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CONSISTENCY FOR ACE-TYPE METHODS'

By RoBERT KoYAK
The Johns Hopkins University

The ACE (alternating conditional expectations) algorithm developed by
Breiman and Friedman is an iterative method for finding optimal transfor-
mations of variables in multiple regression. Recently, several authors have
extended ACE to discriminant analysis, time series and principal compo-
nents. The central idea of ACE and of each of these extensions is that an
optimal transformation ¢* minimizes a squared error-related functional
over a Hilbert space, subject to nonlinear functional constraints. An esti-
mate ¢ is obtained by minimizing an estimate of the functional, subject
to estimates of the constraints, over a smoothness restricted class of
transformations. Using the method of sieves, conditions are established for
consistency of ¢ in the L? sense.

1. Introduction. Estimators are often derived as optimizers of an empir-
ically derived quantity (i.e., the likelihood). If the parameter estimated in this
way is in a finite-dimensional class, obtaining consistency results is usually not
difficult. We extend results on consistency to a class of problems where the
parameter under estimation is the class of minimizers of a squared error-
derived functional defined on an infinite-dimensional space. The method of
sieves (Grenander, Geman) provides a useful framework for this task.

1.1. Least squares problems. Let X = (X,,..., X,) denote a vector ran-
dom variable with values in R¥, and let F denote its distribution. Assume, for
now, that all second moments E[X 1.2] are finite, and that X is nondegenerate;
i.e., the smallest eigenvalue of UX) = E[(X — ux)X — ux)] is strictly posi-
tive. Let R ¢ refer to the space of real-valued M X d matrices, and C*'™ the
class of positive-definite symmetric matrices in R ¥, For any matrix A, we
will take A; to denote its jth column.

In multivariate analysis, inference is often made with respect to a matrix
parameter A* € R® ¢ which minimizes a functional of the form

d
(1.1) £2(A) = ¥ E[Aj(X - py)]” = trace AU(X) A,
j=1
over a specified subset A of R* ¢ which satisfies the following conditions:

1. A = A(UX)); i.e., A depends on F, if at all, only through U(X);
2. A(U) is a continuous set-valued function on C¥¥;

3. For any compact subset S ¢ C*¥ U{A(U): U € S} is compact;
4. A(U) excludes the zero matrix for every U € CM- ¥,

Received September 1986; revised June 1989.

!Research supported by Office of Naval Research Contract N00014-79-C-0801, Air Force Office
of Scientific Research Grant 82-0029C and NSF Grant MC-80-02698.

AMS 1980 subject classifications. Primary 62H12; secondary 62G05.

Key words and phrases. ACE, transformations, consistency, method of sieves.

742

I
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é% )2
The Annals of Statistics. NIKORS ®

WWw.jstor.org



CONSISTENCY FOR ACE-TYPE METHODS 743

For compactness and continuity, take Euclidean distance as a base metric on
R4 and R™M and the Hausdorf metric as a distance between subsets of
RM™- ¢ If A* is not unique, the parameter of interest is the class of minimiz-
ers A*.

A variety of problems in multivariate analysis can be described in this
fashion. These include:

(i) Least squares regression. Let M =p + 1, and X = (Y, Z,,...,Z,). The
parameter of interest is the coefficient vector b in the linear regression model
Y = b'Z + ¢. In the framework of (1.1), take d = 1, and A the class of M
vectors of the form a' = (1, b’), where b € RP satisfies Var (b'Z) < Var(Y).

(ii)) Canonical correlation. Let M =p +q, Y= (Y, ..., Y;,)’, Z =
(Z,,...,Z,), and take X' = (Y',Z"). Again d =1, but now A is the class
of M vectors taking the form (a’,b’), with @ € R? and b € RY satisfying
Var (¢’ Y) = 1 and Var(b'Z) = 1. For %k canonical coordinates, with
k < min(p, q),take d = k and A the class of M X k matrices A with A’ =
(a}, b)) satisfying Cov (a}Y, @}Y) = §,;, Cov(b/Z, b;Z) = 5, ;, where §;; denotes
the Kronecker delta function.

(iii) Principal components. Let k be an integer between 1 and M — 1
(inclusive), which is the number of principal components desired in the
analysis. Take d = M, and A the class of M X M projection matrices having
rank equal to M — k. The matrix A* achieving the minimum of (1.1) can be
written in the form I — B*, where B* is the eigenprojection corresponding to
the & largest eigenvalues of Cov (X). That is, B* = ZZ’, where Z isthe M X k
matrix whose columns contain the normalized eigenvectors of Cov(X) corre-
sponding to the k largest eigenvalues, and the principal components are the
k-derived linear combinations Z/X. This factorization of B* is not unique, but
is motivated by the heuristic consideration that Z/X should have maximum
variance over all linear combinations of the form «’'X with a'a =1 and
Cov(a'X, Z!X) = 0 for every i <.

