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BREAKDOWN POINTS OF AFFINE EQUIVARIANT ESTIMATORS
OF MULTIVARIATE LOCATION AND COVARIANCE MATRICES

By HENDRIK P. Lopu#iaA! AND PETER J. ROUSSEEUW

Technische Universiteit Delft and Universitaire Instelling Antwerpen

Finite-sample replacement breakdown points are derived for different
types of estimators of multivariate location and covariance matrices. The
role of various equivariance properties is illustrated. The breakdown point
is related to a measure of performance based on large deviations probabili-
ties. Finally, we show that one-step reweighting preserves the breakdown
point.

1. Introduction. Several notions of robustness have been considered for
estimators of a multivariate location parameter p € R?. One of these concepts
is the breakdown point, a global measure of robustness suggested by Hodges
(1967) and Hampel (1968). A simple and appealing finite-sample version of this
concept was given by Donoho and Huber (1983). Roughly, this finite-sample
replacement breakdown point measures the minimum fraction of outliers that
will spoil the estimate completely. Estimators with zero breakdown point can
therefore not be robust. Recently, He, Juretkov4, Koenker and Portnoy (1988)
established a relation between the replacement breakdown point and certain
measures of performance based on large deviations. Their results show that
the breakdown point is not just an attractive robustness concept, but that it
also has a stochastic motivation.

A natural condition for multivariate estimators is equivariance under affine
transformations. To combine affine equivariance with a high breakdown point
is not trivial. Donoho (1982) discusses several affine equivariant multivariate
methods, showing that their breakdown point goes down to 0 as the dimension
p increases. Stahel (1981) and Donoho (1982) independently introduced an
affine estimator of multivariate location and covariance with a high breakdown
point in any dimension. Another estimator with this combination of properties
was the minimum volume ellipsoid estimator [Rousseeuw (1985)].

But what is the best possible value of the breakdown point? For covariance
estimators the maximal breakdown point was derived by Davies (1987). In our
paper we are mainly concerned with upper bounds for pure location estimators
satisfying various equivariance properties. Section 2 discusses these types of
equivariance and gives an upper bound on the breakdown point. In order to
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investigate to what extent this bound is sharp, Sections 2 and 3 study several
examples including the L, estimator, Oja’s (1983) generalized median and
smooth S-estimators in the sense of Rousseeuw and Yohai (1984).

Section 4 extends the results of He, Jureckova, Koenker and Portnoy (1988)
to multivariate location estimators. Estimators with maximal breakdown point
satisfy a minimax property: They maximize least favorable tail performance
over the class of algebraically tailed distributions.

To combine high breakdown point with high asymptotic efficiency, it is often
suggested to start with a high breakdown estimate and then to take a one-step
improvement which preserves the breakdown point and obtains a better
efficiency. Section 5 shows that the breakdown point is preserved if one does a
one-step reweighting by computing the usual weighted mean and covariance
matrix, where the weights are based on the Mahalanobis distances with
respect to the initial estimates.

2. Maximal breakdown point of equivariant estimators. Let X =
{x,,...,X%,} be a collection of n points in R? and denote by t,X) € R? a
location estimate based on X. We say that t, is translation equivariant if
t,X+v)=t,X)+v for all veR?, where X+v={x;+V,...,x, + v}
When t, is equivariant not only under shifts of X but also under affine
transformations, then t, is called affine equivariant, i.e.,

(2.1) t,(AX +v) = At (X) + v

for all nonsingular p X p matrices A and v € R”, where AX + v =
{Ax; +v,...,Ax, + v}. Although this condition is quite natural, it turns out
that some well-known estimators of multivariate location fail to satisfy it. The
condition can be relaxed by requiring (2.1) only for orthogonal matrices, and it
is then referred to as orthogonal equivariance or rigid motion equivariance. At
the end of this section we shall consider a translation equivariant estimator
which is not orthogonal equivariant, and also an orthogonal equivariant
estimator which is not affine equivariant. A covariance estimate C,(X) €
PDS(p), the class of all positive definite symmetric p X p matrices, is said to
be affine equivariant if C (AX + v) = AC,(X)AT for all v € R” and nonsingu-
lar A, where AT denotes the transpose of A.

