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A method for robust nonparametric regression is discussed. We con-
sider kernel M-estimates of the regression function using Huber’s ¢-func-
tion and extend results of Hirdle and Gasser to the case of random designs.
A practical adaptive procedure is proposed consisting of simultaneously
minimising a cross-validatory criterion with respect to both the smoothing
parameter and a robustness parameter occurring in the y-function. This
method is shown to possess a theoretical asymptotic optimality property,
while soie simulated examples confirm that the approach is practicable.

1. Introduction and summary. Methods for nonparametric regression
are popular nowadays [e.g., Eubank (1988), Hardle (1989)] and estimating the
regression function robustly in this context is often desirable. We consider one
appealing approach to robust nonparametric regression based on concatenat-
ing the kernel method for smoothing and the M-estimation approach to robust
estimation. Specifically, the kernel M-estimate of the regression mean m(x)
based on data (x;,Y;), 1 <i <n,-is the solution 7i(x) to the equation
H{x, Mm(x)} = 0, where

n
H{x,0(x)} = > a;(x)¥{Y; - 6(x)},
(1.1) i-1

a;(x) = (nh) 'K{h~Y(x — x,)}.

Here, K is the kernel function (often a symmetric density function) and 2 > 0
is the smoothing parameter, or window width. The function ¥, often odd and
monotone, controls the robustness properties of M (x). Note that if ¥(x) = x
were chosen, we would recover the (nonrobust) Nadaraya-Watson kernel
regression estimate [Eubank (1988), page 115, Hardle (1989), page 21].

An important paper on kernel M-estimation is Hérdle and Gasser (1984);
see also Hiardle (1984) and Hiardle and Tsybakov (1988). Hirdle and Gasser
showed that these estimates have many of the advantages typically associated
with robust inferences. In particular, they studied mean squared error proper-
ties of kernel M-estimates and displayed a neat factorisation of the result into
terms attributable to the smoothing and another term attributable to robust-
ness. The asymptotic bias of #1(x) does not depend on ¥ in any way, while the
asymptotic variance of 7 (x) is proportional to B(¥) = 7,(¥)/72(¥), where
7{(¥) = E{¥'(¢)} > 0 and 7,(¥) = var{¥(e)}. Here, expectation and variance
are taken over the distribution of the generic residual &. Moreover, the
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question of choosing ¥ to minimise B(¥) is precisely the classic problem of
efficiency in choice of ¥ in M-estimation [Huber (1981)]. In Section 2, we
extend Hardle and Gasser’s (1984) results which hold for the fixed x-design
case to the random design situation (heuristically for quite general monotone
V¥, rigorously for the specific ¥ class discussed later).

For the sake of definiteness and simplicity, we are especially concerned with
the use of Huber’s (1964, 1981) -function

1, for u > c,
Yy(u) =y (u) ={u/c, for—c<uc=<ec,
-1, foru < —c,

as ¥ in (1.1). Note that with probability 1, #'(¢) is well defined and nonnega-
tive. The function ¢ affords a range of potential robust estimators, varying
from the (nonrobust) kernel mean estimate when ¢ = « to a kernel median
estimate as ¢ — 0, with intermediate values of ¢ corresponding to a class of
compromises between the two extremes. The optimal choice of ¢ for minimis-
ing B(¥) is ¢ = » when & has the normal distribution and is ¢ = 0 when ¢ is
double exponential. To encompass both these extremes properly, however, it is
also useful to consider use of

c, for u > c,
cy(u) =1u, for —c<u<e,
—c¢, foruc< —c,
in (1.1). Of course, the value of the resulting estimator is no different whether
¥ or cy is used. It is convenient, though, to work directly with ¢ if we wish to
allow the limiting case ¢ = 0, and to work with cy if we wish to allow ¢ = o
in this way, we can treat the full range 0 < ¢ < ».

