The Annals of Statistics
1992, Vol. 20, No. 3, 1147-1179

SPECIAL INVITED PAPER

A STATISTICAL DIPTYCH: ADMISSIBLE INFERENCES—
RECURRENCE OF SYMMETRIC MARKOV CHAINS
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Given a parametric model and an improper prior distribution, the
formal posterior distribution induces decision rules in any decision prob-
lem. The results here provide conditions under which this formal Bayes
method produces admissible decision rules for all quadratically regular
decision problems. The conditions derived are shown to be equivalent to the
recurrence of a natural symmetric Markov chain (on the parameter space)
generated by the model and the improper prior. The results are also used to
give conditions under which formal predictive distributions are admissible
decision rules in certain prediction problems.

1. Introduction. The formal Bayes method for deriving inferential pro-
cedures occupies a significant portion of both the decision theoretic and
Bayesian literature. The formal Bayes representation of estimators is a stan-
dard strategy for attempting to establish admissibility; for example, see Karlin
(1958), Stein (1959, 1965), Zidek (1970), Portnoy (1971), Clevenson and Zidek
(1977), Berger and Srinivasan (1978) and Brown and Hwang (1982). In the
Bayesian world arguments abound which attempt to justify the use of ““flat,”
“uninformative” or ‘“‘reference’ prior distributions (typically improper), and
implicitly, the posterior distributions these generate; see Berger (1985) for a
discussion and references. Of course, any posterior distribution allows a
Bayesian to solve decision problems; one just chooses actions to minimize
posterior risk.

A mathematical formulation of the formal Bayes method requires some
care. Given a statistical model P(dx|0) on a sample space 2" and a o-finite
improper prior distribution v on the parameter space 0, the marginal measure

on &,
(1.1) M(dx) = fP(dxlO)v(dO),

may be badly behaved (i.e., not o finite). However, when M is o finite (2" and
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® are assumed to be Polish with their Borel o algebras), the formal posterior
distribution on O, Q(df|x), exists and satisfies

(1.2) P(dx|8)v(d8) = Q(d6lx)M(dx);

the equality means that the two measures on 2" X O agree. That is, Q(-|x) is a
probability measure for each x, and for each measurable subset B C 0,
Q(B| - ) is measurable. In addition, @ is unique in the sense that if @ also
satisfies (1.2), then there is an M-null set B, such that x ¢ B, implies
Q(-1x) = Q(-|x). For a discussion, see Eaton (1982); an attempt to circumvent
the o-finiteness assumption on M occurs in Hartigan (1983). Throughout this
paper both » and M are assumed to be & finite, so a formal posterior exists.

Given an action space A and a nonnegative loss function L, a formal Bayes
solution to the decision problem is any function a(x) € A, which for each x
satisfies

(1.3) [L(a,8,%)Q(dblx) = [L(a(x),6,x)Q(d0lx)

for all a € A (we are ignoring existence and measurability issues here). For
example, if A = R" and ¢(0, x) € R" is any bounded measurable function of 8
and x, then

(1.4) $(x) = [(8,)Q(d0lx)
is a formal Bayes estimator of ¢ when the loss function is
(1.5) L(a,0,x) = (a—¢(0,x))(a —¢(0,x)).

Here, the prime denotes the transpose of vectors in R”.
The results in this paper focus on the general question:

Under what conditions on the model and the improper prior
(1.6)  will the formal Bayes method produce ‘“‘reasonable” deci-
sion rules?

The notion of reasonable adopted here is Stein’s notion of almost-v-admissibil-
ity (a-v-a), which is defined formally in Section 2. The class of decision
problems to which our results apply includes the quadratically regular prob-
lems introduced in Section 2. The quadratically regular problems include:

1. The problem of estimating a bounded measurable function of 8§ and x when
the loss is quadratic [as in (1.4) and (1.5)].

2. A wide class of prediction problems when the loss is a quadratic measure of
distance between distributions (see Section 6 for a precise formulation).

The precise mathematical problem studied in this paper is:

For quadratically regular problems, what conditions on the
(1.7) model and v will imply that the formal Bayes decision rules
defined by v are a-v-a?
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A main result in this paper, described in Theorem 1, answers (1.7) in the
present generality. This result and its connection with Markov chains is
described in Sections 2 through 5.

The conditions for a-v-a are expressed in terms of the behavior of the
transition function

(1.8) R(dbln) = fgﬂQ(dalx)P(dxln).

For B c O, R(Bl|n) is the average (over 2°) probability assigned to B by the
formal posterior Q(-lx) when X is sampled from P(:|n). Thus from the
Bayesian viewpoint, it seems reasonable te call R the pre-posterior transition
function since averaging over the sample space has taken place. It should be
observed that R is defined only in terms of the model and the improper prior
v. Conditions on the behavior of R supply one answer to (1.7). For a measur-
able subset C < O satisfying 0 < v(C) < + o, consider the class of real valued
functions on 0: ‘

(19)  V(C) = {h’fh2du< +o k> 0, h(0)21f0r0€C}.
For h € V(C), set

(1.10) A(h) = [[(R(8) = h(n))*R(d6ln)v(dn).
Here is a key result.

THEOREM 1.1. If for each C satisfying 0 < v(C) < +oo,

(1.11) inf A(h) =0,

heVv(C)
then for all quadratically regular decision problems, the formal Bayes rules
induced by v are a-v-a.

The proof of Theorem 1, given in Sections 2 and 3, uses Blyth’s method
[Blyth (1951)] and an application of the Cauchy-Schwarz inequality described
in Appendix 1. Obviously, the function A* = 1 yields A(A*) = 0, but A* is not
in V(C). Thus, condition (1.11) can be interpreted as the extent to which A*
can be approximated by functions in ‘'V(C). An application of Theorem 1 to
random samples from one-dimensional translation families which have means
appears in Section 3. This application shows that (1.11) holds when v is
Lebesgue measure, so the formal Bayes rules are all a-v-a, thus providing some
justification for using Lebesgue measure as an improper prior distribution in
this problem.

Because the inf in (1.11) is typically not achieved by functions in V(C), the
successful application of Theorem 1 depends on describing ‘‘approximate’
minimizers of A in (1.10). This leads to the introduction of discrete time
0®-valued Markov chain whose transition function is R(-|n) defined in (1.8). To
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see this connection, let K o C satisfy v(K) < + and let
(1.12) V(C,K) ={h € V(C)|h(6) = Ofor 6 € K}.

In Appendix 2, a minimizer of A over V(C, K) is characterized as a certain
“hitting probability” of the Markov chain defined by R. Using this result and
letting K increase to ® yields a connection between recurrence properties of
the chain and (1.11). To be precise, let W = (n, W, W,,...) be the Markov
chain which starts at  and evolves according to R. Consider the stopping
time

first n > 1, withW,eC,
7T 4o, if W, &Cforalln > 1.

THEOREM 1.2. For each C with 0 < v(C) < +x,

(1.13) A(h) = [[1 = Pr{oc < +e|Wo = n)]v(dn),

inf
heVv(C)
where W, is the initial state of the chain.

Now, if (1.11) holds, then for each C, the integral over C in (1.13) is zero.
This means that for each 1 € C (except for a v-null set), when the chain starts
at m, it returns to C w.p.1. Therefore (1.11) is equivalent to a recurrence
property of W (called local v recurrence here).

The technical details involving the connection between A and the chain W
are given in Appendix 2. The connection established there is valid for any
v-symmetric chain (see Appendix 2 for the definition of v symmetry), and not
just for chains whose transition functions have the form (1.8). The arguments
proceed from first principles and are valid for any Polish space. Fortunately, a
discussion of the rather technical matter of irreducibility has been avoided [see
Nummelin (1983) for such matters]. For the countable state space case when
the chain is irreducible, some similar-looking results appear in Griffeath and
Liggett (1982) [also see Lyons (1983)].

