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ON WIELANDT’S INEQUALITY AND ITS APPLICATION TO
THE ASYMPTOTIC DISTRIBUTION OF THE EIGENVALUES
OF A RANDOM SYMMETRIC MATRIX

By Morris L. EaTon' anp Davip E. TYLER?2

University of Minnesota and Rutgers University

A relatively obscure eigenvalue inequality due to Wielandt is used to
give a simple derivation of the asymptotic distribution of the eigenvalues of
a random symmetric matrix. The asymptotic distributions are obtained
under a fairly general setting. An application of the general theory to the
bootstrap distribution of the eigenvalues of the sample covariance matrix is
given.

1. Introduction and summary. The derivation of the asymptotic distri-
bution of the eigenvalues of a random symmetric matrix arises in many papers
in multivariate analysis. Although the main idea behind most of the deriva-
tions is quite basic, i.e., the expansion of the sample roots about the population
roots, the derivations themselves are often quite involved. These complications
are primarily due to the mathematical rather than statistical nature of the
eigenvalue problem.

One of the main objectives of this paper is to introduce a simple method for
obtaining the asymptotic distribution of the eigenvalue of random symmetric
matrices. The method is based upon a relatively obscure eigenvalue inequality
due to Wielandt (1967).

Obtaining the asymptotic distribution of eigenvalues by expanding the
sample roots about the population roots becomes even more cumbersome when
the population roots vary, e.g., see Tyler (1983). This case arises when
considering local alternatives to hypotheses on population covariance matrices,
and it also arises when considering the bootstrap distribution of eigenvalues,
see Beran and Srivastava (1985). For this case, the use of Wielandt’s eigen-
value inequality again provides a fairly simple method for obtaining the
asymptotic distribution of the roots.

This paper is organized as follows. Wielandt’s eigenvalue inequality is stated
and discussed in Section 2. General results on the asymptotic distribution of
eigenvalues of random symmetric matrices are presented in Section 3. The
case when the population roots vary is treated in Section 4. The results of
Sections 3 and 4 are applied in Section 5 to obtain results on the asymptotic
behavior of the bootstrap distribution of the eigenvalues of the sample covari-
ance matrix. The results on the bootstrap extend the work of Beran and
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Srivastava (1985, 1987). Some concluding historical remarks and comparisons
are made in Section 6.

2. Wielandt’s eigenvalue inequality. Consider a symmetric matrix

_(B C
(2.1) A-(Z 5)
where A is p X p, Bis ¢ X q and D is r X r. Let p%(C) denote the largest
eigenvalue of CC' and let «; > -+ >@,, B; > -+ 2B, and §; > -+ 2§,

be the ordered eigenvalues of A, B and D, respectively.

THEOREM 2.1 (Wielandt). If B, > 8,, then
(2.2) Oﬁaj_ﬁjﬁpz(c)/(ﬂj_51), i=1,...,q

and
(23) 0<6,_,—a, ,<pC)/(B,—8,.;), i=0,...,r—1

The first set of inequalities (2.2) is given in Wielandt’s (1967) lecture notes
on page 120, but only when A is positive definite. The inequalities follow
immediately for any symmetric A by replacing A by A + 81, where 6 > —§,
and noting that A + 81 is positive definite and the § term cancels in (2.2). The
second set of inequalities (2.3) follow from the first by multiplying A by —1.

The first inequality in (2.2) is simply a partial restatement of result (1f.2.13)
in Rao (1973) which he refers to as a Sturmian separation theorem, and which
is referred to by Wielandt [(1967), page 117] as the ‘“interlacement theorem.”
The second inequality in (2.2) is apparently a novel result of Wielandt’s. Two
interesting features of this inequality deserve to be noted. First, note that the
matrix A can be viewed as a perturbation of a block diagonal matrix, namely
A=A, + E, where

B 0 0 C

(2.4) AO—(O D) and E—(C, O)'

By Wielandt’s inequality, the eigenvalues of A, are perturbed quadratically in
E when A, is perturbed linearly in E. It is well known that in general,
eigenvalues are only perturbed linearly when the matrix is perturbed linearly.
The quadratie perturbation obtained in Wielandt’s inequality is due to the
special structure of E relative to A,. This quadratic perturbation result can
also be obtained in a somewhat more cumbersome way by using perturbation
techniques, for example as described in Chapter 2 of Kato (1980), and by
observing that due to the special structure of E relative to A,, the linear term
is zero.