There are, therefore, two values, & and c, to be specified to implement this
kernel M-estimation procedure. If the true mean function were known, we
could choose the pair k,c that yields the minimum value of the average
squared difference between m and i at the datapoints,

S(h, ) =n Y (#(x;) - m(x,))?,

where ¥’ denotes summation over those x,’s which lie in a given interval (s, ).
This restriction to a central set (s,¢) of x;’s is made to avoid what can be
awkward problems with end effects. Since S is unknown, we estimate it and
choose %, c to minimise this estimate of S. The argument give in Section 3
shows that an estimate based on the well-known cross-validatory principle
proves suitable [see formula (8.1)]. Of course, choosing & by cross-validation is
a familiar technique in nonparametric regression [Eubank (1988), Hardle
(1989)]; moreover, choosing appropriate M-estimates adaptively is popular in
both robust location estimation and parametric robust regression. It is a novel
aspect of the current study that 2 and c are selected simultaneously by a
data-based procedure. Our aim in this paper is to show that such a method is
both valid and practicable, at least for moderate to large samples. An advan-
tage of our cross-validation method over alternatives, such as plug-in methods,
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is that cross-validation is purely data-based, and does not require the selection
of subsidiary smoothing parameters. An advantage of plug-in methods is that
they generally have better convergence rates relative to the smoothing parame-
ter which minimizes mean squared error.

In Section 4 we comment on computational considerations; the computa-
tional burden of this cross-validatory approach is not as great as one might
suppose. We go on to describe some simulated examples of this procedure
which indicate that the method has practical potential. Proofs are deferred to
Sections 5 and 6.

It is possible to develop generalizations of our results in several directions.
One is to the case where the function ¢ is chosen from a larger parametric
class than the one-parameter family considered here. Another is to the case of
a ¢ function which is determined nonparametrically. This circumstance could
arise in the context of robust inference with asymmetric errors, when ¢ would
be a functional of the unknown design density. The latter could be estimated
parametrically, and the estimate substituted into the formula for .

2. Squared error properties. Assume that the data can be modelled by
Y. =m(x;) + ¢, l<ix<n,

where x,,...,x,, ,...,¢, are independent random variables. The x,’s have
common (univariate) density g and the ¢,’s are symmetrically distributed
about zero with common continuous distribution function F and density
f = F'. We conduct inference conditional on the x;’s. Let — < s < ¢ < © and
take #= {h: n'*" < h < n~"}, where 0 < n < 1 is arbitrary but fixed. We
work only with A’s in this set; this is reasonable because the asymptotically
optimal £ (in the L, sense) has the form cn~* for a constant ¢ and
0 < a < 1. We also assume that K satisfies

21 K=0 JE=1, [K(2)dz =0,

K vanishes outside a compact set and K is Hélder continuous.

THEOREM 2.1. Assume condition (2.1) on K; that for some § > 0, g and m
are bounded and Holder continuous on (s — 8,t + 8); that g > 0 on [s,t];
and that f is bounded on (—,x) and is continuous in a neighbourhood of the
origin. Then

(2.2) m(x) - m(x) = Hx, m(x)}{r,8(x) + 8,(2)} " + (nh) *8y(x),
where for each c, > 0,

(2.3) sup sup sup {I8,(x)l + 18,(x)I} = 0 a.s.

O<c<co heH s<x<t

If we replace ¢ by cys in the definition of H and assume additionally that all
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moments of € are finite, then (2.2) holds for 0 < ¢ < « and in place of (2.3),
sup sup sup {I8,(x)l + [85(x)I} - 0 a.s.

O<c<w heH s<x<t

The dichotomous form of Theorem 2.1 reflects the two interpretations of ¢
which are necessary to cope with both the extreme cases ¢ = 0 and ¢ = .
Define

¢ _
B, = Kz(”z/T%)(t —s) and B,= %K%f 7(x)2g(x) Ydx.

THEOREM 2.2. Assume condition (2.1) on K; that for some 6 > 0, g and m
have two bounded continuous derivatives on (s— 6,t + 8); that g > 0 on
[s,t]; and that f is bounded on (—x,®) and is continuous in a neighbourhood
of the origin. Then
(2.4) S(h,¥) = By(nh) ' + Byh* + 63,
where for each cy > 0,

(2.5) sup sup {(nh)_1 + h4}_1|63| -0 a.s.

0<c<co heH
If we replace by ci in the definition of H and assume additionally that all
moments of € are finite, then in place of (2.5),

— -1
sup sup {(nh) Y+ b} 185 > 0 a.s.
O<c<wo heH

Formula (2.4) is the basis for the claim in Section 1 that the asymptotic
variance of & depends on ¥ only through the ratio 8 = 7,/77 and that the
asymptotic bias is independent of ¥. It implies that the minimum of S(#, )
is asymptotic to a constant multiple of (8/7)*° and that the asymptotic
minimum is achieved with A = {B,(4B,n)~}1/°.