Even though the minimizers of A over V(C, K) can be characterized, they
remain elusive. For the case ® = [0, x), a heuristic method for finding ‘““ap-
proximate’”’ minimizers of A appears in Section 5. The method is successfully
applied to the one-dimensional Poisson case.

The results given here provide one possible criterion for the evaluation of
the improper prior v and hence the induced posterior distribution. An alterna-
tive formulation, described in Example 2.1, which concentrated directly on the
formal posterior Q(-|x) was introduced in Eaton (1982). The idea there was to
regard Q(:|x) as a decision rule [also called an inference in Eaton (1982)], and
ask for conditions under which this decision rule is a-v-a. This approach led to
the introduction of fair Bayes loss functions. The admissibility of @(:|x) for a
variety of such loss functions is then regarded as evidence that the improper
prior v leads to sensible inferences. It was pointed out that the prediction
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problem could also be viewed this way. This viewpoint is developed further
here.

The problem of predicting the value of some future observable random
quantity on the basis of available data has received considerable attention in
the statistical literature. The time series literature is replete with derivations
of minimum mean squared error predictions, while the prediction of a future
response, given values of covariates, is a classical problem in linear model
theory which is ordinarily attacked via mean squared error considerations. No
less attention is afforded the prediction problem in the Bayesian world,
although the emphasis is somewhat different. Given a probabilistic model and
a prior distribution, the Bayesian solution-to the prediction problem is just the
conditional distribution of the quantity to be predicted, given the data and the
prior. This conditional distribution is called the predictive distribution and is
discussed at length in the basic text by Aitchison and Dunsmore (1975). It has
been argued in the literature that prediction, as opposed to say parametric
estimation, is the proper activity of statisticians, partly because prediction is
often the scientific question of interest and partly because the ability of
statisticians to predict can actually be checked, unlike the popular parametric
estimation-confidence set activity. For an introduction to this point of view
and further references, see Geisser (1980).

In Section 6, we formulate the prediction problem as a decision theory
problem with a fair Bayes loss function. The decision rules are the predictive
distributions. It is then an easy matter to show the decision problem is
quadratically regular and thus Theorem 1 applies when (1.11) holds. In
particular, the same condition which establishes the a-v-a of ¢ in (1.4)
establishes the a-v-a of predictive distributions. The fair Bayes estimation
problems [as described in Eaton (1982)] are special cases of the prediction
problems, so (1.11) is also a sufficient condition for the a-v-a of formal
posterior distributions on ®—a result of some interest to Bayesians, since one
has an explicit justification for the use of some improper priors.

Section 7 contains discussion concerning open problems and the relation-
ship of the results here with other work on admissibility. In addition, it is
pointed out that certain common groups which arise in invariant statistical
problems, do not support any recurrent random walks. Therefore the sufficient
condition for a-v-a given in Theorem 1 cannot hold in these problems when an
invariant prior is used. This fact strongly suggests that the routine use of
invariant prior distributions for invariant problems is suspect in such cases.
However, improving decision rules by modifying invariant priors remains an
open problem.

2. Preliminaries.

2.1. Blyth’s lemma. Here we review a standard technique for establishing
admissibility—commonly known as Blyth’s method [Blyth (1951)]. Consider a
statistical decision problem with a risk function R(8, 8) where & is a decision
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rule and 6 € ® is a parameter. Let v denote a o-finite measure on the
measurable space (0, &) with v # 0.

DEeFINITION 2.1 [Stein (1965)]. A decision rule §, is almost-v-admissible
(a-v-a) if for any decision rule §; which satisfies
R(8,,0) < R(6,,0) foralle,
the set
(61R(5,,6) < R(5,))

has v measure zero.
Now, let U be the set of all nonnegative functions g defined on ® such that
0 < [g(6)r(do) < +o.

For each g € U, we assume there is a Bayes rule for the prior measure
g(0)v(de); that is, a decision rule &, exists such that

(2.1) JR(8,0)2(6)v(d6) = [R(5,,0)g(8)v(db)

for all 6.
A measurable subset C € © is v proper if 0 < v(C) < +». For such a
subset, let

(2.2) U(C) = {g € Ulg(6) = 1for 6 € C}.

The following sufficient condition for a-v-a is a variation of Blyth’s condition
[Blyth (1951); also see Stein (1955), Zidek (1970), Brown and Hwang (1982)
and Berger (1985)].

ProposITION 2.1. Let 8, be a decision rule. If for each v-proper set C,

(2.3) gei?](fc)f[R((So,o) — R(5,,0)]g(6)v(d8) = 0,

then 8, is a-v-a.

Proor. The well-known proof by contradiction is omitted. O

Because v is o finite, (2.3) need only be verified for a countable number of
C’s. Here is a precise statement.

CoroLLARY 2.1. Let {C,ln = 1,2,...} be any collection of v-proper sets with
C,cC,,,and UC, = 0. If (2.3) holds for each C,, then 8, is a-v-a.

PRrROOF. A minor variation of the proof of Proposition 2.1 establishes this
result. O
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REMARK 2.1. In concrete problems, one usually establishes almost admissi-
bility, and then uses a separate argument to try to obtain admissibility. For
example, if one can show all finite valued risk functions are continuous and if
v assigns positive measure to all nonempty open sets, it is clear admissibility
follows from almost admissibility. This technique is often applicable in exam-
ples dealing with exponential families.

In what follows, upper bounds on the integrated risk difference in (2.3)
involve the variation distance between probability measures. Recall that if «;,
and «, are probabilities defined on the same measurable space, then

(2.4) lay — ay| = 2sgp|a;(B> — ay(B)|

is the variation distance between «; and «,. Here, the sup ranges over the
relevant o algebra. Further, if A is any o-finite measure which dominates «a,
and a,, then

(2.5) lay = azll = [Ipy = pslda,
where p, = da,/d A is the Radon-Nikodym derivative.

2.2. Quadratically regular decision problems. The main class of decision
problems to which our a-v-a results apply are described below. To set notation,
the sample space &" and the parameter space ® are assumed to be Polish
spaces (complete separable metric spaces) equipped with the usual o algebras
#, and %,. The available data X € &  are assumed to have a distribution
belonging to the parametric family {P(-16)|6 € ®}. Throughout this paper, v
denotes a o-finite improper prior measure on O [v(®) = + ). The sets U and
U(C) are as defined in Section 2.1.

The marginal measure on £ defined by (1.1) is assumed to be ¢ finite.
Thus, the formal posterior Q(:|x) exists (such objects are sometimes called
transition functions) and is characterized by (1.2). Further, for each g € U,
the finite measure g(6)v(d#@) defines a finite marginal measure

(2.6) M, (dx) = [P(dx16)g(8)v(d6)
on Z, and thus a posterior distribution @,(-|x) exists, which is characterized

by
(2.7) P(dx|6)g(0)v(d6) = Q,(dblx) M (dx).

Now, consider a decision problem with an action space A and a nonnegative
loss function L(a, 8, x) defined on A X ® X &Z. It is assumed that for Q(:[x)

and Q,( |x), there exist measurable functions a,(x) and a %) from 2" to A
such that

(2.8) [L(a,0,%)Q(dblx) = [L(ay(x),0,x)Q(dblx)
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and
(2.9) JL(a,0,%)Q,(dblx) > JL(ay(x),8,%)Q,(dblx)

for all a € A. Let 8, and 5, denote the decision rules defined by a, and a_,
respectively. Thus, by definition, &, is a formal Bayes rule defined by v [via
Q(-x)] and &, is a Bayes rule when the prior measure is g(8)»(d6). For any
decision rule 8, R(8, #) denotes the risk function of 8.

DEFINITION 2.2. Given the model and v, the preceding decision problem is
quadratically regular if there is a constant K € [0, ) such that for all g € U,

J [R(80,6) — R(3,,06)]g(6)v(d6)
(2.10) ©
<K[ QC1x) = Q,(-1x) [ My(dx).

Here, || - || denotes variation distance.