Let X, ...,X™®) denote a sample, construed as N independent replicates
of X. As an estimate of A*, choose a matrix A?Y) which minimizes

ij? ij

\ 1y d . A
(1.2) B(a =51 L [4x- 2)]* = trace AU(X)A4,
i=1j=1

over A € A(UX)). In particular, this is appropriate if X is multivariate
normal, since it entails belief that the variables are interrelated in a linear
fashion, and that an analysis based on the first two moments is reasonably
informative. Observe that there is a continuous function g for which A* =
g(UX)), and A = g(U(X)), where U(X) is the maximum likelihood estimate
of U(X) under normality. Although g is typically not bijective, under the
reasoning of Zehna (1966) one would still designate A a “maximum likeli-
hood” estimate of A* for X multivariate normal.

Multivariate data analytic techniques based on normal theory persist in
wide usage for a variety of reasons. Basic to their proper usage is the notion
that the variables are linearly interrelated, or at least approximately so. A
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violation of this aspect of the normality assumption is the easiest one to detect,
and it is also the most discomforting. When this situation arises, a common
tactie is to transform the variables to ammeliorate the effects of nonlinearity.

1.2. ACE-type problems. We now describe a framework for choosing lin-
earizing transformations, so that estimation problems of the above form
become meaningful. The transformations that we will consider are coordinate-
wise; i.e., taking the form ¢(X) = (X)), ..., ¢(X,)), Borel measurable
and satisfying

E[¢;(X;)] =0,

1.3
(1.3) E[¢¥(x;)] =1, Jj=1,...,M.

Let ® denote this class of transformations. For a given transformation ¢ € @,
let A*(¢) denote the minimizer of

J

d
(1.4) £2($, A) = ¥ E[A;¢(X)]* = trace AU(¢) A,
=1

where U(¢) = E[¢(X)p(X)], and minimization is over A € A(U(¢)). Define the
functional
(15) U(S) = £(9,A4%(9) = _inf £(9, 4).

AeAU($)
Let ®* denote the subset of ® consisting of minimizers of {(¢), elements of
which we will call optimal transformations. Our use of the word “subset’ is
deliberate, chosen to acknowledge that optimal transformations are never
unique, if for no other reason that {(¢) = {(—¢) for every ¢ € ®. We wish to
construct a class of estimates {¢$™} based on the sample for which ¢ — @*
in an appropriate sense.

The class of problems having this structure will be called ACE-type prob-
lems in the remainder of this paper. Here, ACE stands for alternating
conditional expectations, a term used by Breiman and Friedman (1985) for
their approach to nonparametric additive regression. Optimal transformations
¢* € ®* usually cannot be expressed in a closed form even when the distribu-
tion is known, but instead are obtained by iterative approximation. The
structure of the algorithm varies with the application, but central to each of
these is the use made of conditional expectations in an alternating variables
scheme, thus motivating our choice of nomenclature. Optimal transformations
are estimated from data by imitating the algorithm with F replaced by Fy,
and with conditional expectations replaced by data smooths, or some other
form of estimation. Since we do not attempt the same level of unification with
respect to applied aspects of these problems, we will not pursue this point
further here, but instead refer the interested reader to Breiman and Friedman
(1985) for a treatment of regression via ACE, and Koyak (1985) for the
analogous treatment of principal components. Slightly outside of the present
context are ACE applied to discriminant analysis [Breiman and Thaka (1984)]
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and time series [Owen (1983)]. Work of a similar spirit has a long history in the
psychometric community, a flavor for which can be found in Gifi (1981).

ReMark. If X is multivariate normal, it is reasonable to ask whether the
identity transformation is optimal for a given ACE-type problem. This can be
answered affirmatively for the nonlinear extensions of the three examples cited
in Section 1.1. For canonical correlation, this result is the solution to Kol-
mogorov’s canonical problem, a proof of which can be found in Lancaster
(1969), with multiple regression following as a simple extension. For principal
components, a proof of optimality is given in Koyak (1987). Our definition of
ACE-type problems, however, is too broad to regard this as a general property.
It may seem desirable to include in the definition of an ACE-type problem the
requirement that the (scaled) identity transformation be a member of ®*. We
presently desist from doing so, because this issue does not arise in our
discussion of consistency.