We measure the robustness of t, and C, by means of the finite-sample
replacement breakdown point [Donoho and Huber (1983)]. The breakdown
point of a location estimator t, at a collection X is defined as the smallest
fraction m /n of outliers that can take the estimate over all bounds:

m
(2.2) e*(t,,X) = min {—: sup || t,(X) — t,(Y,)] = 00},
l<m=<n n Ym

where the supremum is taken over all possible corrupted collections Y,, that
dre obtained from X by replacing m points of X by arbitrary values. Although
£*(t,,X) appears to depend on X, for almost t, this will not be the case.
However, location estimators t, with ¢*(t,,X) depending on X do exist [see,
for instance, Huber (1984)]. The breakdown point of a covariance estimator C,
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at a collection X is defined as the smallest fraction m/n of outliers that can
either take the largest eigenvalue A,(C,) over all bounds, or take the smallest
eigenvalue A, (C,) arbitrarily close to 0:

m

£*(C,,X) = min {—: sup D(C,(X),C,(Y,,)) = 00},
l<m=<n | N Y,

where the supremum is taken over the same corrupted collections Y,, as in

(2.2), and where D(A,B) = max{|A,(A) — A (B)],[A,(A)~! — A, (B)"'[}, with

A(A) = -+ = 2,(A) being the ordered eigenvalues of the matrix A.

Donoho and Huber (1983) also considered other finite-sample versions, such
as addition breakdown. We personally prefer replacing observations to adding
observations because replacement contamination is simple, realistic and gener-
ally applicable. Indeed, from an intuitive point of view, outliers are not some
faulty observations that are added at the end of the sample, but they treacher-
ously hide themselves by replacing some of the data points that should have
been observed. Moreover, as we will see in Section 4, the replacement break-
down point also has a stochastic interpretation.

First we show that the breakdown point .of any affine equivariant estimator
is itself invariant under affine transformations.

LEmMA 2.1. Let X be a collection of n points on R?, and let t,(X) € R?
and C,(X) € PDS(p) be location and covariance estimates based on X.

(i) When t, is translation equivariant, then for any v € R? it holds that
e*t,, X +v) =e¥t,,X).

(ii) When t, is affine (orthogonal) equivariant, then for any v € R?P
and for any nonsingular (orthogonal) p X p matrix A it holds that
e*t,, AX + v) = £*(t,, X).

(iii) When C, is affine equivariant, then for any v € R? and for any
nonsingular p X p matrix A it holds that e¥(C,,AX + v) = ¢¥(C,, X).

Proor. Let A be a nonsingular p X p matrix and v € R?. Denote by Y,, a
corrupted collection that differs from X in at most m points, so that AY,, + v
differs from AX + v in at most m points. When t, is affine equivariant we
have that ||t (AX + v) — t,(AY,, + V)|l =[lA[t,X) — t, (Y, )ll. In that case,
together with the fact that for symmetric p X p matrices M one has
y'My y'My

and A,(M) = sup ,
YTy ' y Yy

(2.3) A,(M) = inf

we obtain
[t.(AX + v) — t,(AY,, + V)|’
[.(X) = £,(Y,) |

This means that supy [It,X) — t,(Y,,)l, taken over all possible Y,,,, is finite or
infinite at the same time as supg [t (AX + v) — t,(Z,,)l, taken over all

< A(ATA).

A, (ATA) <
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corrupted collections Z,, that differ from AX + v in at most m points. This
proves (ii) for the case that t, is affine equivariant. Clearly, if A is orthogonal
the argument above can be repeated for orthogonal equivariant t,, and if we
take A = I the argument can be repeated for translation equivariant t,. This
leaves us with proving (iii).

In that case, (2.3) and affine equivariance of C,, imply that for any collection
S of n points

(24)  M(CL(8))2,(AAT) < A,(C,(AS + v)) < 1,(C,(8))1,(AAT).