In the preceding definition, the constant K is allowed to depend on the
model, on v and on the loss function, but not on g € U. Before discussing
(2.10) further, we give two examples which provide some motivation for the
definition. Of course, the upper bound in (2.10) is to be used in verifying the
sufficient condition (2.3) for a-v-a.

ExampLE 2.1. In this example we show that the estimation of bounded
measurable functions with quadratic loss is a quadratically regular decision
problem. Let ¢(6, x) take values in R" and suppose each coordinate of ¢ is
bounded in absolute value by K;. With the action space A = R", consider a
loss function L given by

(2.11) L(a,0,x) = (a—¢(6,x))B(a - ¢(8,x)),
where B is a nonnegative definite matrix. Then

(2.12) Bo(x) = [¢(6, x)Q(dbIx)

defines a formal Bayes estimator of ¢ and

(2.13) $2(x) = [(8,%)Q,(dblx)

is a Bayes estimator for the finite prior measure g(6)v(d#8). The risk function
of any (nonrandomized) estimator § is

(2.14) R(#,0) = [(8(x) — ¢(8,%)) B(¢(x) — ¢(6, %)) P(dxlo).
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A routine calculation shows that

JIR($0,6) = R($,,0)]2(6)v(d6)
(2.15)

= [(@o(x) = ¢4(x)) B(bo(x) = b4(x)) M, (dx).

However, for each x, the integrand in the right-hand side of (2.15) is bounded
above by

(2.16) K| Qo) = @u(- 1) |,

where A is the maximum eigenvalue of B. With K = AnK,, this decision
problem is thus quadratically regular.

Two easy generalizations of this example are possible. First, the matrix B
can depend on x as long as the maximum eigenvalue of B(x) remains
uniformly bounded. Second, ¢(6, x) can take values in a separable Hilbert
space as long as the Hilbert space norm of ¢ is uniformly bounded in (8, x).
The easy details are omitted.

Three special cases of this decision problem deserve special mention. As-
sume n = 1 and B = 1. When ¢ is the indicator function of a subset of ®, say
D, then ¢, is the posterior probability of D under Q(:[x). Thus in a Bayesian
context, the problem is to assess the a-v-a of formal posterior probabilities.
When ¢ is the indicator of a subset of ® X &£, say H, then one can interpret ¢
as the coverage function; that is, the x section of H is a confidence set for 4.
Then, $(x) is an estimate of the coverage probability for the confidence set.
This approach to the evaluation of confidence set procedures is discussed in
Hwang and Brown (1991) as well as the references therein. In a testing
situation, the decision theoretic formulation in Hwang, Casella, Robert, Wells
and Farrell (1992) also results in a quadratically regular decision problem.

ExampLE 2.2. For this example, the action space is the set .Z,(0) of all
probability measures on ©. After seeing the data x, one is to announce a
probability distribution on ® which presumably reflects one’s posterior opin-
ions about 6. It was argued in Eaton (1982) that fair Bayes loss functions are
most relevant for this problem. A class of such loss functions can be con-
structed as follows. Consider a bounded measurable kernel k(8,, 8,, x) defined
on © X ® X 2" taking values in R (complex valued kernels are also relevant
for this problem, but we leave the extension to the reader). It is assumed that

for each x, the kernel k(-,-,x) is nonnegative definite and symmetric on
bounded signed measures. In other words, the bilinear form ( - , - ) defined on
bounded signed measures by

(2.17) (&1, €90 =ffk(Ol,02,x)§1(d01)§2(d02)

is symmetric and (£, &) = 0 for all ¢ Examples of such k’s are easy to
construct [see Eaton (1982)]. Note that the dependence of (-, ) on x is
suppressed notationally.
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Define a loss function by
(2.18) L(a,8,x) ={a —g4,a — &),

where ¢, denotes the probability measure with mass 1 at 6. In effect, the
bilinear form is used to define a squared ‘‘distance’”’ between elements of
#(0) via the formula

(2.19) (a; —ag,a; —ay).

This squared distance is then used to define the loss function. The bilinear
form { -, - ) is not assumed to be positive definite, so it is possible that (2.19)
is zero but a, # a,.

Given any finite prior measure g(B)v(dB) on 0O, it is verified in Eaton (1982)
that a Bayes solution to the decision problem with loss function (2.18) is just
the posterior @,(-|x) (this is the fair Bayes property). Using the arguments in
Eaton (1982), it is easy to show that the decision problem with loss function
(2.18) is a quadratically regular decision problem where the constant K in
(2.10) is an upper bound on the absolute value of the kernel k. Thus our
results on a-v-a apply to this example.

Expressions of the form

(2.20) J1Q(-1%) = @,(-1x)[* M, (dx)

have appeared elsewhere in work dealing with the approximation of formal
posteriors by proper posteriors and the application of such ideas in decision
theory [see Stein (1965)]. In some related work, Stone (1965) used the expres-
sion

(2.21) J1Q( ) = Q,(-lx) [ M, (dx)

(when g is a density) to measure closeness of proper to improper posteriors
[see Heath and Sudderth (1989) for a relationship of this to coherence]. The
difference between (2.20) and (2.21) appears to be rather important. For
example, it is not hard to construct cases where the inf over U(C) of (2.20) is
zero but the inf over U(C) of (2.21) is positive. In most cases, it is difficult to
show directly that the inf over U(C) of (2.20) is zero. Rather, one first bounds
(2.20) above by a more analytically tractable expression (in g), and then
attempts to show the inf over U(C) of the upper bound is zero. This we do in
the next section.

3. The condition for almost admissibility. A main theorem, which
provides a useful sufficient condition for the a-v-a of formal Bayes rules in
quadratically regular problems, is stated here. Let L, be the set of v-square
integrable functions. For a v-proper set C, recall that

(3.1) V(C) ={h € Lylh > 0, h(0) = 1for 6 € C}.
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The transition function R(:|n) defined in (1.8) appears here via the measure

T(d9,dn) = R(d0ln)v(dn) = [ Q(dblx) P(dxIn)v(dn)
(3.2) z

= [ Q(dok)Q(dnlx) M(dx)

defined on ® X @. Equation (3.2) shows that T is symmetric and has v as its
marginals. The discussion in Appendix 2 implies that

(3.3) A(k) = [[(R(8) = h(n))*T(d6,dn)
described in the Introduction is well defined and finite for h € L,,.

THEOREM 3.1. The condition

(3.4) inf A(h) =0 foreach v-proper C

heV(C)
is sufficient for the a-v-a of formal Bayes rules in quadratically regular
problems.

Proor. We verify condition (2.3) of Proposition 2.1. Since the decision
problem under consideration is quadratically regular, (2.3) will hold if

(3.5) gggfc)f|‘Q(-|x) - Q(“lx)| " My(dx) =0

for each v-proper C. However, for each g € U(C), Corollary A.1 in Appendix 1
yields

(3.6) J1QC1x) = @,(-1x)|*M,(dx) < 24(Yg),

where A is defined in (3.3). Setting h = 1/§ , when (3.4) holds, (3.5) holds and
thus (2.3) holds. This completes the proof. O

CoroLLARY 3.1. Let {C,ln =1,2,...} be any sequence of v-proper sets
satisfying C, < C, ., and UC, = 0. If (3.4) holds for each C,, then the
conclusion of Theorem 3.1 holds.

Proor. Use Corollary 2.1. O

REMARK 3.1. The converse of Corollary 3.1 is valid. If (3.4) holds for all C,,
then (3.4) holds for all v-proper C.

ExamPLE 3.1 (One-dimensional translation). This example concerns the
additive group R' = © and a one-dimensional translation family model when
the improper prior distribution is Lebesgue measure d6#. Under very mild
conditions, we show (3.4) holds, so a-v-a obtains.