3. Cross-validation. Define
UCh,y) =n" Y 'm(x)m(x;), Uk, ¢) =n"" Y mi(x)m (%)Y,
where 1 ,(x) solves H,{x, m;(x)} and Hy(x, ) = Zjiﬂaj(x)z/f(Yj - 0).

THEOREM 3.1. Assume the conditions of Theorem 2.2 and in addition that
f(0) > 0. Then there exists n' > 0, depending on m, such that

O(h,w) = U(h,¢) +n~" Lm(x)e; + 8,

where

sup sup {(nh)”' + h4}_1|84| -0 a.s.

n"<c<wheX
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The basic cross-validatory criterion is

CV(h, ) = n~' L'in(x,)* - 20(h, v);

compare Hardle (1984). To assess the efficacy of cross-validation, note that
CV(h,y) = S(h,¢) — V — 25,, where V=n"'T'm(x)? + 2n" 'L m(x,)e;
does not depend on ¢ or h. Theorems 2.2 and 3.3 imply that if (A,)
minimises CV(k, ¢) in the range ™" <c¢ < ® and h € #, then S(h,y)/
{inf,_ . .inf, . » S(h,¢)} = 1 a.s. This demonstrates that cross-validation
results in asymptotic minimisation of S(h, ).

The criterion CV(k, ¢) is not the only cross-validatory one which could be
used. In numerical work it is convenient to replace the sum ¥’ /M(x;)? in the
formula for CV by L' ,(x,)% This gives the alternative criterion

CVy(h,¢y) =n""! Z’mi(xi)z - 2Z’mi(xi)Yi'

Thus, minimising CV; is equivalent to minimising

(3.1) CVy(h,¢) =™t LY, - my(x)),

The latter criterion is obtainable from the general principles for cross-valida-
tion discussed by Stone (1974, 1977). Furthermore, minimisations of CV and
CV, are asymptotically equivalent, since it may be proved that under the
conditions of Theorem 3.1,

sup  sup {(nh)_1 + h4}_1|CV(h,¢//) — CVy(h,y)l > 0 as.

n""<c<cy hEH

4. Simulated examples. We computed estimators using the criterion
CV, and iteratively reweighted least squares (IRLS): From a current estimate
M~ (x), say, at a point x, update estimated weights w{?~1 by

wiP = weVa,(x)9(Y, - meO())/(Y, - me (),

1 < i < n, and solve the associated weighted least squares problem (which is
trivial) to obtain 7(?)(x), then iterate to convergence at step P, say. (If IRLS
converges, it does so to the required solution; on fewer than 5% of occasions
did we have trouble with convergence.) Moreover, because the solution m =
m® also solves a weighted least squares problem (with weights w(P, 1 < i <
n), the function CV, is given by

CVy(h, ) = n L E'[(1 = b)Y, - ()],

where h; = w® /L 7_,w{". Thus the apparent need to actually drop out each
x; in turn to obtain m ,(x;) is circumvented. These ideas are not new: see, for
example, O’Sullivan (1988).
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Our simulations used the Epanechnikov kernel and were based on the
model

(4.1) Y, =80(x, - 1)’ +e, 1<iz<n.

We took 200 x,’s from the uniform distribution on [0, 1] and concentrated our
interest on the central portion [s,#] = [, 2]. The effective sample size was,
therefore, approximately 100. If the distribution of ¢ is normal N(0, 1), then
the bivariate cross-validation function CV(4, ¢,) is typically a long valley in
the ¢ direction, sloping gently downwards as c¢ increases. This indicates a
slight preference for the mean fit (¢ = ). A similar result is obtained if the
error distribution is double exponential, except that here the valley slopes
gently in the other direction, suggesting a median-like fit (¢ = 0). This case is
illustrated in Figure 1. Here and in most other circumstances at which we
have looked, CV, is often quite flat as a function of ¢, reflecting a relative
indifference to which value of ¢ is employed. However, bowl-shaped CV,
functions can be achieved by using error distributions which are contrived to
have both small f(0) and large error variance, or by drawing very large
samples. There can sometimes be anomalies of the sort often seen in cross-
validatory approaches; in particular, there is sometimes a deep global mini-
mum of the criterion at an overly small value of & or a dramatic plunge of the
criterion as ¢ — 0. We regard both as artefacts of the method which can be

ignored in practice.