Apply (2.4) to S=X and S =Y,. If we write a = [A(AAT) —
A, (AADA(C, (X)) and if we suppress the notation C, for a moment, we find
that

AM(AX + v) — A, (AY,, + v) < 2,(AAT)[2(X) - A(Y,)] +a,
A(AX + v) — A, (AY,, + V) = A, (AAT)[A(X) — 2(Y,,)] — a.

Inequalities that relate A ,(AX + v) — A (AY,, + V) to A,(X) — 2,(Y,,) can be
obtained similarly. As in the first part of the proof it follows that
supy D(C,(X),C,(Y,,)) and sup; D(C,(AX + v),C,(Z,,)), taken over all cor-
rupted collections Z,, that differ from AX + v in at most m points, are finite
or infinite at the same time, which proves (iii). O

It is natural to ask for the maximal breakdown point of an estimator
satisfying one of the equivariance properties mentioned above. The next
theorem gives the upper bound for translation equivariant location estimators.

THEOREM 2.1. Let X = {x4,...,X,} be a collection of n points R?. When t,
is translation equivariant, then ¢*t,,X) < |(n + 1)/2|/n, where |u| denotes
the nearest integer less than or equal to u.

Proor. Because t, is translation equivariant, according to Lemma 2.1 we
may assume that t(X) = 0. Suppose that £*(t,,X) > [(n + 1)/2|/n. This
means that there would exist a constant % such that

(2.5) lt.(Y) || <% <o

for all corrupted collections Y obtained by replacing |(n + 1)/2] points of X.
Denote by g =n — [(n + 1)/2] the number of points of X that are not re-
placed. Since 2¢q < n, for any v € R” we can always construct a collection Y,
containing x;,...,X,,X; +V,...,X, + v and also a corresponding collection
Z,=Y, — v containing X; —V,..., X, — V,Xy,...,X,. Both collections con-
tain at least ¢ points of X so according to (2.5) we must have ||t (Y,)Il < & as
well as [t (Y,) — vl = It (Z, ) < k, using that t, is translation equivariant.
- Clearly, for large v € R? these two inequalities cannot both be true. O

As the class of affine (orthogonal) equivariant estimators is contained in the
class of translation equivariant estimators, the upper bound |(n + 1) /2|/n
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obviously also holds for this smaller class. It then becomes of interest whether
there exist estimators with these equivariance properties that attain this upper
bound. The following two examples show that the upper bound |(n + 1) /2] /n
is sharp for translation and orthogonal equivariant estimators.

COORDINATEWISE MEDIAN. A simple way to obtain a multivariate translation
equivariant location estimator with high breakdown point is to take a one-
dimensional translation equivariant location estimator with high breakdown
point and construct its multivariate analogue coordinatewise. Define t (X) =
(£,X) -+ t,,X)T coordinatewise by ¢,;(X) = median,_;_,x,;, for j =
1,...,p, where x;, = (x;; --- xip)T for i = 1,...,n. Clearly, the breakdown
point |(n + 1)/2]/n of the univariate median is preserved. Note that t, is
translation equivariant but not orthogonal equivariant.

There are several other ways of generalizing the one-dimensional median to
higher dimensions. One of the oldest generalized medians is the following
example of an orthogonal equivariant estimator.

L, eSTIMATOR. Define the L, estimate as the vector t, that minimizes
L7_illx; — tl. Because the euclidean norm is invariant under orthogonal
transformations it follows that the L, estimator is orthogonal equivariant.
However, it is not affine equivariant. The breakdown point is independent of
the dimension p and X, and equals that of the univariate median.

THEOREM 2.2. Let X ={x,,...,x,} be a collection of n points in RP. Then
the L, estimator has breakdown point e*(t,,,X) = |[(n + 1) /2| /n.

Proor. Since t, is translation equivariant, according to Lemma 2.1 we
may assume t,(X) =0. Put M = max,_;_,lx;l, and let B(0,2M) be the
sphere with center 0 and radius 2M. Denote by Y,, = {y,,...,y,} a corrupted
collection obtained by replacing at most m = [(n — 1) /2] points of X and let
t,(Y,,) minimize = 7_,|ly, — tll.