1158 M. L. EATON

For ease of exposition, we write the model in the invariant (Pitman) form.
Suppose the sample space is B! X % and the model P(dx, dy|6) has a den-
sity f(x — 6,y) with respect to dx A(dy). Obviously the marginal density of
Y € % with respect to A is

(3.7) m(y) = [ f(x,y)du.
Then the marginal measure on the sample space is
(3.8) - M(dx,dy) = m(y) dxA(dy)

which is clearly o finite. Define ¢(8lx, y) by

f(x=0,y)/m(y), if0<m(y)< +ow,

(3.9) q(blx,y) = a(0), otherwise,

where g, is some fixed density on R'. Then q(:|x, y) serves as a version of the
conditional density of 6 given (x, y); that is,

(3.10) Q(dblx,y) = q(6lx,y) db.

For v € R!, consider

(3.11) t(v) = [[a(vlx,y) f(x,y) dx A(dy)

and note that

(3.12) t(v) =t(-v), [t(v)dv=1.

A routine calculation shows that the measure T(d6, d7) in (3.2) is given by
(3.13) T(d6,dn) =t(6 —n)dodn.

THEOREM 3.2. Assume
(3.14) Jlult(u) du < +eo.
Then (3.4) holds.

Proor. It suffices to verify (3.4) for C,, = [—m, m] where m = 1,2,... .
Define h,,n =1,2,..., by '

hn(e) = anh(e/n)a

where
2
- —1+ —.
h(6) 1+ 62’ Gn n?
Since h, € V(C,,), it suffices to show that
(3.15) lim A(k,) = 0.

n— o
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Now, use the symmetry of ¢ and a change of variables to obtain

A(h,) = Zai[fh(n tw/n) = hin) h(n)wt(w) dn dw.

w/n

Since h has a bounded derivative and (3.14) holds, the dominated convergence
theorem yields

lim A(h,) = 2[ [l (n)h(n)wt(w) dn dw,

which is zero. This completes the proof. O

A sufficient condition for (3.14) to hold, expressed directly in terms of the
model follows.

THEOREM 3.3. If

(3.16) &l X1 = [[lxl f(x,5) dx A(dy) < +,
then (3.14) holds.

Proor. We sketch the proof. Given Y =y, let W and W be i.i.d. with the
distribution of X given Y =y when 6 = 0. Then it can be shown that

[lult(u) du = &[|W - WY = y].

This is clearly bounded above by
288 (WY = y] = 2&, X,

and the proof is complete. O

These results apply directly to the case of a random sample X,..., X

n

from a one-dimensional translation family. Let X4 < -+ <X, be the order
statistic of the sample and take X to be Xy A good choice for Y € R""! is
v _ Xiy = Xirys i1=1,...,r—1,
: Xivny = Xy i=r,...,n—1,

If &|X,,| < +o, then Theorem 3.3 applies directly and the use of Lebesgue
measure as an improper prior producés a-v-a decision rules in quadratically
regular problems. It should be noted that the condition Eol X < +oo0 is
weaker than the condition &|X;| < +~ when 1 < r < n. For example, con-
sider n > 3 when X,,..., X, is a random sample from a Cauchy translation
family, and take r = [(n + 1)/2].

Naturally, the preceding results can be used to provide conditions for a-v-a
when the model is a one-dimensional scale parameter model and the improper
prior is d6/6 on (0, ). This is because both the formulation of the original
problem and the condition (3.4) are invariant under one-to-one bimeasurable
transformations of the parameter space. This ends Example 3.1.
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REMARK 3.2. For any decision problem with risk function R(§, 8), if there
exists a §; such that

(3.17) JR(8,,0)v(db) < +e,

then a formal Bayes rule for v is easily shown to be a-v-a. In Example 2.1, take
n =1, B =1 and suppose ¢(8, x) € R! satisfies

(3.18) [¢%(8, %) P(dxl8)v(dB) < +c.
It is then obvious that (3.17) holds and hence

8(x) = [#(0,%)Q(d0lx)

is a-v-a whether or not (3.4) holds. Thus, for Example 2.1, the real import of
Theorem 3.1 is for functions which do not satisfy (3.18).

REMARK 3.3. Assume that (3.4) holds for a particular improper prior v.
Consider another improper prior v; given by

vi(do) = ¥(0)v(do),
where ¥ is uniformly bounded away from zero and infinity; that is, there are
constants ¢, and c, such that

(3.19) 0<c;, <¥(0) <cy < +oo, allb.

Let A(h) be given by (3.3) when the improper prior is v and let A,(h) be given
by (3.3) when the improper prior is v,. It is not hard to show that
2

(3.20) A(h) < Z—Z A(h)

for » € V(C). Thus, when (3.4) holds for v, it holds for v,. For example, in the
translation problem of Example 3.1, we obtain a-v-a for any prior ¥(6)d6 as
long as V¥ satisfies (3.19) and (3.4) holds for Lebesgue measure.

4. The Markov chain connection. The condition for a-v-a given in
Theorem 3.1 involves the behavior of the transition function R(d#6|n) defined
by (3.1). This condition is
(4.1) inf A(h) =0 foreach v-proper set C.

heV(C) '
Typically, the inf in (4.1) is not achieved by a function in L,(»), but the inf can
be approximated in the following manner. Fix a v-proper set C and let K be v
proper with K o> C. With V(C, K) given by (1.12), let

(4.2) oy = heg&)[/(h(e) — h(n))*R(déln)v(dn).

The main results in Appendix 2 provide both a formula for 85 and a character-
ization of a function in V(C, K) which achieves the inf in (4.2). A statement of
these results is conveniently given in the language of Markov chains.
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The transition function R(‘|n) defines a Markov chain
W=(nW,W,,...)

on the infinite product space O~ [see Neveu (1964), Chapter 5]. The initial
state of the chain is W, = n and successive states, say W., ,, are generated

15

from the probability measure R(:|W,), i = 0,1,... . The probability measure
of W on ®~ is denoted by

(4.3) S(- W, =),

where W, is the initial state of the chain. Observe that the chain W is v
symmetric; that is, the measure

T(d6,dn) = R(d8ln)v(d8)

introduced in Section 3 is a symmetric measure on © X ©. This property
underlies all of the results in Appendix 2.
To describe a minimizer in (4.2) introduce two stopping times:

L {ﬁrstn >0, suchthat W, € CuUK¢,

+ oo, if no n exists,
(4.4)

first n > 1, suchthat W e CuU K¢,
o=
+ o, if no n > 1 exists,

and let B, ={r < +x), B, = {¢ < +). Now, start the chain at W, =  and
let ho(n) be the probability that the stopped chain W, is in C (and it stops). In
symbols,

(4.5) ho(m) = S{(W, € C) 0 B,[W, = n}.
Since A, is 1 on C, 0 on K¢ and is bounded by 1 on C° N K, it is in V(C, K).

THEOREM 4.1. The function h in (4.5) achieves the inf in (4.2). Further-
more,

(4.6) ok = [ [1 = P{(W, € C) NB,|Wy = n}]u(dm).

Proor. See Theorem A.1 in Appendix 2. O

Theorem 4.1 contains important qualitative information concerning the
form of functions which are ‘“‘approximate’” minimizers of A(k). However,
even in the simplest examples, the explicit calculation of %, seems hopeless,
but the “rough method” described in the next section does provide some hope
for finding reasonable approximations to %, in nontrivial examples. The next
result shows that the approximate minimization problem (involving K) actu-
ally converges to the minimization problem of interest when K increases to 0.
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Given a v-proper set C, define a stopping time o, by
first n > 1, suchthat W e C,
P
¢ + oo, if no n > 1 exists.

Let K,, be an increasing sequence of v-proper sets such that C ¢ K; and
K, — 0.

THEOREM 4.2. The following equalities hold:

(i) lim 8, = inf A(h),
m—ow T heV(C)
(4.7) .
(ii) inf A(h) = [ [1 = Plog < +[W, = n)]v(dn).
hev(C) C

Proor. These are proved in Appendix 2. O

Now, we interpret (4.7)(ii) when the condition (4.1) for a-v-a holds; that is,
when

(4.8) f [1 — P{og < +|W, =n}]v(dn) =0 for each v-proper set C.
c
Given the definition of local v recurrence in Appendix 2, we have:

THEOREM 4.3. The condition (4.1) for a-v-a holds if and only if the
symmetric chain W is locally v recurrent.