1.3. Mathematical framework. The following notation and concepts will
be used in our subsequent discussion. Denote by H the space of R!-valued
Borel-measurable functions of X having zero mean and finite variance. Endow
H with the L? inner product with respect to F and take ||g|| = (g, g )/2. With
this inner product, H is a Hilbert space, as are its subspaces H pJ=1..., M,
consisting of transformations which depend on X; alone, d-fold Cartesian
products of H with itself which we denote H?, and the Cartesian product of
the H; which we denote HY. For an inner product on H? we take the natural
L? extension (g, h), = £9_,(g;, h,), with ||gll, = (g, g)}/2 At various times
we will consider Hilbert spaces of transformations that are rnot centered with
respect to F, endowed with the same inner products and norms, which we will
denote H, fIM, etc. For an element g € H? we will often use functional
notation for moments: u(g;) = Epg,X), u(@ = (u(gy),...,u(g,)), o¥g;) =
Vary g,(X), U(g) = Covy gX). Empirical moments A(g;), i(g), 6'2(gj) and
U(g) are obtained by replacing F by Fy. If g is itself stochastic, expectations
will be understood in this notation to be taken conditional on the data, with
the argument X denoting an independent replicate.

1.4. Assumptions on F. Our framework for ACE-type problems imposes
few conditions on the nature of X; in particular, we do not require absolute
continuity or even that X assume values in an ordered set. Let U(®) = {U(¢):
¢ € ®}. For the remainder of this paper we will adopt the following two
assumptions.

AssumpPTION 1. The closure of U(¢) is contained in C* ¥, j.e., none of its
limit points are singular.

AssumpTION 2. Every weakly convergent sequence {¢™} in ® for which
{(¢™) — inf, 4, {(¢) is strongly convergent.
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Assumption 1 implies that there is no transformation ¢ € H™ for which
r 5'”=1 ¢,(X;) = 0 a.e. Assumption 2 gives sufficient insurance that ®* is not
empty. This is not a trivial concern, for unless F has finite support, ® is not
strongly compact, and it is conceivable that there is no element of ® which
attains the infimum of {(#). For the applications cited in Section 1.1, a
sufficient condition for optimal transformations to exist is that the conditional
expectation operators

(1.6) E[¢;(X;)|X,|: H; > H,, i=#],

are compact [Breiman and Friedman (1985) and Koyak (1985, 1987)]. In the
language of Lancaster (1969), this is equivalent to the property that each of
the bivariate marginal distributions of F is ¢2-finite. We do not give a proof of
sufficiency at the level of generality of this paper, but instead adopt the
stronger regularity condition implied in Assumption 2.

2. The method of sieves in ACE-type problems. For any element
¢ € HY and subset ¥ c HY, the distance from ¢ to ¥ is defined by d(¢, ¥) =
infy c y||¢ — ¥|l5- Let ¢V denote an optimal transformation estimate based
on X® . . XV

DEFINITION 2.1. ™ is a consistent estimate for ®* if d(¢™, ®*) - 0 a.s.
Fas N - o,

The remainder of this paper will be focused on obtaining consistent esti-
mates for ®* by minimizing

(2.1) £2(¢) = inf trace AU(¢)A,
AU(¢)

over a subset of &y = {¢ € HM: [i($;) = 0, 6(¢;) = 1, j = 1,..., M}. Mini-
mizing over the whole of ®, will generally not lead to consistent estimates
unless F has finite support, since the problem is otherwise underidentified
regardless of the sample size. The success of this approach depends on
restricting the class of potential minimizers, but in a way that the restriction
dissipates as N — o,

A convenient framework for these problems is the method of sieves, origi-
nally proposed by Grenander (1981) and explored by Geman (1981), Geman
and Hwang (1982) and a number of other authors. A sieve is a sequence of
restricted parameter spaces {®(™} which satisfies (i) ®™ c ®; and (ii) for
every ¢ € ®, there exists a sequence {¢™} with ¢™ € ®™ such that
l¢ — &3 = 0. A simple example of a sieve, for F concentrated in the unit
M-cube, takes ®™ to consist of transformations having the form

m

(2.2) ¢;j(x;) = ¥ a,(cos(mre;) — ),  J=1,..., M,
r=1
where w,; = Elcos(rrx;)], and a;,...,a,; are arbitrary constants subject to

ll¢;l=1,j=1,..., M. Here, the sieve is nested, but this would not be the
case if, for instance, ¢, were a step function with jumps at the points i/m,



CONSISTENCY FOR ACE-TYPE METHODS 747

i=1,...,m — 1.

A peculiarity of ACE-type problems is that the parameter space itself is
unknown, since its definition depends on F. An effective sieve for estimation
purposes is stochastic, reflecting dependence on the sample through centering
and scaling. Let m, denote an increasing sequence of positive integers such
that m 1.