We show that supy [It,(Y,,)ll, taken over all possible Y,,, is finite. Denote by
d = inf, _ g 2an)llt.(Y,,) — vl the distance between t,(Y,,) and B(0,2M), so
that (It (Y, )l <d + 2M. Then for each of the |(n — 1)/2] replaced y;’s, it
holds that

Suppose that the distance between t,(Y,,) and B(0,2M) is large, ie., d >
2M|(n — 1) /2|. Since X c B(0, M), for each of the n — [(n — 1) /2] original
x,’s in Y,, we would then have that

(2.7) [xp =t (Y| = M+ d =[x, +d.
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From (2.6) and (2.7) it would follow that
n n n—1 n—1
£ 1%~ Xl = il + (= | 5= )d |2+ 2
i=1 i=1*

n n

> ¥ Il +d - 20| "= | > % sl

im i=1

This is a contradiction with the fact that t,(Y,,) minimizes L7_,|ly;, — tll.
Therefore d < 2M|(n — 1)/2], hence supy lIt, (Y, )l <d + 2M <
2M|(n + 1)/2]. We conclude that ¢*(t,,X) > [(n + 1)/2|/n. The other
inequality is obtained directly from Theorem 2.1. O

3. Affine equivariance and breakdown ‘point. Is the upper bound
[(n + 1) /2| /n also sharp for affine equivariant estimators? Davies (1987)
showed that for covariance estimators this is no longer the case. When the
collection X is in general position, i.e., no p + 1 points are contained in some
hyperplane of dimension smaller than p, and if n > p + 1, the breakdown
point of any affine equivariant covariance estimator C, is at most
[(n —p + 1)/2|/n. Although the result is stated for pairs (t,,C,), it is
only shown that the covariance part might break down if one replaces
[(n — p + 1)/2] points or more, regardless of what happens with the location
part. This means that the upper bound |(n — p + 1)/2|/n does not have to
apply to affine equivariant location estimators, especially not to those that are
defined without a corresponding covariance part. Such an estimator is Oja’s
(1983) affine equivariant multivariate median.

Osa’s ESTIMATOR. Consider the volumes A(t,x, ,...,X; ) of all simplexes
formed by t € R? and all possible subcollections x,, . x i from X. Qja’s
multivariate median is the vector t, in R” that minimizes

Y A(t,xil,...,xip).

This location estimator is affine equivariant and is defined without any covari-
ance part. In the simple case of four points in R? (so n > p + 1 is satisfied) it is
not difficult to see that when one point is replaced, Oja’s solution will always
stay within the convex hull of the remaining three original points. Hence, even
if X is in general position, |(n —p + 1) /2| /n is not generally valid as an
upper bound for the breakdown point of affine equivariant location estimators.

The example of Oja’s estimator seems to suggest that affine equivari-
ant location estimators may have a breakdown point greater than
[(n — p + 1) /2| /n. This may be due to the fact that location estimators only
 break down if we can make them infinitely large by replacing points of X,
whereas covariance estimators also break down if we can make them infinitely
“small.” Therefore we may have to replace more points in order to let a
location estimator break down.



BREAKDOWN POINTS OF AFFINE EQUIVARIANT ESTIMATORS 235

In any case, the upper bound [(n + 1) /2| /n of Theorem 2.1 still holds,
and we want to know how close we can get to this bound. The first example of
an affine equivariant multivariate estimator with a high breakdown point was
the Stahel-Donoho estimator. Donoho (1982) showed that it is affine equivari-
ant and computed the addition breakdown point. By a slight adjustment of his
proof one can show that if the collection X is in general position, the replace-
ment breakdown point equals (|(n + 1) /2| — p)/n, which is smaller than the
upper bound |(n — p + 1) /2| /n for affine equivariant covariance estimators.
We give two examples of estimates with a breakdown point that is equal to this
upper bound.

Rousseeuw (1985) introduced the minimum volume ellipsoid (MVE) estima-
tor, and showed it to be affine equivariant with breakdown point (n/2| —
p + 1)/n. Also this breakdown point is smaller than the covariance upper
bound |[(n —p + 1) /2| /n. We will adjust the MVE estimator such that it
does attain this upper bound.