ExampLE 4.1. Take =0 ={0,1,2,...} and let ¢ denote counting mea-
sures on % Consider the model with density (with respect to ¢)

p(0), ifx=20,
f(xl6) ={1-p(9), ifx=6+1,
0, otherwise,

where 0 < p(8) < 1 for all # € O. Let the prior distribution on ® be v(d) =
7(0)c(d6) with 7(8) > 0.
Setting

m(x) = [f(xl6)v(d0)
and calculating the transition function

R(d6In) = r(6ln)v(db),
we find that the transition density r is given by
p*(0)  (1-p(0)°
m(0) m(1)
p(1)(1 - p(0))

m(1)

r(010) =

r(110) =
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and for n > 1,
1 — —
(= 1ln) = (1=p(n = D)p(m)
m(mn)
oy = 20 (L= p()”
m(n)  m(n+1)’
r(n + 1ln) = p(n + 1)(1 —p(n))

m(n + 1)

For other values of 6, r(8ln) = 0. Thus the chain is an irreducible random
walk so recurrence and local v recurrence are equivalent. Applying the well-
known condition for recurrence in a random walk [see Karlin and Taylor
(1975), page 108] we find that (4.1) holds if and only if

i 1
4.9 = +oo,
9 L @)1= p(0)
In particular, if the p(6) are uniformly bounded away from 0 and 1, (4.8) holds
if and only if the sum of the 7 (#)’s diverges. This supports the well-known
admonition that one should not use improper priors which “put too much
mass on remote portions of the parameter space.”” However, given any se-
quence () > 1 with () > © as 6 — o, the model with p(#) = 7~ %(6)
satisfies (4.9). Thus conditions implying (4.1) will necessarily involve both the
improper prior and the model.

The connection with Markov chains has direct implications for the use of
Haar measure as an improper prior distribution when the parameter space in
question is a group. For example, suppose £'= ® = R? and the model is

P(dx|0) = f(x — 6) dx.
Thus, we have one observation X from a translation family on R”. Taking

the improper prior to be the translation invariant measure on RP”, namely
v(d0) = do, a routine calculation shows that the transition function is

R(dOIm) =r(6 —n) de,
where

r(v) =r(-v) = flf(x - v) f(x) dx.

In this case, the Markov chain {W, |n = 0,1, ...} is just a classical random walk
on R?. That is, let U, U,, ... beii.d. with density r. Given W, = 7, the chain
is equal in distribution to

{Wn=n+EUi
1

Example 3.1 shows that when p = 1 and

n=O,1,2,...}.

flvlr(v) dv < 4o,
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then the Markov chain (random walk) on R! defined by R(d#6|n) is recurrent
(recurrence and almost v recurrence are equivalent). When p = 2, it is known
that if

fllvllzr(v) dv < 4o,

then the random walk on R? is recurrent. Hence the improper prior d6 on R2
produces a-v-a decision rules for quadratically regular problems. But, for
p = 3, there are no nontrivial recurrent random walks on the group R?, and
thus (4.1) must fail to hold [see Guivarc’h, Keane and Roynette (1977)]. Other
invariant problems are discussed briefly in_Section 7.

REMARK 4.1. If X is a single observation from a Cauchy translation family
on R, then condition (3.14) does not hold (with dé as the prior), so the
results of Theorem 3.1 do not apply. However, it is known that the Cauchy
random walk on R! is recurrent and thus (4.1) holds. Hence the formal Bayes
rules in this example are a-v-a for quadratically regular problems.

REMARK 4.2. Using the Markov chain results and the recurrence of random
walks on R? when the transition density has second moments, it is easy to
extend the results of Example 3.1 from R! to R2 The details are left to the
reader.

5. A heuristic method. The results of Section 4 characterize the mini-
mizer of A(h) over the class V(C, K). Typically one can calculate neither the
minimizer nor the minimum explicitly. The method presented here, for the
special case that ® = [0, ©), consists of:

() trying to bound A(h) by a constant times p(k) [which is
defined in (5.4)];
(5.1) (ii) obtaining an explicit minimizer of p(k) over a subclass
) of V(C, K) for nice sets C and K;
(iii) using (ii) to derive verifiable conditions that drive p(k)
[and we hope A(h)] to zero.

Until further notice, ® = [0,%), C =[0,a] and K = [0, 5] with b > a > 0.
Assume h is differentiable and write

(5.2) (h(0) = h(m))® = (R'(£))*(6 — n)?,

where ¢ is between 6 and 7. Next, replace (h'(¢))? by what one hopes is an
upper bound, namely

(5.3) D[(K(6))* + (k(m))7].

where D is a constant (not depending on b). Then, set

(54)  p(h) = [[[(R(8)" + (R (m)*](6 — m)*R(dbln)w(dn).
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The symmetry of the measure R(d8|n)v(dn) yields

(5.5) p(h) =2 [ (K ()’ (n)v(dn),
where
(5.6) a(n) = [(6 = n)*R(dbln).
Now, assume v(dn) = m(n) dn and define h, as
| 1, it 6 [0,a],
0, . if 9 € [b,x),
5.7 Rol8) = 2l (nym(n)] " dn

, 0 a,b).
Flo(mm(m] Tan’ 5@

Of course, it is assumed that for sufficiently large a,

0< fob[ff(n)W(n)]fldn < oo

for all 6 € (a, b) and all b > a. This choice of h, is prompted by the fact that
h, minimizes p(h) over those A’s in V(C, K) which are a.e. differentiable and
satisfy h(a) = 1, h(b) = 0. Further,

2
[Elo(n)m(n)] tdn

The preceding discussion yields the following.

(5.8) p(hy) =

THEOREM 5.1. With h, defined by (5.7) assume that:
@) A(h,) < Dp(h,) for all sufficiently large b where D is a fixed constant.
() lim, ., [Alo(m)m(n]~tdn = .

Then the condition (4.1) for a-v-a holds.

Proor. Obvious from (5.8). O

ExampLE 5.1. Take 2°=1{0,1,2,...}, ® = [0, x) and suppose X is Poisson
with parameter 6. Consider priors of the form v(d8) = 6% d6, where « is a
parameter. In order that the marginal measure M(dx) be o finite it is
necessary and sufficient that « € (—1, «), which we assume. The transition
function R(d#0|n) is

R(d6ln) = r(6ln)»(d9),

where

TP (6m)’
(5.9) r(6ln) = exp[—0 ”]onzr(jwu)'
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From this, we calculate that

(5.10) a(n) = [(6 = n)*R(d0ln) =20 + (a + 1)(a +2).

Thus condition (ii) of Theorem 5.1 holds for @ € (-1, 0], but not for a > 0.
Condition (i) holds with D = 1, but is more difficult to verify. However, the
argument is little more than calculus and the fact that for a € (—1,0],
0°[0 + (a + 1)Xa + 2)] is increasing on [a,®) for a large enough. The details
are omitted. Thus for the Poisson, the argument shows that for & € (-1, 0],
the improper prior 0% d6 yields a-v-a decision rules for quadratically regular
problems. This range for « coincides with that in Johnstone (1984), who
considered admissibility of formal Bayes estimators of 6.

REMARK 5.1. Conditions for the recurrence of Markov chains on [0, ©) were
discussed in Lamperti (1960). His conditions involved

u(n) = fo (6 — n)R(d0ln)
and
o(n) = [ (6 = m)*R(doln).
0
Lamperti showed that if

a(n)
2n

(5.11) n(n) < +O0(n™17°)

for some 8 > 0, then the chain generated by R is recurrent. For the Poisson
example, u(n) = @ + 1 when the prior is 6*d6, and o(n) is given in (5.10).
Thus for a € (-1, 0], (5.11) holds.