The other interesting feature of Wielandt’s inequality is that it not only
shows that the perturbation of the eigenvalues are of quadratic order, but it
also gives a bound which shows how the perturbation is related to the
separation of the eigenvalues of B and D. Most perturbation techniques, such
as Taylor series expansions, give only an order of perturbation in E rather
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than bounds. Bounds of quadratic order on the perturbed eigenvalues can be
obtained by using perturbation techniques described in Chapter 2 of Kato
(1980), as is done in Section 6 of Tyler (1983). In light of Wielandt’s inequality,
this approach is unnecessary here, especially since it is more complicated and
gives weaker bounds. Kato’s (1980) perturbation technique, though, is useful if
one wishes to obtain higher order approximations for the perturbed eigen-
values.

Because of its central role in this paper and its relative unavailability in the
literature, a brief but complete proof of Wielandt’s inequality is given below.
The proof relies heavily on the following lemma which is given in Rao [(1973),
Problem 1.9, page 68]. Wielandt (1967) refers to this lemma as Weyl’s theorem
(page 114) and refers to the corollary stated after the lemma as Aronszajn’s
theorem (page 119). The simple proof of the corollary is due to Wielandt.

LeEmMMA 2.1 (Weyl). Let T=R + S, where R and S are k X k symmetric

matrices, and let t, > -+ >t,, ry> -+ >r, and s, > -+ >s, be the
ordered eigenvalues of T, R and S, respectively, then

r;+s; r,+ sy
(2.5) t; < : and t; > o

r,ts; r, ts;

COROLLARY 2.1. Suppose in (2.1) that A > 0, i.e., A is positive semidefinite.
Then )

3i+61
BisaiS )
B1 +5;

fori=1,...,p, where B, =0, for i > q and §; = 0, for i > r.

Proor oF COROLLARY. Since A is symmetric positive semidefinite, it has a
symmetric positive semidefinite square root A/2. Let A'/2 =[F GJ], where F
is p X qand G is p X r, and so A can be expressed as

_|FF F@G _ g '
A= [G,F G,G] and A=FF + GG'.
The corollary follows from the lemma by noting that FF' and F'F = B have
the same eigenvalues apart from zeros. O A

Proor oF THEOREM 2.1. As noted previously, it only remains to show the
second inequality in (2.2) holds. Since the result is invariant under the
transformation A - A + yI and under the transformation B - P'BP, D —
Q'DQ and C — P'CQ for orthogonal matrices P and @, it can be assumed
w.lo.g. that B = diag(B,,...,B,}, D = diag{s;,...,8,} and 8, = 0. Note that
the first inequality in (2.2) then implies ¢; > 8, > 0,for 1 =1,...,q.
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Let B be the ¢ X ¢ matrix B = diag{B,, ..., -+, B}, for a fixed j. Also,
let

c' 0 C'B cc

Let @; > -+ > &, be the ordered elgenvalues of A. Now since D < 0 and
B> B it follows that A > A and hence &; > a;, i = 1,..., p. (The notation
M, = M2 means M,-M, is positive semldeﬁnlte) Let m, > -+ >, be the
ordered elgenvalues of A2 and so they represent the ordered values of a2,
i=1,...,p. Note that 7, is not necessarily equal to a2 since A is not positive
semldeﬁnlte However, since &; > a; > 0, for i = 1,...,q, it follows that =, >
a?>a? fori=1,...,q,and in partlcular > aj2