MINIMUM VOLUME ELLIPSOID ESTIMATOR. LetX = {xl, ...,x,}Jhave n > p +
1 points. Find t, € R? and C, € PDS( p) to minimize the determlnant of C

subject to
n+p+ IJ

(3.1) #{i: (x; —t)TC7}(x; — t) <c?} > [ 3

So, t, and C, determine the center and the covariance structure of the
minimum volume ellipsoid covering at least [(n + p + 1) /2] points. When
every subcollection of |(n + p + 1) /2| points of X contains at least p + 1
points in general position, there exists at least one solution (t,,C,) in R? X
PDS(p). Even if some [(n + p + 1) /2] points lie on a lower-dimensional
hyperplane H, then one can still define t, € R? as the center of the minimum
volume ellipsoid inside H covering at least |(n + p + 1) /2| points.

The number c is a fixed chosen constant and has no influence on the value
of t,,, which is taken as the MVE estimate of location. However, the choice of ¢
determines the magnitude of C,, which can be taken as the MVE estimate of
covariance. The value of ¢ can be chosen in agreement with an assumed
underlying distribution in order to obtain a consistent covariance estimate.
For instance, if one assumes X,,..., X, to be a sample from an elliptical
distribution P, y with density (det £)~"2f[{(x — p)T="(x — p)}*/2], then a
natural choice for ¢ would be the value for which P, ;{(X — p)"2" (X - p) <

[Hxnscf(llxll)dx equals % In case one assumes X,..., X, to be a
normal sample, ¢ will be x2;[pl. An algorithm to compute t ‘and C,
described in Rousseeuw and Leroy (1987), page 259.

Before we derive the breakdown point of the MVE estimates, we first prove

the following property for ellipsoids:
(3.2) E(t,C) = {x: (x — t)"C™Y(x - t) < 1},
where t € R? and C € PDS(p).
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Lemma 3.1. Consider vy,...,v,.; € R? that span a nonempty simplex.
Let E(t,C) be an ellipsoid as in (3.2), which contains v,,...,v, . Then for
every V > 0 there exists a constant M > 0, which only depends on v, ...,v,,,,
such that if ||t|| > M it follows that the volume of E(t,C) is larger than V.

Proor. Denote by 0 <A, < --- < A; < the eigenvalues of C. The vol-
ume of E(t,C) equals a,y/A; - A,, where a, = mP/2/T(p/2 + 1), and the
axes of E(t,C) have lengths \/)Tj, j=1,...,p.

Because E(t,C) contains the nonempty simplex spanned by v;,...,v, .,
there exists a constant 8 > 0, which only depends on v,,...,v,,;, such that
all axes are longer than B, ie., forall j=1,...,p,

(3.3) A > B2

Without loss of generality we may assume that 0 € E(t, C). According to (2.3),
for every v € E(t,C) we have that |lv — t[|> < (v — )"C"X(v — t)A; < A,. In
particular, this holds for v = 0, so [[t|® < A,. This means that if we take
M = V/(a,B”" "), then from (3.3) it follows that the volume of E(t, C) equals

apfAy A2 apo_l >V. O

THEOREM 3.1. Let X be a collection of n > p + 1 points in R? in general
position, and let t, and C, be the MVE estimates of location and covariance.
If p=1, then ¢*t,,X) = |(n+ 1)/2|/n and £%C,,X) =|n/2]/n. When
D = 2, then ¢*t,,X) = ¢*C,,X) = |(rn —p + 1) /2] /n.

Proor. We extend the proof of Proposition 3.1 in Rousseeuw (1985).
Without loss of generality we may assume that ¢ equals 1 in (3.1). When
p = 1, t, is the midpoint of the shortest interval covering at least |n/2] + 1
points, and C, is proportional to the length of this interval. Even if this
interval would have length 0, t,, is always defined. It is not difficult to see that
one needs to replace at least |(n + 1) /2| points to make ||t || infinitely large.
By placing (n/2) points in one of the remaining n — |(n — 1)/2] points, C,,
can be made 0.