Conditions resembling (ii) in Theorem 5.1 have appeared elsewhere in the
decision theoretic literature, typically in papers dealing with estimation of
unbounded functions when the loss is quadratic [see Karlin (1958) and Brown
and Hwang (1982)]. However, the explicit use of o(7) in this condition appears
to be new. Two-sided versions of the condition when ® = R! also appear in
some of these works. ,

Stein (1965) also indicated that some multidimensional problems might be
amenable to arguments similar to those above. This we illustrate with a simple
example when ® = R? (such as is the case for p-dimensional translation
problems). Given a model P(dx|#), consider a prior of the form

v(d9) = £(du)w(t) dt,

where 6 = tu with ¢+ > 0 and » a unit vector in R?, so ||0]| = ¢. Here, ¢ is
assumed to be a probability measure on unit vectors, so the “improper part”’
of the prior v is 7(¢) dt on [0, »). (It is possible to let ¢ depend on ¢ in what
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follows, but we eschew that generalization.) Define the new probability model
P(dxlt) = [P(dxltw)€(du)

with parameter space [0, ). It is a routine argument to show that if (4.1) holds
for the model P(dx|¢) and prior 7(¢) dt, then (4.1) holds for the model P(dx|0)
and prior v(d#). Of course, Theorem 5.1 may apply to the P-= problem.

An alternative approach to multidimensional problems is the following
obvious extension of the heuristic method described for [0, ). Just replace
(5.2) to (5.5) with the obvious multidimensional versions to obtain

(5.12) B(k) = 2[IVh(n)[Fo(n)v(dn),

where VA denotes the gradient vector and

(5.13) a(n) = [llo = nl*R(d6ln).

Next attempt to minimize 5(h) over a suitable class of ’s (for nice sets C and
K). Expressions similar to (5.12) have arisen elsewhere; see Brown (1971) and
Srinivasan (1981), for example.

It should be mentioned that both (1.7) and the sufficient condition (1.11) are
invariant under one-to-one bimeasurable transformations of ©, as is the
condition for local v recurrence of the Markov chain given in Section 4.
However, the heuristics proposed above are not invariant under such transfor-
mations, so it becomes relevant to ask for a ‘““good”” coordinate system in which
to try the heuristics. The following remark is based on comments from a
referee /Associate Editor.

REMARK 5.2. First observe that condition (ii) in Theorem 5.1 is not affected
by our o(n) if there exists an ¢ > 0 such that

(5.14) e<o(n) <1/e forall 5.

Basically, condition (5.14) is that (7)) is essentially a constant, at least for the
problem at hand. When (5.14) holds, the convergence or divergence of the
integral in (5.8) is thus determined by the prior . In cases where (5.14) does
not hold, the transformation

o 1
f(@)=j;mdu

yields a new parametrization (namely ¢) where (5.14) seems to hold. This is
based on a rather imprecise heuristic and would have to be checked in
particular examples. This transformation is related to material in Brown
(1979).

REMARK 5.3. In some cases, the assumptions in Theorem 5.1 hold for &,
defined in (5.7), even though (5.3) is not an upper bound on [#/,(¢)]2. Thus, the
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method of this section is to use k, as an “approximate’” minimizer of A(h),
and then try to verify the assumptions of Theorem 5.1.

REMARK 5.4. Brown (1979) considers expressions like (5.12) in situations
much more general than the normal location model treated in Brown (1971)
and Srinivasan (1981).

6. The prediction problem. Here we formulate the prediction problem
as a fair Bayes decision problem, much in the manner of Example 2.2. For loss
functions of the type used in Example 2.2, it is shown that the corresponding
decision problem is quadratically regular. Thus, Theorem 3.1 provides a
sufficient condition that formal predictive distributions are a-v-a decision
rules.

The prediction problem consists of data X € &7, a variable to be predicted
Z € 2 and an unknown parameter 6 € 0, which indexes the probability model
describing the joint distribution of X and Z. The spaces 2, £ and O are
assumed to be Polish and the o algebras are those generated by the open sets.
The probability model is written

(6.1) P(dx|z,0)S(dz|0),

where P(-|z, 6) is the conditional distribution of X given z and 0, and S(-|0)
is the conditional distribution of Z given 6. The marginal distribution of X
given 6 is then

(6.2) P(dx|0) = fg)P(dxlz, 0)S(dzl6).

Our formulation of the prediction problem resembles that in Aitchison and
Dunsmore (1975). After seeing the data X = x, one wants to specify a distribu-
tion for Z. Thus a ‘““decision’’ consists of a distribution &(:|x) defined on the
Borel sets of . In a decision theoretic framework, this means that the
appropriate action space for the prediction problem is the set of all probability
measures on the Borel sets of 2, say .#,(2). [The o algebra for .#,(2) is that
generated by the weak topology on .#(2); see Eaton (1982) for some discus-
sion.]

Let v be an improper o-finite prior distribution on ®. Then

(6.3) 5(dz,d9) = S(dz10)v(d6)

is o finite on 2X ©. The marginal measure on 2,
(6.4) M(dx) = [P(dxlz,0)3(dz,d6)

is assumed to be o finite. Thus the formal posterior distribution of (Z, 6) given

X, say Q(dz, dflx), exists. The marginal probability measures on 2 and ©

obtained from Q(-|x) are denoted by @*(dz|x) and Q(d6|x), respectively.
With U as defined in Section 2, each g € U induces a finite measure

(6.5) 7,(dz,d6) = g(0)S(dz10)v(d0)
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on £ X 0. In turn, this induces a conditional distribution Qg(dz, dflx) and two
marginals @;(dz|x) and @,(d8lx). Of course @ (dzlx) is the predictive distri-
bution of Z given x obtained from #,. The corresponding @*(dz|x) obtained
from 7 is the formal predictive distribution of Z given x.

To introduce the loss structure for the prediction problem, let k(z,, z,, x) be
a bounded real valued function defined on X X Z". As in Example 2.2,
consider the bilinear function defined on bounded signed measure on 9:

(6.6) (61,620 = [[R(21, 20, %) £1(d2)) €x(d2y).

Assume that ( -, - ) is symmetric and nonnegative definite. Given the model
(6.1), let H(:|x,#) denote the conditional distribution of Z given x and 6.
Next, define the loss function by

(6.7) L(a,0,x) =(a — H("lx,0),a — H("Ix,0))

for a € .#(Q). If x and 6 were known, H(-|x, 8) is the predictive distribution
one would use for Z. Thus, the loss function (6.7) is a measure of squared
distance between the action taken and the “best” action. Note that H(:|x, 6)
is just S(-|#) when X and Z are conditionally independent given 6. However,
in situations such as time series analysis, H(-|x, 8) is not S(-|6).

Now, consider g € U so 7, is a finite prior measure. With the loss function
(6.7), it is easy to show that a Bayes solution to the decision problem is just the
predictive distribution @;(dz|x). This is the fair Bayes property discussed in
Eaton (1982).

For any nonrandomized decision rule 8(- |x) € .Z(2), let R(8, 6) denote the
risk function of §. Note that @* and @} are decision functions.

ProprosiTiION 6.1. The above decision problem is quadratically regular;
that is, for each g € U,

[[R(@*,0) - R(Q},0)]2(6)»(d6)
(6.8) .
<K[[|QC1x) — Q(Ix)[ M (dx),

where || - || denotes variation distance and K is an upper bound on k.