An upper bound on 7; can be obtained by first applylng Corollary 2.1 to Az,
This gives m; < /5'2 + p2(C) where B2 is the jth largest root of B2 + cC'.
Apphcatlon of Lemma 2.1 to B2+ CC' then gives B2 < B? + p*C) and so

< Bz + 2p%(C). Putting the two 1nequa11t1es for m; together yields aj <
Bz + 2p2(C) or (a; — BXa; + B;) = af — B} < 2p2(C) However, since a; >
B;, the desired result a; - B; <p*C )/B follows. O

A=(E C) and hence A2 = B*+CC' BC|

3. Asymptotic results for eigenvalues of random symmetric matri-
ces. Consider a sequence of random matrices S,, n = 1,2,..., in ./, the set
of p X p real symmetric matrices, and assume that

(3.1) W, =n%(S,-3) -, W,

with 3 € // and hence W € /. Given M € ./, let the vector of ordered
eigenvalues of M be o(M) = ((pl(M )y @p(M)). The dependence of ¢ on the
dimension parameter is suppressed and the same symbol ¢ is used for the
vector of ordered eigenvalues of symmetric matrices of different dimensions. In
this section, the asymptotic distribution of

(3.2) X, = nV*(g(8S,) — ¢(3)} € R?

is studied. Without loss of generality, 3, is taken to be diagonal, in particular
diag{¢(3)}. In what follows, the choice of norms in R? and in ./, is irrelevant.
The notation T, = O,(b,; 1) implies for any sequence of p031tlve numbers a,

with a, — 0, @,b,|IT,ll - 0 in probability. The notation T, = 0,(b, " 1mp11es
bl TnII - 0in probability.

3.1. A basic lemma. Partition X and S, as
2"11 0 Tn Un
(3.3) 3= ( 0 222) and S, = (Un' v ),

where 3, is the g X ¢ diagonal matrix 3; = diag{e(3),..., ¢, (3)}, 3y, is
the r X r diagonal matrix 3,, = diag{e,,(2),...,¢,(2)} and p = q + r. The
matrices T,, V, and U, are ¢ X g, r X r and r X g, respectively.
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LEmMa 3.1, If ¢,(3) > ¢,,(2), then

o(T,)

o(V )] is 0,(n7").

Yn = ¢(Sn) L [

Proor. Let A, ={¢,(T,) > ¢(V,)}. Since ¢ is a continuous function and
from (3.1), T, —, 2;; and V, -, 3,,, it follows that ¢ (T},) =, ¢,(31;) =
@,(2) and ¢(V,) =, ¢1(32) = ¢, (). Thus, Prob(A,) — 1, and so atten-

tion can be restricted to A,, n = 1,2,....For S, € A,, Wielandt’s Theorem
(Theorem 2.1) implies for 1 <i < g,
(3.4) |0:(S,) = @(T) | < p*(U,) /eg(Th) — ex(V2)}-

Now, by (3.1), U, = O,(n"'/?) and since p is continuous it follows that
p?(U,) = O,(n™"). The top part of the lemma then follows from (3.4) since
0, (T,) — 0(V,) =, ¢,(3) — ¢,,(3) > 0. The proof of the bottom part is
analogous to the top. O

3.2. The main theorems. Let d; >d, > --+ > d, represent the distinct
eigenvalues of 3 with the multiplicity of d; being p,, i = 1,..., k, and hence
p,+ - +p, =p. Let I, be the p, X p; identity matrix and partition 3 and
S, as

_dIII 0 0
O d2I2 et 0
=1 . ) ,
0 0 4
(3.5) -
Sn,ll Sn,ll Sn,lk
Sn,21 Sn,22 Sn,2k
Sn = . . . ’
_Sn,kl Sn,k2 T Sn,kk

where S, ;; is p; X p;, i,j =1,..., k. By applying Lemma 3.1 k — 1 times,
the following asymptotic equivalence result is obtained. The vector e; € R?: is
the vector of ones, i = 1,..., k.