For p> 2, we first show that ¢*(t,,X) and ¢*C,,X) are at least
|[(n —p + 1) /2| /n. Replace at most m = |(n —p + 1) /2| — 1 points of X.
Because every subcollection of [(n + p + 1) /2| points of the corrupted collec-
tion Y,, contains at least [(n +p +1)/2| —(J(n—p+1)/2] - D=p+1
points x; of the original collection X in general position, there exists at least
one solution (t,Y,,), C(Y,) in R? X PDS(p). Denote by E, =
E(t,(Y,),C,(Y,,)) the minimum volume ellipsoid of type (3.2) covering at least

~|(n +p + 1) /2| points of Y,,,.

Let V denote the volume of the smallest sphere with center 0 containing all
points of X. The corrupted collection Y,, still contains at least n —
(J(n-p+1)/2] = 1) > [(n +p + 1)/2| points of X. The smallest sphere
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with center 0 containing these |(n + p + 1) /2] points of X must then have a
volume less than V. At the same time this sphere is also an ellipsoid containing
at least [(n +p + 1)/2| points of Y,,. Therefore E,, being the smallest
ellipsoid of this kind, must also havé a volume less than V. On the other hand
the ellipsoid E,, covers some subcollection of |(n + p + 1) /2] points of Y,,.
As we have seen above, such a subcollection must contain p + 1 points x; of
the original collection X in general position. Since these p + 1 x,’s span a
nonempty simplex, it follows from Lemma 3.1 that there exists a constant
M > 0, which only depends on X, such that [It,(Y,)ll > M would force the
volume of E,, to be greater than V. As we have just seen that this cannot be
the case we conclude that

(3.4) .Y, < M.

These considerations about E,, also show the covariance estimator does not
break down either. Similar to (3.3), the fact that E,, contains p + 1 original x;
in general position implies that there exists a constant 8, which only depends
on X, such that

(3.5) A(C(Y,))>B%>0

for j =1,..., p. Since the volume of E,,, which is proportional to the product
of the eigenvalues, is always less than V, there must also exist a constant
0 < @ < , which only depends on X, such that A,(C,(Y,,)) < a. Together with
(38.4) and (3.5) this proves that both &*(t,,X) and £*(C,,X) are at least
[(n —p+ 1/2]/n.

For the affine equivariant covariance estimate C, the value [(n —p + 1)/
2] /n is also an upper bound, therefore ¢*(C,,X) = |(n —p + 1) /2|)/n. For
e*(t,,,X) the other inequality is obtained as follows. Take any p points of X
and consider the (p — 1)-dimensional hyperplane H they determine. Replace
m = |(n —p + 1) /2] other points of X by points on H. Then H contains
[(n =p+1)/2] +p=|(n+p+1)/2| points of the corrupted collection
Y,,. The minimum volume ellipsoid covering these |(n + p + 1) /2| points has
a zero volume. Because X is in general position we can construct Y,, such that
no other lower-dimensional hyperplane contains |(n + p + 1) /2| points of
Y,,, therefore t,(Y,,) must lie on H. By sending the contaminated points on H
to », one of the axes of E,, becomes infinitely large, and so the center t,(Y,,)
of E,, becomes infinitely large. This proves e*(t,,X) < [(n —p + 1) /2| /n. D

The MVE location estimator suffers from the same poor rate of convergence
as the least median of squares (LMS) regression estimator [Rousseeuw (1984)].
In order to obtain Vn -consistency, Rousseeuw and Yohai (1984) considered
smoothed versions of the LMS estimator. These S estimators generalize easily
to multivariate location and covariance, in which case they become smoothed
versions of the MVE estimator.



238 H. P. LOPUHAA AND P. J. ROUSSEEUW

S EstivaTors. Let X = {x,,...,x,} have n > p + 1 points. Find t, € R?
and C, € PDS(p) to minimize the determinant of C subject to

n

1 ]
(3.6) - p[{(x,. —-)TCY(x, — t)}1/2] <b.
i=1
Note that one obtains the MVE estimates when nb=n —|(n +p + 1) /2]
and p(-) =1 - 1,_, (). Rousseeuw and Yohai (1984), aiming at both asymp-
totic normality and a high breakdown point, assumed the following conditions
on p:

(R1) p is symmetric, twice continuously differentiable, and p(0) = 0.
(R2) there exists a constant ¢ > 0 such that p is strictly increasing on [0, c]
and constant on [c, ©).