Proor. Minor variations on arguments in Eaton (1982) suffice. The details
are omitted. O

The marginal distribution of X given 6 in (6.2) together with the improper
prior distribution v define the quadratic form A used in Theorem 3.1. Proposi-
tion 6.1 shows that Theorem 3.1 applies to the predictive problem. In sum-
mary we have:

THEOREM 6.1. For each v-proper set C, assume that (3.4) holds. Then the
formal predictive distribution Q*(-|x) is an a-v-a decision rule when the loss
function is (6.7).
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7. Discussion. It is somewhat surprising that the connection between
admissibility conditions and recurrence criteria is as complete as described in
Section 4, particularly given the technical issues which arose in Brown (1971)
and Johnstone (1984, 1986) enroute to establishing an admissibility-recurrence
connection in the normal and Poisson cases. The relationship between these
two approaches is very far from clear, especially since in our approach the
natural space for the Markov chain is the parameter space, while in Brown and
Johnstone, the associated process is constructed on the sample space. For a
discussion of related issues including an admissibility-boundary value problem
tie, see Srinivasan (1981) and Johnstone (1986). Of course, the types of
problems are different for at least two.reasons. First, the results here give
sufficient conditions for a-v-a for formal Bayes rules in quadratically regular
problems, while other authors have concentrated on the estimation (quadratic
loss) of a fixed ‘“natural”’ parametric functions (typically unbounded). Second,
the sufficient conditions for admissibility in Brown (1971), Srinivasan (1981),
Johnstone (1986) and others appear to be fairly close to necessary, while the
necessity question is wide open here. Presumably, one natural way to phrase
this necessity question is:

Suppose (1.11) does not hold. Can one find a quadratically
(7.1) regular problem for which the formal Bayes rule is not
a-v-a?

REMARK 7.1. Even in the ‘“simplest” cases, question (7.1) is interesting.
For example, suppose X is N,(6, I,) and v(d6) is Lebesgue measure on R”.
Then (4.1) holds for p = 1, 2 but (4.1) fails for p > 3. This corresponds exactly
to the Stein shrinkage phenomenon. However, consider the problem of esti-
mating a bounded function of 8, say ¢(6), which has compact support. When
the loss is quadratic, Remark 3.2 implies that the formal Bayes estimator of ¢
is a-v-a no matter what p is. On the other hand, for p > 3, I have been able to
construct a prediction problem (as described in Section 6) so that the formal
Bayes predictive distribution is not admissible.

Now, suppose the problem is to estimate

1, ifllx—all<r,
¢(0,%) = {O, otherwise,
with quadratic loss. For 1 <p < 4, the formal Bayes estimator of ¢ is
admissible, but for p > 5, this estimator is not admissible [see Hwang and
Brown (1991) for a discussion and references]. Thus, the failure of (4.1) cannot
correspond exactly to inadmissibility even in interesting problems where Re-
mark 3.2 does not apply.
In the context of Example 4.1, assume p(8) = 1/2 for all 6. Then the
corresponding Markov chain is recurrent if and only if

¥ (m(8)) ' = +o.

When the sum is finite, one suspects there should be a quadratically regular
decision problem with an inadmissible formal Bayes rule, thus providing a
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complete connection between admissibility and recurrence. My attempts to do
this problem have failed thus far.

Given what is now known, it seems plausible that the earlier admissibility-
reference connections are related to the behavior of a Markov chain on the
sample space whose transition function is

(7.2) R(dzly) = [P(dxl0)Q(d0ly).

This chain is M symmetric where M is the marginal measure on 2" induced
by v. )

A connection between admissibility and a Markov process on the parameter
space is suggested in Brown (1979, 1988). In this work, Brown explores a
relationship between differential inequalities (on the sample space) and admis-
sibility. A “‘dual’ differential inequality on the parameter space then results,
which in turn suggests looking at a Markov process on the parameter space,
but the process is not introduced explicitly. Concerning the admissibility-
recurrence connection, the similarity in structure between our Theorems A.1
and A.2 and Theorem 4.3.1 in Brown (1971) should be noted. Our results in
Appendix 2 can be viewed as Markov chain analogs of Brown’s Markov process
results.

The results established in this paper do not bode well for the use of
relatively invariant prior distributions when the parameter space is a noncom-
pact Lie group, except in special circumstances. Consider a model P(dx|8)
where the parameter space © is a group G [e.g., R?; GTp (group of p X p
lower triangular matrices with positive diagonal elements); the affine group
generated by GTp and R?], and assume the model is invariant under G [we
are using the terminology and notation in Eaton (1989)]. Take v to be any
relatively invariant prior distribution on G. It is fairly easy to show that the
induced transition function R(d6|n) on G corresponds to a random walk on
G. For example, the case G = R” was discussed in Section 4. For many groups
G of interest in statistics (e.g., R?, p > 3; GTp, p > 2; the affine group
generated by GTp and RP”, p > 1), the results in Guivarc’h, Keane and
Roynette (1977) show that there are no nontrivial recurrent random walks on
G. Hence for these cases, (1.11) must fail and the corresponding formal
posterior becomes less attractive. In invariant problems when the parameter
space is a homogeneous space (rather than a group), the situation concerning
random walks is less clear [see Varoupolis (1988) and Schott (1984, 1986)].

Much more work needs to be done to understand the implications of the
failure of (1.11). One interesting question is:

Suppose (1.11) fails. Is there information in the Markov
(7.3)  chain which tells one how to modify the prior (or estima-

tors) to produce a better posterior?
For example, if X is N(6, I,) with p > 3 and v(d6) = d6 on R?, the induced
transition function R(d6|n) corresponds to a N(n,21,) distribution. Can one
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use the transience of the Markov chain to construct ‘“improved” posterior
distributions?

The criterion adopted here for the evaluation of v is (1.7). A more stringent
requirement would be to ask that the formal posterior produce a-v-a proce-
dures for a much wider variety of decision problems than those in (1.7). The
example due to Blackwell (1951) shows some care must be taken. The follow-
ing example, related to Blackwell’s shows that even in simple problems, the
formal Bayes method may yield uniformly inadmissible estimators.

ExampLE 7.1. With 2°= 0 = A = additive group of integers, suppose X
given 6 takes on the values 6 or 6 + 1.each with chance 1/2. Using the flat
prior on O, the formal posterior puts mass 1/2 at x and x — 1. It is easy to
construct a bounded loss function L on A X @ with the following properties:

(i) L(a,a) =0 for all a.
(i) L6 — 1,0) < L(6 + 1, 6) for all 6.
(iii) L(6 + 1,0) < L(a,0 + 1) + L(a, 6) for all a, with strict inequality for
a#+0+1.

Consider the two estimators ¢,(x) = x and ¢,(x) = x — 1. Using the above L,
the formal Bayes method gives ¢, as the unique formal Bayes estimator, but
R(t,,0) < R(ty,0) for all 6. Of course, this problem is not quadratically
regular.

Finally, it is natural to ask if the methods developed here can be adapted to
give alternative proofs of standard results; for example, the exponential family
results in Brown and Hwang (1982). The inequality (2.10) (quadratic regular-
ity) is the key to our development. Some rough calculations indicate that for
the problem of estimating an unbounded function of 6 (quadratic loss), (2.10)
will typically not hold. However, one can weaken the quadratic regularity
assumptions and still use the methods here. For example, let {C,|n = 1,2,...}
be a sequence of v-proper sets satisfying the assumptions of Corollary 2.1. For
g € U(C,), assume (2.10) holds where the constant K is allowed to depend on
n. A minor modification of the arguments in Section 3 show that if (3.4) holds
for each C,, then the formal Bayes rule is a-v-a. With some effort, I have been
able to use these ideas to prove that the usual estimator of the mean in a
univariate normal problem (known variance) is a-v-a (quadratic loss). Even so,
it is not clear how to adapt the results here to problems involving the
estimation of unbounded parametric function—a standard statistical activity.
However, in the prediction problem of Section 7 and the posterior distribution
problem of Example 2.2, the boundedness of the kernel defining the loss
function does not seem like such a bothersome assumption.

APPENDIX 1

A proof of inequality (3.6) follows. First, for probability measures a;, a,
with Radon-Nikodym derivatives p, = da;/dA, apply the Cauchy-Schwarz
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inequality to obtain a bound on variation distance:

las = eall = (f1p: ~ pal) = [(or ~va)* [ (Vo + Vo)
:4[1— (fvora)

An alternative bound is given in Kraft (1955).
In the notation of Sections 2 and 3, let g be a density with respect to v so

Jg dv = 1. It is easy to show M, is absolutely continuous with respect to M.
With

(A1)

M,
(A.2) mg(x) = —r (%),

the quantity we need to bound is
(A3) 5(8) = [|QC k) ~ Q1) |'m () M(dx).