THEOREM 3.1. In the notation above, n*/*(¢(S,) — ¢(3)} = Z, + R,,, where

o( Sn,ll) —de,
— nl/2 .

o( Sn,kk) —de,

and the remainder term R,, is O,(n~"/?).
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The asymptotic distribution of the leading term Z, can be readily obtained
from (3.1). Analogous to the partitioning of S,, let W = {W, } represent the
partitioning of W in blocks of order p; X p;, and hence

Sn,ll - dlIl W11
3.6) W, = n'/? : >, W= :
n : d .
Sy we = i1y Wik
Now, on the space .~ & .~ ® -+ & ./, where W takes its values, the
Dy D2 Dy
function

@(Wyy)
(3.7) H(W) = :
e (We)

is continuous, and hence H(W,) -, H(W). However, since ¢{n'/%(S, ;; —

d. 1)} = n'%e(S, ;) —de}, i = 1,..., k, the following theorem is obtained.

THEOREM 3.2. In the above notation, Vn{e(S,) — @(3)} = HW, +R,,
where R, is 0,(n~'?) and HW,) —, H(W).

Thus, the asymptotic distribution of the roots of S, is found by calculating
the distribution of H(W).

4. Asymptotic behavior under a more general setting. Consider

now two sequences of random matrices S, and 3,,n = 1,2,..., both in .,
and assume that
(4.1) W, = ni/%(S, - 3,) = 0,(1).

As a special case, X, may be a sequence of nonrandom matrices, and in
particular if 3., does not depend on n and W, converges in distribution, then
this reduces to the setting in Section 3. In this section, the asymptotic
behavior of

(4.2) X, =n'"e(8,) - e(3,)} €R?

is studied. Using the spectral value decomposition, express 3, = P,A, P,,
where P, is an orthogonal matrix and A, is the diagonal matrix with diagonal
entries ¢,(3,),...,¢,(3,), respectively. Define S, = P,S,P, and note that
X, = n'*e(S?) — o(A,)}).

4.1. A basic lemma. Partition A, and S, as

S Alln
4.3 A = ’
(4.3) » ( —

0 A22,n)

where the dimensions are the same as in (3.3).

Tn Un
and S? = ( ),
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LemMA 4.1. If a fo,(3,) — ¢,,1(2,)) =, ®, for some increasing sequence
of positive numbers a, — © with a;' = 0,(n~'/?), then

o(T,) | .
Y, = ¢(S,) [¢(Vn)] is 0,(a,./n).

Proor. Let A, ={¢,(T,) > ¢(V,)} and B, = {p,(A11,,) > @i(Ag, )} By
the condition in the lemma, it readily follows that Prob(B,) — 1. Condi-
tion (4.1) implies P,W,P; = O,(1) and hence n'/*T, — Ay ,) = 0,(1)
and n'/%(V, — Ay, ,) = O,(1). Application of Lemma 2.1 thus gives ¢ (T;,) =
0, (Ay; ) + 0,(n"1/%) and ¢(V,) = ¢,(Ag ,) + O,(n"'/?), which implies
a {0 (T,) — ¢(V,)} -, », and so Prob(4,) — 1.

Attention is now restricted to A,, n =1,2,.:.. For S, € A,, Wielandt’s
Theorem and the identity ¢(S,) = ¢(S)) gives
The numerator is O,(n "), since P,W, P, is O,(n~'/) and so U, is 0,(n=1?).
It already has been shown that af{¢,(T,) — ¢(V,)} =, and hence the
right-hand side of (4.4) is o,(a,/n). The proof of the bottom part of the
theorem is analogous. O

4.2. The main theorems. Partition the matrices A, and S, respectively,
as

—An,1 0 0
0 A, , 0
A, = . and
L 0 0 Ay '
4.5 -
(45) Sr(z),ll Sr(z),12 Sr?, 1k
SO = Sr?,Zl Sr(z),22 Sr?,2k
_Sr?,kl Sr(z),k2 e Sr?,kk

where the dimensions are analogous to those in (3.5). For example, A, ; and
S2,; are p; X p;. Application of Lemma 4.1 & — 1 times with a, = n'/? gives
the following result.