5. Proofs for Section 2. In this section, we give proofs of Theorems 2.1
and 2.2. The major respect in which our arguments differ from those for
related problems, for example in Stone (1984), is that uniformity is here
required over = i, as well as h. For any fixed 0 < ¢; < ¢, < », the range
¢; < ¢ < ¢y is relatively easily handled because ¢, varies smoothly there.
Indeed, there exists a constant C, depending only on ¢, and c,, such that

(5.1) sup |y (u) — ¥ (u)l <Cle —¢'l,

—o<ly <o
whenever ¢, < ¢, ¢’ < cy. The situation is rather different when ¢, = 0, for
then the bound (5.1) fails to hold. Indeed,

sup  [yo(u) — ¢o(u)l = 1,
—o<y<w

when c¢ # 0. Therefore, we shall pay particular attention to establishing the
first parts of Theorems 2.1 and 2.2, i.e., results (2.3) and (2.5). Under the
additional assumption that all moments of ¢ are finite, and replacing ¢ by c¢
in the definition of H, it is relatively easy to establish versions of (2.3) and
(2.5) when the supremum over 0 < ¢ < ¢, is taken instead over ¢, < ¢ < .
This is because of the smooth way in which the limit ¢ = « is approached; a
truncation argument, with ¢ < n* and ¢ > n* treated separately, may be used
there. Hence we shall not devote effort to the range ¢, < ¢ < .
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A cornerstone of our proofs is the lattice argument, which we spell out in
the proof of Lemma 5.1 and invoke on other occasions. Details of the argument
are similar in all applications, and so they are given only for Lemma 5.1.

The following notation is needed. Define {(u) = E{¢/(e + u)},

n

x(x,0) = 3 ay(x){{m(x;) — 6},

i=1
x'(x,8) = (3/36)x(x,0),
A(x,0) = H(x,0) — x(x,0).

Note that 7, = E{¢'(¢)} = {'(0). So as to more clearly motivate our technical
arguments, we first give the main points of the proofs of Theorem 2.1 and 2.2.
These are followed by statements and proofs of the requisite Lemmas 5.1-5.6.
In those results, the phrase under the conditions of Theorem 2.1 [2.2] refers to
the conditions stated just prior to (2.2) [respectively, (2.4)].

PROOF OF THEOREM 2.1. Define § = m(x) and 8 = A (x). Now,
0 =H(x,0) = A(x,8) + x(x,0),
x(x,8) = x(x,0) + (6 - 0)x'(%,6%),
where 6* lies between 6 and 8. Therefore
—{A(x,6) + x(x,0)}/x'(x,6%)
= {H(x,6) + 85(x)} /{r18(x) + 8y(x)},

where 8,(x) = —x'(x,6% — 7,8(x) and 85(x) = A(x,0) — A(x,0). Hence it
suffices to prove the version of (2.2) which has 8, replaced by (nh)/25,.

Write sup® to denote the supremumover 0 < ¢ < cy, h € # ands <x < t.
If we show that

6-90

(5.2)

(5.3) sup’ld — 6] - 0 a.s.,

then it follows from Lemma 5.2 that sup'|§,(x)| — 0. By (5.5) of Lemma 5.1
and Lemma 5.3, we have sup'{|A(x, )| + |x(x, 8)} = O(n~") for some n > 0,
and so by (5.2), sup’l§ — 8] = O(n~"). It then follows by (5.6) of Lemma 5.1
that sup’(nh)'/2|65] — 0. This completes the proof of Theorem 2.1, except for
the necessity of checking (5.3). .

To prove (5.3), note that since H(x, 8) is nonincreasing in 6, then§ > 6 +
implies O = H(x,0) < H(x,0 + n) = A(x,0 + n) + x(x,8 + n). Therefore,

(5.4) P(d - 6>n)<P{A(x,0 +1) > —x(x,0 +n)}.

Now,

n

(5,8 + 1) = ¥ ai®){m(x) — m(x) ) < L(n, - m) L ax(x),

i=1 i=1
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Fic. 1. (a) A contour plot of CVy(h,y,) based on the data described under (b). There are 10
equispaced values of h from 0.00325 to 0.2 inclusive and 21 equispaced values of ¢ from 0.05 fo
4.2 inclusive. (b) The stars represent those datapoints whose x-values lie in [, 3] (from an
original sample of 200 U0, 1] x;’s) and whose y’s arise from the model (4.1) with residual
distribution the double exponential. The dotted curve is the true mean, m; the solid curve is the
estimate v corresponding to (c, h) = (0.05,0.0225) chosen by reference to CV, (here, ¢ = 0.05 is
effectively the same as ¢ = 0).
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where K vanishes outside (- C;, C;) and