ProposiTiON A.1. For each density g,
(A4) 3(8) < 2A(Ve).
Proor. Obviously, the set
Ay = {xlO <mg(x) < +00>
satisfies M (Aj) = 0. The equations
P(dx|6)g(0)v(do) = g(0)Q(dlx)M(dx) = Q,(dblx)m (x)M(dx)
imply that, except for a set of M, measure zero,
£0).
(A5) k(x,0) = { mg(x)’
1, ifx € A,

ifxeA,,

serves as a version of the Radon-Nikodym derivative of @,(-|x) with respect
to Q(-|x). Now apply (A.1) with A = Q(-|x) to get

(A8)  [|Q(-Ix) — Q(1x)|” < 4{1 - [f(k(x,()))l/zQ(dBIx)] }

Integrating (A.6) with respect to M, gives
0

L =1 —f[[,/g(e) Q(dOIx)] M(dx)

IA

(A7) 1~ [[(g(6)g(n))"*T(de,dn)

= %A(\/g)_
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The last equality is a consequence of

[[2(0)T(do,dn) = [2(6)v(d6) = 1.

The proof is complete. O

CoroLLARY A.1. For any nonnegative g which satisfies
0 < [g(0)r(do) < +,
inequality (A.4) holds.

Proor. For any a > 0, 8(ag) = ad(g) and A(yag) = a A(Yg). O

APPENDIX 2

On symmetric Markov chains. In this Appendix, we establish a Dirich-
let principle for symmetric Markov chains which provides proofs for the
assertions in Section 4. Let (¥, #) be a Polish space and let R(‘|w) be a
transition function on & X 7. The discrete time Markov chain on (#*, &%)
defined by R(-|w) with initial state w is denoted by W = (w, W, W,,...). The
induced probability measure for W is S(-|W, = w), where W, denotes the
initial state of the chain.

DEFINITION A.1. Let v be a nonzero o-finite measure on (¥, #). The
Markov chain is v symmetric if the measure

(A.8) T(dw,, dw,) = R(dw,|lw,)v(dw,)
is a symmetric measure on (¥ X ¥, % X B).

For a discussion of symmetric chains in the countable state space, see Kelly
(1979), Griffeath and Liggett (1982) and Lyons (1983). The discussion in
Section 4 provides many examples of v-symmetric Markov chains. In all that
follows, W is assumed to be a v-symmetric chain.

The following definition, a modified notion of recurrence, allows us to
circumvent a discussion of irreducibility issues while relating our previous
admissibility results to the recurrence of W.

DEeFINITION A.2. The chain W is locally v recurrent (1-v-r) if for each
v-proper set C, the set

[w]S{W, € C forsome n > 1|W, =w} < 1] nC
has v measure zero.
In words, this means that for each v proper C, given the chain starts in C,

it returns to C w.p.1 except for a v-null set. Of course, when # is countable
and the chain is irreducible, 1-v-r and recurrence are equivalent.
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Let L,(v) denote the space of v-square integrable functions. The symmetry
of T implies that

[P (w)T(dw,, dw,) = [[h*(ws)T(dw,, dwy) = [R*(w)v(dw)

for all A € Ly(v). Hence, the Cauchy-Schwarz inequality yields

2
[P ha(wa) T (e, dug)| < [Hi(w)v(d) [R3(0) (o)
for h,, hy € Ly(v). Thus the bilinear form < - , - ) defined by

(A.9) (hy,hy) = [hy(w)hy(w)v(dw) = [[hy(w) hy(w,)T(dw,, dws)

is symmetric and nonnegative definite for A, A, € Ly(v). In most of what
follows, { -, - ) is written

(A.10) (hy,hy) = (hy, (I = R)hy),

where (-, - ) is the standard bilinear form on L,(v) given by

(hyshs) = [hy(w)hy(w)v(dw),
I is the identity transformation and Rh, is defined by
(A.11) (Rhy)(w) = [ho(wy) R(dw,lw).

The results in this Appendix relate 1-v-r of the chain to the behavior of the
form ¢ -, - ). To this end, let C and K, be two v-proper subsets of # such
that C ¢ K. Define the stopping times 7 and o and the sets B_ and B, asin
(4.4). Also let

V(C,K,) = {h € Ly(v)|h(w) = 1forw € C, h(w) = 0 for w € K¢}
and observe that
(A12) ho(w) = S{(W, € C) N B,|W, = w)
is in V(C, K,). In fact, h, is 1 on C and is 0 on K§.

THEOREM A.1. For a v-symmetric chain W,

(i) inf  (h, k) = Chy, by
heV(C, K,)

and
(ii) (hg, ho) = fc[1 ~ S{(W, € C) N B,|W, = w}]v(dw).

Proor. For h € V(C, K ), write
h=nhy+¢.
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The symmetry and nonnegative definiteness of -, - ) yields
<h7 h> = <h07h0> + 2<¢7h0> + <¢1 ¢> = <hOyh0> + 2<¢7 h0>
With @ =T — R, (A.11) yields

(b, ho) = [$(w)(Qho)(w)v(dw)

= [6(Qh,) = ([C+ [.+], mcc)[fb(Qho)]-

The integral over K{ is zero because ¢ is zero on K. The integral over C is
nonnegative because ¢ > 0 and C and (Qk)w) = 1 — (Rh)Nw) > 0 for w €
C. Thus

(b ho>= [ &(Qho).

However, a standard Markov chain argument shows that
(A.13) (Qhy)(w) =0 forweK,nC*

(that is, h, is harmonic for w € K, N C°). Thus (i) is established. For asser-
tion (ii), use (A.13) and the fact that 2, € V(C, K ) to obtain

(ho, ho) = [o(Qha) = [ (Qhao) = [ [1 = (Rho)(w)]v(dw).
Again a standard Markov chain argument yields
(A.14) (Rhy)(w) = S{(W, € C) N B |W, =w} forall w.
This completes the proof. O

Again let C be a v-proper set and let
V(C) = {h € Ly(v)|h > 0, h(w) > 1for w € C},

first n > 1, suchthat W, € C,
9¢ 7\ oo, if W & Cforalln>1.

THEOREM A.2. For v-symmetric chains,

(A.15) inf Ch, k) = [[1- Plog < +e|Wow)]v(dw).
heV(C) C

Proor. Let{K,I|m =1,2,...}be a sequence of v-proper sets with C c K,
K, cK, ., and #= UJK,, With K, = K,, in Theorem A.1,
inf  (h,h)={h,,h,,>
heV(C,K,,)
(A.16)

= [[1 - 8{(W., ) B, W, = w}|v(dw),
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where h, and o,, are the K,, counterparts of h, and o defined for K,. Our
first task is to show that

(A.17) lim (h,,, h,> = [ [1 = Plog < +e|W, = w}]v(dw).
m—o c

To this end, let
E,={(W, eC)}nB

Tm

and let
E = {0, < +}.
Clearly E,, C E,, ;. Further, it is not hard to show that
E,—-E.
From this and (A.16), (A.17) follows from the dominated convergence theorem.
Thus, the left side of (A.15) is bounded above by the right side of (A.15)

because V(C) 2 V(C, K ,,) for all m.
Now, let A € V(C) and set

u,=nhly €V(C,K,).
Applying the dominated convergence theorem, Theorem A.1 and (A.17) in that

order yields
(h,h) = lim<u,,,u,,y)> lim <h,,h,>

m — ©

f [1 — Plog < +o|W, = w}]v(dw).
c
Thus (A.15) holds. O

THEOREM A.3. The chain W is 1-v-r if and only if for each v-proper set C,

(A.18) inf (h,h)=0.
hev(C)

Proor. This is immediate from Theorem A.2. O

It is not necessary to verify (A.18) for all v-proper C to show W is 1-v-r.
Remark 3.1 shows that (A.18) need only be verified for some increasing
sequence of v-proper sets C,,, n = 1,2,..., such that C, - 0.
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