THEOREM 4.1. If n'/*e, (A, ) — (A, ; )} =2po, fori=1,2,...,k — 1,
then X, = n'/¥¢(8S,) — ¢(3,)}) = Z, + R,,, where
90(87?,11) - ‘P(An,l)
Z,=n'? :

¢(Sr?,kk) - GD(An,k)

and the remainder term R, is 0,(1).
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Thus, the asymptotic distribution of X,, if it exists, is the same as the
asymptotic distribution of Z,. Even if the asymptotic distribution does not
exist, Z, represents a simpler asymptotically equivalent variate. The term Z,
can be reexpressed as follows. Let d, ; represent the average of the p;
eigenvalues in A, ;, define D,;=n"%4A,,;—d, I). Also, define W=
P,W,P, with W,? = (W, } representlng the partltlonlng of W0 in blocks of
order p; Xpj, and let

Sn 11 n 1 Wno,ll Dn,l
(4.6) W?=n'? : = and D,=| :
Sn kE T n,k Wn(fkk . Dn,k
Note that nl/z{qo(S,? i) —d, e} =en%(8?,, —d, )} =W, +D, )

and n'*e(A, ;) —d, e} = ¢(D, ;), and so using the function H defined in
Section 3, the followmg result is obtained.

THEOREM 4.2. In the above notation and under the conditions of Theorem
4.1, n'*e(8,) — (3, = {HW,? + D,) — H(D,)} + R,,, where R,, is 0,(1).

For nonrandom 3,,, Theorem 4.2 can be used to obtain the asymptotic
distribution of the roots of S, under the sequence 3,,. Suppose 3, — 3, which
without loss of generality is taken as in (3.5). The sequence P, can be chosen
so that P, — I, and so if

(4.7) W, =n'%(S, - 3,) -, W,
then W -, W and hence W, -, W. Furthermore if D, — D, then
(4.8) n'/*{¢(8S,) = ¢(2,)} >4 H(W+ D) - H(D).

Note that no condition on the rate at which 2, — 3, is made in obtaining (4.8).
Only conditions on the rates at which the roots of 2, approach each other or
diverge from each other are needed.

It is interesting to compare (4.8) to Theorem 3.2. For example, when p = 2,
note that if ¢,(3,) and ¢,(3,,) differ by o(n~1/2), then the asymptotic theory
treats them as a multiple root, if they differ by O(a;'), where a, = o(n'/?),
then the asymptotic theory treats them as two simple roots and if they differ
by O(n~'/2) then the asymptotic theory treats them as a mixture of the two
cases.

The term n'/2 in (3.1) and (4.1) is the most common rate arising in practice.
The results of this section and Section 3, though, readily generalize if the rate
n'/2 in (3.1) and (4.2) is replaced by an increasing sequence c, — . The
resulting modification in all the statements and theorems is made by simply
replacing n by c2 (except, of course, when n is used as an index or subscript).

Wielandt’s theorem is also valid when A in (2.1) has complex entries and is
selfadjoint. Correspondingly, the results of this section and Section 3 can be
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easily extended to the case when S,, 3 and 3, have complex entries and are
selfadjoint.

5. An application to bootsfrapping eigenvalues. Let {x;;1 <i <n)
represent a random sample from a distribution with covariance matrix 3 and
finite fourth moments. If S, represents the sample covariance matrix, then

(5.1) W, =n'%(S, - 3) >,

where W has a multivariate normal distribution. Without loss of generality,
let 3 = A be diagonal and represented as in (3.5). Using the notation estab-
lished in Section 3.2, application of Theorem 3.2 gives

(5.2) X, = n*{(8S,) - ¢(3)} >4 H(W).