m,=sup sup sup [|m(x) — m(y)l.
heH s<x<t y:|x—y|l<Cih

Continuity of m on (s — 8,¢ + 8) guarantees that n, » 0O as n » ». If n is
so large that , < in, then
{(n,=m) <¢(—3m) < =Cy= — _inf [{(=3m),
0<c<cy

with C, > 0. Combining the estimates from (5.4) down, we see that

P(é —6>1n)< P{A(x,o +n) > szn: ai(x)}

i=1

< P{A(x,6 + 1) > 3Cy8(x)}
+ P{ glai(x) -g(x)| > %g(x)}-

Application of Bernstein’s or Rosenthal’s inequality to bound the two prob-
abilities on the right-hand side now shows that for all A > 0, sup’ P{f(x) —
m(x) > n} = O(n™"). An identical argument produces the same bound if
#, m are interchanged in this statement. Therefore sup® P{|#(x) — m(x)| >
n} = O(n~*). Use of the lattice argument now gives (5.3). O

n

Proor OF THEOREM 2.2. Define y(x) = x{x, m(x)}, wu(x) = E{x(x)},
H(x) = H{x, m(x)}, A(x) = A{x, m(x)}, B(x) = x(x) — u(x), S =
n e mlx,) — m(x )2, T = r72n 'L H(x;)*g(x;) 2. By Theorem 2.1,

sup sup|S — T|/{T + (nh)"} >0 as,
O<c<co heH

and so it suffices to prove the version of (2.4)-(2.5) in which S is replaced by
T. To obtain that result, observe that T = 77T, + Ty + T3 + 2(T, + T5 +
T,)), where T, through T, are, respectively, n~ 'L’ A(x,)g(x;)~?
n 18 u(x,)?g(x,)"2 n 'L, B(x,)%g(x;)"% n 'L;A(x;)B(x)g(x;)"?
n~1T Alx)u(x;)g(x,) "2, n= 'L B(x,)u(x,)g(x;) "% Lemmas 5.4, 5.5, 5.6 show
‘that T,,T,, Ts; are asymptotic to (nh)~'C;, h*C, and 0, respectively, a.s.
and uniformly in ¢ and h, where C, = k,ry(t — s), Cy = (3Nky7y)?
fo<x<¥(x)2g(x)"1dx. Similarly, it may be proved that T,,T5 Ts equal
o{(nh)~! + h%} as., uniformly in ¢ and h. Therefore, T = 7 %{(nh)~'C; +
h*Cy} + o{(nh)~! + h*} uniformly in ¢ and h, which proves the theorem. O

LEMMA 5.1. Let —o <a < B <» and & > 0. Under the conditions of
Theorem 2.1,

(5.5) sup sup (nkh)Y? sup |A(x,0)l =0(n%) a.s.,
& O<c<cq heH s<x<t,a<0<pB
sup sup (nkh)Y? sup sup |A(x,0,) — A(x, 6,)I
(5.6) O<c<coheH s<x<t,a<0<p 0,:16,—05/<n"?

-0 a.s.
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Proor. We derive only (5.6). Let € c[0,¢c,], #' < #, #C[s,t] and
FC [a, B] be the lattice subsets with the same endpoints as the respective
containing intervals, each consisting of n° regularly spaced elements, for
arbitrarily large but fixed a > 0. Write sup* for the supremum over c € &,
he X' xe ./, 0, 7, and 0, € £ such that |6, — 8,] < n~%. We shall
prove shortly that

(5.7 sup*(nh)1/2IA(x,01) —A(x,0,) > 0 a.s.

Given this result, the following facts may be used to prove that (5.7) continues
to hold if sup* is replaced by the supremum over all ¢ € [0,¢,], h € #,
x € (s,¢), 0, € (a,B) and 0, € (a, B) such that |8, — 8, < n~?; Holder conti-
nuity of y(x, 8) in 6; Hélder continuity of H in A; °

|A(x,0,) — A(x,0)l < |A(x,0,) — A(x,0,)| +2{x(x,0,) — x(x,8,)},
for 6, < 6 < 6,;
|Hcl(x’01) _ch(x’a)l

<C(cg—¢)* ¥ a,(x)
i=1

r2y o, () [ H{IY; - 6] < (e = )%} = P(IY; = 6] < (c; — ¢)?})],
i=1

for 0 < ¢; < c,. The lemma follows.