A typical example of such a p function is the biweight function pp (), which
is u2/2 — u*/(2c?) + u®/(6c*) on [—c, c] and c2/6 outside [—c, c].

Let r = b/sup p and denote by [« ] the nearest integer greater than or equal
to u. When every subcollection of [n — nr] points of X contains at least p + 1
points in general position, there exists at least one solution (t,,C,) in R? X
PDS(p). The constant 0 < b < supp can be chosen in agreement with an
assumed underlying distribution. If one assumes X;,..., X, to be a sample
from an elliptical distribution P, s a natural choice for b is

Ep[{(X, - m)=~1(X, — w}?] = [o(lxl) £(Ixl) dx.

The choice of the (tuning) constant ¢ then determines the value of 5.

Properties of S estimators have been investigated by Davies (1987) and
Lopuhai (1989). S estimators defined by p functions satisfying (R1) and (R2)
have exactly the same asymptotic behavior as multivariate M estimators
defined with the same p function [Lopuhaa (1989)]. However, in contrast with
M estimators, S estimators have a high breakdown point in any dimension p.
In order to encompass S estimators defined by smooth p such as pp ., we
complement the breakdown result of Davies (1987), who considers functions p
that are equal to 0 in a neighborhood of the origin.

THEORI:JM 3.2. Let X beasetofn =p + 1 points in R? in general position.
Writer = b/supp. If r < (n — p)/(2n) then S estimates defined by a function
p that satisfies (R1) and (R2) have breakdown point £*(t,,X) = ¢¥(C,,X) =

[nrl/n.

Proor. The proof is similar to that of Theorem 3.1. As we can always
. rescale the function p we may assume that ¢ = 1 and that supp = 1, so that b
in (3.6) equals r. We first show that ¢*(t,,X) and ¢*(C,,X) are at least
[nr]/n. Replace at most m = [nr] — 1 points of X. Because r < (n — p)/(2n),
every subcollection of [n — nr] points of the corrupted collection Y,, contains
at least [n — nr] — ((nr]1 — 1) > p + 1 points x; of the original collection X in
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general position. So there exists at least one solution (t,(Y,,), C,Y,)) in
R? X PDS(p). Denote by E,, = E(t,(Y,,),C,(Y,,)) the smallest ellipsoid of
type (3.2) that satisfies (3.6).

Since nr — [nr] + 1 is always strictly positive and p is continuous, we can
find a smallest sphere with center 0 and radius, say R, such that

»_.p(Ix;ll/R) = nr — [nr]1+ 1. Denote by V the volume of this sphere.
The collection Y,, contains n —m points of X, say x,,...,x,_,. The
smallest sphere with center 0 and radius M such that for these points

»"o(llx;ll/M) = nr — [nr] + 1 must then have a volume less than V. At the
same time this sphere is an ellipsoid for which

n—m
Y eo(ly:ll/M) < X p(Ix:|/M) + [nr] =1 =nr.
Yi€Vm i=1
Therefore E,,, being the smallest ellipsoid of this kind, must also have a
volume less than V. On the other hand, it follows from constraint (3.6) that
E,, must cover some subcollection of [n — nr] points of Y,,. As we have seen
above, such a subcollection must contain p + 1 points x; of the original
collection X in general position. At this point, we invoke Lemma 3.1 and use
exactly the same argument as is in the first part of the proof of Theorem 3.1 to
conclude that £*(t,,X) and £*(C,,X) are at least [nr]/n.

The other inequalities are obtained as follows. Replace m = [nr] points of
X. Without loss of generality denote the corrupted collection by Y,, =
{y,...,¥,}, with y; = x; for j =[nr]+1,...,n. Let E(t,C) be any ellipsoid
of type (3.2) that satisfies

(3.7) L ol (0 - 07 - 0) ] =

and suppose that all replaced points y,,...,y;, are outside E(t, C). Then
T ollly; — ©)TC~ Uy, — t)}*/2] would equal
i 1/2

(3.8) Yy p[{(xj - t)TC’I(xj - t)} / ] + [nr].

j=Inrl+1
When nr € N, it follows from r <(n — p)/(2n) that n — [nrlzp + nr >
p + 1. In that case the summation in (3.8) runs over at least p + 1 points in
general position. Since p is strictly increasing it then follows that this sum
must be strictly positive. When nr & N, then [nr] > nr. Either way, we would
find that (3.8) is strictly greater than nr. This is a contradiction with the fact
that E(t,C) satisfies (3.7), so we conclude that at least one replacement, say
y;, must be inside E(t,C).

