality to the remalnlng factors. Lemma 6.1
and the triangle inequality show that |5 — pyllz =0 (n~1/%). The function
of—(of ), has expectation 0 at each x € [0,1], and variance of the order
O(1/nb) uniformly on [0,1]. We may .apply Fubini’s theorem, Markov’s
inequality and the constraints on & to conclude that llpf — (pf),ll3 =
0,(1/nb) = 0,(n~'/?). Taking the product of the two L* norm bounds shows
that the first 1ntegral is 0,(n"1?).

The second integrand 1n (6.22) is a sum of n terms with zero mean and
variance which can be bounded independently of n, and hence is of order
n- 2

A simpler argument may be used to handle I'(p) — I'(p,), using b” =
Oo(n=1/2),

Finally, consider T, applied to the last term in (6.21). It suffices to show
that

T{ 10 ZKb(x X)s}

n (x)
_ 2 1 Ky(x, X;)
- nigl[fo AR TPy

Conditioning on Xj,..., X, shows the terms of the sum to have mean 0; the
conditional variance formula and a change of variable now shows that each has
variance bounded independently on . The claim now follows from Chebyshev’s
inequality. O

we(x) dx]si = 0,(n"1?).

APPENDIX

In this section we present a general formula for and relevant properties of
the kernel of order p > 2. Proofs and discussion may be found in Messer and
Goldstein (1992).

A.1. The general formula. For 0 <j < 2p — 1, let the 2pth roots of
—1 be given by
im(2j + 1)
2p

r, = exp(

and define the p X 1 column vector
ll’(t) = <eitr07 R eitrp_1>/.
We denote the components of #(¢) by ¢, 0 <j <p — 1.
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Let ¢(t) = (¢,(t), ..., ¢y, ((t)Y = Cs(¢), where the p X p matrix C is
C=L""A"P
with A =i diag{r,,..., r,_1> and L the Vandermonde matrix
L=[1,A1,...,AP"11].

Here 1 =<1,...,1Y.
Let k(¢) be the real function

—1p-1
(A.23) k(t) = e ;6 iry;(1tl).

The kernel K,(x, ¢) is given by

R T

Jj=1

1-—1¢ gy 1%
R e e s

When p = 2 this may be written more simply. Let ®(u,v) = e~ *(cos(x) —
sin(u) + 2 cos(v)). Then

2%/2bK,(2%/%bx, 23/2bt )

(A.24)

= e ¥ M(sin(lx — ) + cos(x — ¢t))
tO(x+ 2,2 —8) + (1 —x) + (1 -1£),(1 —x) — (1 -¢)).
A.2. Properties. The following theorem establishes a bound in & on the
asymptotic bias of the kernel estimator. Notice that the bias bound is indepen-

dent of x for x € [0, 1]. Hence there is no boundary bias, to first order.

THEOREM A.1.  For the kernel K,(x,t) as given in (A.24),
1. . . . )
|/0 KO, t) f(¢) dt = fO(x)| < C(p, /)67 | flle, py
forallb >0, fe C?[0,1] and 0 <j < p.

The following proposition allows us to differentiate under the integral and
to establish various bounds. Let k(x;b) = 5~ 1k(xb~1).

ProrosiTiON A.2.
[kD(x; )| < C(j, p)b=U+DesinG /2p)x/b)
for all j = 0. A similar bound holds for (67 1¢,(¢ /b)),



1328 L. GOLDSTEIN AND K. MESSER

REFERENCES

ABRAMSON, I. and GOLDSTEIN, L. (1991). Efficient testing by nonparametric functional estimation.
J. Theoret. Probab. 4 137-159.

BickeL, P. and Rrtov, J. (1988). Estimating integrated squared density derivatives: Sharp best
order of convergence estimates. Sankhya Ser. A 50 381-393.

DonoHo, D. L. (1988). One-sided inference about functionals of a density. Ann. Statist. 16
1390-1420.

DoNoho, D. L. and Liu, R. C. (1991). Geometrizing rates of convergence. II. Ann. Statist. 19
633-6617.

DonoHo, D. L. and Low, M. G. (1992). Renormalization exponents and optimal pointwise rates of
convergence. Ann. Statist. 20 944-970.

FENsTAD, G. and SkovLUND, E. (1990). A two-sample sequential rank test by Sen investigated by
stochastic simulation. J. Statist. Comput. Simulation 36 129-137.

FernHOLZ, L. T. (1983). Von Mises’ Calculus for Statistical Functionals. Springer, New York.

GoLDSTEIN, L. and KHas’MiNskiI, R. Z. (1992). On efficient estimation of smooth functionals.
Preprint.

HaLL, P. and MaRRON, J. (1987). Estimation of integrated squared density derivatives. Statist.
Probab. Lett. 6 109-115.

Has’minski, R. Z. and IBRAGIMOV, L. A. (1979). On the nonparametrical estimation of functionals.
In Proceedings of the Second Prague Symposium on Asymptotic Statistics (P. Mandl
and M. Huskova, eds.) 41-55. North-Holland, Amsterdam.

LEHMANN, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San
Francisco.

Levit, B. (1979). Asymptotically efficient estimation of nonlinear functionals. Problems Inform.
Transmission 14 65-72.

MEsSER, K. and GOLDSTEIN, L. (1992). A new class of kernels for nonparametric curve estimation.
Ann. Statist. To appear.

NapaARrava, E. Z. (1990). Nonparametric Estimation of Probability Densities and Regression
Curves. Kluwer, London.

PranzacL, J. (1985). Contributions to a General Asymptotic Statistical Theory. Lecture Notes in
Statist. 13. Springer, New York.

Rrrov, Y. and BickeL, P. J. (1990). Achieving information bounds in non and semiparametric
models. Ann. Statist. 18 925-938.

SEN, P. K. (1981). Sequential Nonparametrics: Invariance Principles and Statistical Inference.
Wiley, New York.

StoNE, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8
1348-1360.

VON MISES, R. (1947). On the asymptotic distribution of differentiable statistical functions. Ann.
Math. Statist. 18 309-348.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTHERN CALIFORNIA CALIFORNIA STATE UNIVERSITY
Los ANGELES, CALIFORNIA 90089-1113 ‘ FULLERTON, CALIFORNIA 92634