It remains to prove (5.7). Write P(:|Z2") and E(:|2") to denote probability
and expectation conditional on the x,’s. Define ¢,(u) = I(u > ¢), ¥(u) = I(u
< —o), ¥s(u) =clul(-c <u<c) Hx,00 =L ja,(x)(x;—0), x;,=
E(H;Z') and A; =H; — x;. Then A=A, — A, + A;, and so it suffices to
derive (5.7) for A replaced by A, in each of the cases j = 1,2, 3. By judicious
use of Markov’s and Rosenthal’s inequalities, first prove that for all A > 0,

(5.8) sup P{(nh)%A;(x,6,) — A(x,6,)| > n—8/4|gz} =0(n™) as.,
where the supremum is over 0 < ¢ < ¢y, h € #, x € [s,t], 6, € [, B] and
0, € [, B] such that |8, — 6,] < n~°. Put

&, = {sup*(nh)1/2|Aj(x,01) —A;(x,0,) > n“”“}.

It follows from (5.8) that for all A > 0, P(&,|2") = O(n~*) a.s., which entails
P(&, i.0.) = 0. The latter implies (5.7). O

LEMMA 5.2.  Let {n,} denote a sequence of positive constants converging to
zero. Under the conditions of Theorem 2.1,

sup sup (nh)? sup sup Ix'(x,0) + r,g(x) > 0 a.s.
0<c<co heH s<x<t|0—-m(x)<n,



1722 P. HALL AND M. C. JONES

ProoF. Define B(6) = sup, . |¢'(6) — 4(c)l,

M, = sup sup sup  |m(x) —m(¥)l, m;=mn,+n,.
heH s<x<ty:|lx—y|l<Cih

Then 0, > 0as n - », B(f) » 0as 6 — 0, and

'(x,8) + () (x) < B(n) ¥, ai(x)
i=1

n

Y a(x) —g(x)|

i=1

+{ sup Ifl(c)l}

0<c<cy

The lemma follows from these results and the fact that

n

Y a(x) - g(x)

i=1

sup sup -0 a.s,

heX s<x<t

the latter being proved by standard techniques from nonparametric .density
estimation. O

LEmMA 5.3. Let —» < a < B < . Under the conditions of Theorem 2.1
and for some & > 0,

sup sup sup sup |x(x,0)l=0(n"%) a.s.

0<c<coheH s<x<ta<0<p

Proor. Use Bernstein’s or Rosenthal’s inequality to show that for all 4§,
A>0,

sup sup sup sup P{x(x,0) — Ex(x,8) > (nh)_1/2n8} =0(n™").

O0<c<coheH s<x<ta<0<pB

Now apply the lattice argument to demonstrate that for all § > 0,
sup sup (nkh)? sup sup Ix(x,8) — Ex(x,0)|

(5'9) 0<c<co heH s<x<ta<6<p
=0(n"% aus.
Finally, prove by elementary calculus that for some 6 > 0,
(5.10) sup suph~® sup sup |[Ex(x,8) =0(1). ]
O<c<coheH s<x<ta<6<B

LEMMA 5.4. Under the conditions of Theorem 2.2,

(5.11) sup sup hZ'A{xi, m(.aci)}2g(x,-)_2 —KkyTo(t —8)| > 0 a.s.
O0<c<co heX i

ProoF. Let ¢, #' and . be as in the proof of Lemma 5.1. Arguing as in
that proof we see that it suffices to establish (5.11) when the suprema on the
left-hand side are taken over ¢ € ¢ and h € &#'. To derive this modified
result, we would write A = A; — A, + A, as in the argument just preceding
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(5.8) and treat separately each component of A% = (A; — A, + A;)? However,
for notational simplicity, we shall work directly with AZ2. Thus, we prove that
for some C, 8 > 0,

P[SUP sup ‘hZ’A{xw m(xi)}zg(xi)_z — KkyTo(t — 8)

€
(5.12) ‘°TThEF

> Cn~° i.o.] =0.