Let F, be the sample distribution function of {x;;1 < i < n}. The covari-
ance matrix associated with the distribution F, is thus S,. Consider now a
random sample {x;1 < i < n} from the distribution F, and let S* be the
sample covariance matrix of this sample. The idea behind the bootstrap is to
use the distribution of W,* = n'/%(S¥ —'S,) under F,, which is realizable, as
a nonparametric estimate of the distribution of W, = n'/%(S, — 3). Beran and
Srivastava (1985) show that the bootstrap estimate is strongly consistent, that
is
(5.3) Wk =n%(S}-8,) >» W as.

The notation — ;. refers to the weak convergence of the distribution function
of W.* under F, to the distribution function of W. Under F,, S, is a fixed
matrix and S,* is a random matrix. The almost sure statement refers to the
underlying product measure on {x,;;1 <i < x}.

The nonparametric bootstrap dlstrlbutlon of the sample roots is the
distribution of X, = n'/?{¢(S,*) — ¢(S,)} under F,,. This estimates the distri-
bution of X, = nl/ o(S,) — (3)). It is easy to verlfy that the conditions of
Theorem 4. 2 are almost surely satisfied and so

(5.4) X} - {HW**+D,)-H(D,)} >4+ 0 as.

The notation: in (5.4) is as follows. Let S, = P/A, P, represent the spectral
value decomposition of S, with A, = dla_g{qo(S )} and define W*° = P W*P,.
Next, partition A, as in (4.5), define D, as in (4.6) and then define W"‘0
accordingly.

Since ¢;(A + al) = ¢;(A) + a, expression (5.4) can be reexpressed as
(5.5) X} - {H(W*+4,)-H(A,)} >4 0 as,
where A, = n'/%(A, — A) and A, is defined accordingly.

Now, since S, — 2 Aas, the sequence P, can be chosen so that P, — [
a.s. and hence W”‘0 -+ W as. The matrices A, are fixed matrices with
respect to F, and converge in distribution but not almost surely with respect
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to the product measure on {x;; 1 < i < «}. More specifically,
An,l Ay

(5.6) A, =| w|-,A=| "]
Ak Ay

where A, ;=n'"%(A,;—d;I) and so from (5.2) the joint distribution of
A, .. Ak is the same as the joint distribution of diag{e(W;))},.
dlag{<p(Wkk)}

If all the eigenvalues of 3 are simple, then H(W*° + A)) — H(A,) =
H(W*%), and so from (5.5) it follows that

(5.7) X =n"o(S)F) - o(S, )} > an H(W) as.

Thus, for this case the bootstrap distribution for the sample roots is strongly
consistent. If only some of the eigenvalues of 3, are simple, then by the same
argument it can be shown that the joint marginal distribution of the bootstrap
distribution associated with these roots are strongly consistent. However, since
A does not go to zero almost surely and does not cancel out in (5.5) when X
has multiple roots, the marginal bootstrap distribution associated with a
multiple root is not consistent. The consistency of the bootstrap for simple
roots was proven by Beran and Srivastava (1985). They also showed the
inconsistency of the bootstrap in the presence of multiple population roots for
dimension p = 2, see Beran and Srivastava (1987). Their proof in the latter
case makes use of the explicit form of the eigenvalues of a 2 X 2 matrix.

For the p = 2 dimensional case, Beran and Srivastava (1987) show that
bootstrapping based upon samples of size m with m/n — 0, gives a strongly
consistent estimate of the limiting distribution of n'/%{¢(S,) — ¢(3)} regard-
less of the eigenvalue multiplicities. This approach works in general. That is,
suppose {x*;1 <i < m)} represent a random sample of size m from the
distribution F,, with m /n — 0. Let S}, be the sample covariance matrix of
this sample and let X*, = m!'/2 {(p(S(m) ¢(S,)}. The bootstrap estimate of
the distribution is still strongly consistent. That is,

(5.8) Wiy = m¥?(Sfy = 8,) = W as.