Similarly, suppose that all n —[nr] original points X, .+1,...,X, are
outside E(t, C). In that case we would find that
; " _ 1/2
(3.9) Y ol{i - 9TC (i - ©)) ] 20~ [nr].
i=1

However, from r < (n — p)/(2n) it follows that [n — nr] — [nr] > p. Because
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always n — [n — nr]1 > nr — 1, we would find that the right-hand side of (3.9)
is strictly greater than nr. As E(t, C) satisfies (3.7) this cannot be the case, so
apart from y, the ellipsoid E(t, C) must also contain at least one original x;.

By sending y,; to « we can make one of the axes of E(t,C) infinitely large.
This means that for every t and C that satisfy (3.7), we can make both |/t|| and
the largest eigenvalue A,(C) infinitely large. Since t,(Y,,) and C,(Y,,) must
satisfy (8.7) both estimates break down. O

REMARK 3.2. The breakdown point in Theorem 3.2 is at its highest when
r=(n—p)/@2n). In that case the S estimates have breakdown point

[(n—p)/2]/n=[(n~p+1)/2])/n.

4. Breakdown and large deviations. The replacement breakdown point
as defined in Section 2 is not only a simple and appealing robustness concept.
Recently, He, Jureékova, Koenker and Portnoy (1988) showed that it also has
a stochastic interpretation. We extend their result to multivariate location
estimators. For any x; in a collection X write x; = (x;, - x,,)", and instead
of t,(X) write t,(x,,...,x,), which is then invariant under permutations of
the x;. We say that a location estimate t (x,,...,x,) is nondecreasing in x; if
for any x; = (x;; - x,,)" and X = (%, -~ £,)T with %;; > x;; it holds that

b j(Xpy ooy Xy, X)) 2 8,(X, .., X, 000, X))
forall j=1,...,p.
In this section we consider x,,...,x, as a sample X,,..., X, from a

spherically symmetric distribution P, with a density of the form f(llx — D,
f(y) > 0. We say that P, is algebraically tailed, if for some m > 0,

(4.1) —log P,(| X, —p||>a) ~mloga asa — .
Examples are the multivariate Cauchy distribution and the multivariate stu-

dent distribution. We say that P, is exponentially tailed, if for some b > 0 and
r>a0,

~log P(| X; — || > a) ~ba" asa — .

The multivariate normal is an example of such a distribution.
Jureckova (1981) considered

Bt - 8B, —w] > a)
)T Tlog B(1X, ~ wl > a)
as a measure of performance for {, = t,(X;,..., X,)), and showed that in the
case p = 1, under certain conditions on t,,, it holds that
1 < liminf B(a,t,) < limsup B(a,t,) <n.

a—® a— o

For exponentially tailed distributions, the sample mean Xn performed opti-
mally with B(a, X,) tending to n, while for algebraically tailed distributions
the lack of robustness of X, was expressed by B(a, X,) tending to 1. In the
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multivariate setting one has something similar: When X;,..., X, are nor-
mally distributed with mean zero then X, =, (1/Vn)X; so that B(a, X))
tends to n, and when X,,..., X, have a multivariate Cauchy d1str1but10n
then X, =, X, so that B(a, X )— 1.

He, Jureckova Koenker and Portnoy (1988) related B(a,t,) to the finite-
sample replacement breakdown point ¢* = m*/n of univariate t,. The follow-
ing theorem extends their result to multivariate location estimators in case P,
is algebraically tailed.

THEOREM 4.1. Let X,,..., X, be a sample from a spherically symmetric
distribution P, with denszty f(llx — ul) > 0, and suppose that P, is alge-
braically tazl