Define
Aj(x) = tlf{m(xj) - m(x) + sj} - {{m(‘xj) - m(x)},
Dy(x) = L a;(x)’[A;(x)* - E{a,(x)°|2}],

J
Dy(x) = T a,(2)’[ E(8,()’|Z) - E{8,()}],
J

Dy(x) = L E{a;(x)*A;(%)*} = (nh) 'ky728(x),
J

Dy(x) =2 Z Z aj(x)ak(x) Aj(x) A(x).

l1<j<k<n

Then A{x, m(x)}? — (nh) 'kyr98(x) = L, ;. 3D,(x) + 2D (x). By judicious
use of Rosenthal’s and Markov’s inequalities we may prove that

sup sup sup P{nhlD/(x)l>n7%|Z}=0(n"") as.,l=1,2,38,

0<c<co heH s<x<t

>n?

sup sup P{h}Z'D4(xi)g(xi)_2
0<c=<cy heH¥ i

QZ”} =0(n"") as.,

for all A > 0. Combining the last three results and using the lattice argument,
we may deduce that

sup sup P(h}Z'[A{xum(xi)}zg(xi)_z

0<c=<co heH

(5.13)
_(nh)_l"ﬂzg(xi)_l]’ > 5n7°

Q”) =0(n™") as.

But for all 0 < 8 < 3 and A > 0, Markov’s inequality implies

(5.14) P{ > n-ﬁ} - 0(n).

T L g(x) - (t - 9)

The desired result (5.12) follows from (5.13) and (5.14). O



1724 P. HALL AND M. C. JONES

LEMMA 5.5. Define u(x) = E[x{x, m(x)}). Under the conditions of Theo-
rem 2.2,

sup sup_|n~th¢ K g(x)” ? = 3(km)? [v(x) g (x) M dx

0<c<co he¥

-0 a.s.

The proof is by elementary calculus and the law of large numbers.

LEMMA 5.6. Define x(x) = xy{x, m(x)}. Under the conditions of Theorem
2.2,

sup sup n 1h 42 {x(x) — u(x))’g(x)2>0 a.s.
0<c<cy heH

ProOF. Put x,(x) = ¥ ;_,a;(x)m(x;) — m(x)}, u(x) = E{x,(x)}. Then

n

x(x) = xy(x) + 8y(x)h? Z a;(x),

Jj=
H() = () + 8,2 L Bla, (o),

where sup{I‘o‘I(x)l + |82(x)|} — 0. Hence
n Y x(x) — n(x))’g(x;) 2 = U+ o(U + h),

uniformly in ¢ and &, where

=n7 Y a(x) — wa(x)) g (%) 7"

= {s;I;f;tg(x)}_z sup {xy(x) — pny(x))% = 0(n"1%?),

s<x<t

for all 8§ > 0, uniformly in ¢ and k. (Use Markov’s inequality and the lattice
argument.) The lemma is immediate. O

6. Proof of Theorem 3.1. We shall confine our argument to an outline,
the details being similar to those of the proofs of Theorems 2.1 and 2.2. By
way of notation, recall that 2= {x,, x,, * - } and H(x,0) =L ;. ;a,(x)y(Y; -
9), and put x,(x,8) = E{(H(x, 0)|2} = L;,.;a;(x)l{m(x;) — 6}, A(x,0)=
H/(x,0) — x(x, 6). Observe that

O(h,y) = Uk, ) +n7" T'm(x)e;
n-! Z,{mi(xi) — m(x;)}m(x;)
nt L {(x) — m(x))e;
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Lemmas 6.2 and 6.3 treat, respectively, the third and fourth terms on the
right-hand side and show that those terms equal o{(nk)~! + A*} uniformly in
¢ and h with probability one. The theorem is immediate. O

LeEMMA 6.1. Under the conditions of Theorem 3.1, we have for some u > 0,

sup sup sup'|?;(x;) — m(x)l=0(n"*) a.s,
O<c<coheX i

sup sup sup'|m(x;) — m(x;)l =0(n"*) a.s.
O<c<coheX i

(6.1)

ProoF. We establish only (6.1). Put 6, = m(x;) and b, = m(x). If 6,>
6; + 8, then, since K is nonnegative and a,l/ is nondecreasmg, H; (x,, 0, + 3) >
0 Hence for each ¢, h, i and 4, P(0 >0, + 8|2°) = P{A(x,,0; + 8) > —x,(x;,
0, + 8)Z'). Taking & = n™*, we may now prove that for some C > 0,

Put 2(x) =X ;_,a;(x). We may show by methods standard for density
estimators that

(6.2) P(6,>06,+d812) < P{A,.(x,.,ei +8)=2Cn Y a;(x;)