Likewise, an analogous statement to (5.5) holds,

(5.9) Xy = {H(WS + Aumy) = H(Aimy)) —a- 0 as,

where W(m) P,W. P, and hence W(,";) is defined accordmgly Also, A, =

m'/2(A, — A) with A , defined accordingly. Now, W) - + W as. and
Ay = (m/n)l/zA —>as 0 which by (5.8) gives

(5.10) Xy = m72{o(Shy) = ¢(S,)} ~ar H(W) as.

Although bootstrapping a sample of size o(n) gives consistent results, its
asymptotic efficiency is zero with respect to bootstrapping a sample of size n
when the roots are simple. Finding a consistent and efficient method of
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bootstrapping eigenvalues which does not presuppose knowledge of the popula-
tion eigenvalues’ multiplicity is an open problem.

It should be noted that the results of this section depend on the sample
covariance matrix only through properties (5.1), (5.3) and (5.8). The results
generalize to any symmetric estimate of % for which (5.1), (5.3) and (5.8) hold.

6. Concluding remarks. The asymptotic theory for the distribution of
the roots of a sample covariance matrix has been studied extensively. In these
studies, primarily two different approaches have been used. One approach
assumes a normal population and involves the use of asymptotic representa-
tions for the hypergeometric function which appears in the exact joint density
of the sample roots. This approach also applies to canonical correlations and to
MANOVA roots when sampling from normal populations. An extensive survey
has been given by Muirhead (1978).

Another approach essentially involves the delta method, i.e., expanding the
sample roots about the population roots. For normal populations, Lawley
(1956) and Anderson (1963) use this approach for deriving the asymptotic
distribution of the roots of a sample covariance matrix for the simple popula-
tion root case and for the general case, respectively. This approach is not
dependent on the assumption of a normal population and can be applied to
nonnormal populations, e.g., see Waternaux (1976) and Davis (1977). This
approach is also not specific to the sample covariance matrix. It can be applied
to random symmetric matrices in general, e.g., see Tyler (1983) and Amemiya
(1986), or to canonical correlations and MANOVA roots under fairly general
distributional assumptions, e.g., see Anderson (1951, 1987) and Amemiya
(1986).

Using the delta or perturbation method for the simple population root case
is fairly straightforward since eigenvalues are analytic about a simple root.
However, although continuous, eigenvalues are not differentiable at points of
multiple roots. Obtaining expansions for sample roots associated with a multi-
ple population root is thus more complicated and usually requires expansions
for the eigenvectors as well, see e.g., Anderson (1951, 1963). The use of
Wielandt’s inequality circumvents these complications.

The asymptotic distribution of eigenvalues when the population roots are
allowed to vary have been previously considered by Tyler (1983), but under a
less general setting on the random symmetric matrix. The arguments used to
prove Theorem 4.1 in Tyler (1983) though can be applied with only slight
modification to obtain result (4.8) of the present paper. These arguments,
however, are technically rather cumbersome. They involve a study of the
truncation error associated with the expansion of the sample roots about the
population roots. On the other hand, the use of Wielandt’s inequality in the
varying population root case is essentially as straightforward as in the fixed
root case. Amemiya (1986) has shown that a slight modification of Anderson’s
(1951, 1963) classical approach for the fixed root case can also be made to
include the varying population root case. This approach works for general
random symmetric matrices but under slightly more restrictive conditions on
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how the population roots may vary. Amemiya’s (1986) proof applies when
neighboring population roots approach each other at a rate of O(n~'/2). His
arguments, though, do not apply when the neighboring roots approach each
other more slowly, e.g., at a rate O(n™*) for 0 < & < 3.
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