J#i

sup sup |8(x) —g(x)l =0(n™") as,

heHs<x<t
for some v > 0. Hence by Markov’s inequality applied to (6.2),

sup 'P(6;> 6, + SIQZ”)/E[ (A(x;,6, + )H12] = O(n*1v),

for each [ > 1. Application of Rosenthal’s inequality yields
sup sup (nh) sup E[{A (x;,0; + 8)} 2l|92”] 0(1) as.,
O<c<coheH
with probability one. Therefore, if « is chosen sufficiently small,
sup sup sup'P(§;> 0, + 812°) = 0(n™*) as.,
O<c<coheH i
for all A > 0. Using the lattice argument we may now deduce that, with
d=n7%
P[ sup sup sup {M;(x;) — m(x;)} > § infinitely often] =0.
O0<c<co heH i

A similar proof may be used to establish the same identity with 7 (x;) — m(x;)
replaced by m(x;) — /2 ,(x;). The lemma follows from these two results. O

LEMMA 6.2. Under the conditions of Theorem 3.1 and for c,=n"" with
n' sufficiently small,

sup sup k| Y (A, (x;) — m(x,)}m(x)| >0 a.s.

cp,<c<co heX¥ i
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Proor. Since ¢ = ¢, is a continuous function of ¢ > 0, then it suffices to
take the supremum over rational c. In this event '(x) exists for all irrational
u and all values ¢ under consideration. This means, for example, that with
probability one, ¢'(¢;) is well-defined for j > 1 and all values of ¢ under
consideration. Bearmg that 1n mind, define 0 =m(x,;), &; = m(x,), d

WY, — &), dy = gle,), by = T, 4s0,(x (), By = 74 5210 (),
bi=Y a;(x; )f w'{y, — t(&; — 6;)} dt.

J#
Since —(&; — 6,)b, = H(x,,®,) = (nh)~'K(0)d,, then
nh(®; — 6;) = K(0){d;8;* + d;(b; ' - B;Y)
+(d; —d;)b7t + d (67 — b))

It may be shown by arguments similar to those used to prove Lemma 5.1 that
with probability one,

(6.3)

(6.4) sup sup n~! “Im(x;)| -
c,<c<cohe#
(6.5) sup sup n”! Z |d; (b - B Y)m(x;)| -0,
c,<c<cqoheX
(6.6) sup sup n~! Z |(d —d;)b'm(x)| -0,
<c<coheH#
(6.7) sup sup n~! Z |d(6;* -

c,<c<cgheX

provided ¢, =n"" and 7' is sufficiently small. Combining (6.3)-(6.7) we
deduce the lemma. O

LemMa 6.3.  Under the conditions of Theorem 3.1 and for ¢, = n™" with 7’
sufficiently small,

sup sup (h +n"th™?) -0 a.s.

c,<c<coheH

Z{m (x;) — m(x;)}e,

ProoF. Define 8, = i (x,), 6, = m(x,),

Jqéz
Since 6, — 6, = H(x;, 6,)b; !, then it suffices to prove that
Y Hy(x;,0,)5 %,

i

(6.8) sup sup h

n""<c<co heH

-0 a.s.
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Define Uij =0;,— 0, if a (x )# 0 and U;; = 0 otherwise, and put U; =

(Um SUR), Vi=0,— M, (Ul,Vl) “and D, = d(U,V,). Note that
=B (Un V) and Sup’(maxjsn|U 1+ 1V —o. Hence by (6.8),
(6.9) sup sup sup' (nh)Y%b, — M, =0(n""%) as.

n_"'scsco heX i
It may be proved as for Lemma 6.1 that for some u > 0,

(6.10) sup sup sup'|M; — 7,8(x;)| =0(n™*) as.
O<c<coheH i

Since b, = M, + D;,, then results (6.9) and (6.10) together imply that if »' and
A are chosen =) small that n” + A < in and I > 1

21-1
sup sup sup' (nkh)'|6;1— ¥ (—1)*DIM;*+D| = O(n¥+®) as.
n-T<cscoheH¥ i E=0

From this formula and the fact that for each 6 > 0,

sup sup sup {(nh) ™'+ h4} IH(x,, 8,)l = 0O(n®) as.,
O<c<coheH i

we may prove that

sup sup h|Y H,(x;,6,)b; ',
(611)  nseswheX L
<2l sup sup sup hlé(k) +0(1) as,
O<k<2l-1p"gegey hEH
where £(k) = L1 H{(x;,0,)d (U;, V,)*u (U,, V;)~** e, It may be proved after
tedious moment calculations that for each &,

(6.12) sup suphlé(k) - 0 as.

n""<ec<cy, h

The desired result (6.8) follows from (6.11) and (6.12). O
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