DEFINITION 2.2. A sequence of sets ®{"~) c &, is a stochastic sieve for ®
if

() For evety ¢ € ® there exits a sequence {§™) € &{"»} such that
[FN = Bl — O with probability 1; and
(i) Prob{infyc gpm 0(¢,) =0i o} = 0 for all j.

If ¢ € ® has 6(¢,) > Oforall j, then € dy with $; = (¢; — /i(,)/5(s;)
will be called its stochasttc image, with a similar de31gnat10n for the determzn-
istic image of an arbitrary element 4) S CI>N We likewise refer to deterministic
and stochastic images of sets, with the understanding that an element for
which an image does not exist is not represented in the image set. This implies
that a deterministic image does not contain transformations ¢ for which ¢; is
constant on the sample values for some j, and in this sense, a deterministic
image may also be a random set. We will let Stoch(¥) denote the stochastic
image of a subset V.

An important idea that will emerge in subsequent developments in that of a
uniform strong law of large numbers of sample moments taken over a class of
transformations. This is made somewhat difficult in the present context by the
fact that the class of transformations is itself a random set. We work around
this by seeking a deterministic sieve {¥")} that, in a certain sense, dominates
{q)(mzv)}

DEFINITION 2.3. A stochastic sieve {®{¥} is uniformly L2 consistent
(UL2C) for @ if there exists a sequence of sets {¥™} in & such that
d™ ¢ Stoch(W™), and the following two properties hold a.s. F as N — o

(2.32) (i) sup ¥ |a(s,)] - 0;
Se¥d j=1
(2.30) (i) wup 3 [i(6,0,) - u(6,0,) = 0.
bW i j

Let ) denote a minimizer of £ in ®{*»), {N = (™), and let ¢* =
inf, _ 4 {(¢). The following result links ULZC sieves and consistent optimal
transformation estimates.
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THEOREM 2.1. If {®{"™)} is a UL2C sieve for ®, the following statements .
are true a.s. F as N — o«

@) &y - %, .

(i) d(¢™,®*) - 0, i.e., ¢V is consistent for d*.

Proor. Let f(U, A) = trace AUA, and T*(U) = inf, c o, (U, A). Ob-
serve that {(¢) = T(U(®)), and {y(¢) = T(U(¢)). That T is continuous on
CM-M follows from the continuity of f on R® ™ x R™4 and the Hausdorf
continuity of A(U). In fact, T is uniformly continuous on any compact subset
of C* M whose interior contains the closure of U(¢); the existence of such a
subset is assured by Assumption 1. Let §™ € &("» denote a sequence for
which d(§™, ®*) - 0 a.s., and let ¥ and ¢ denote their deterministic
images. If ®™ is the set indicated in Definition 2.3, then ¢ and o™ are’
members of ®™). We have

(2.42) & =0 =5 = L) + T(O(5))
- T(U() + o) - 2,
(2.4b) & = ¢* = T(O(3M)) - T(U($™)) + ¢($D)
= L™ + (™) — ¢*.

The following arguments hold with probability 1: From (2.3a) and (2.3b), it
follows that U(y™) — U(y™) - 0, and dy™, d*) < dPW, d*) + N -
Y|4 — 0. Since ¢™ is a minimizer of £y in S, (2.4a) therefore implies
lim supy ., {3 — {*) < 0, and (2.4b) implies lim inf Nl — P > 0, and (a)
is proven. In fact, {(¢N)) - {*. Let d = d(¢™), ®*). Since d(¢™, d*) <
dy + 16N = ¢™||,, it is sufficient to show that d — 0 to prove (b). If dy
does not go to 0, there is a weakly convergent subsequence {$0} with d,

bounded away from 0. But since {(¢™0) — ¢*, Assumption 2 implies that this
limit is strong, and therefore a member of ®*.

3. Consistent sieves. A sieve is uniformly L? consistent if m , 1% at the
right rate. What is right depends on the type of sieve used. We show uniform
L? consistency for two classes of sieves. The developments of this section
parallel those of Geman (1981).

3.1. Bounded regression sieves. Let Bprh r=1,...,m; m=12,...;
J=1,..., M, denote a class of scalar-valued functions such that 1B, (x| is
uniformly bounded in r, m, j and x s R!, and such that for every ¢ € HM, a

sequence ¢™ € HM can be found where
m

(8.1) ¢ = L B,y = b))y J=1,..., M,

r=1 .
Bom,rj = BBy, (X)), and [|¢ — ™|, = 0. The class of sets taking the form

my

(3.2) dpv= {J; €by:di= X ai(Bmyrs = Bmyirs)s J = 1,...,M}

r=1
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will be called a bounded regression sieve if it meets the requirements of
Definition 2.1. Let A, ; denote the smallest eigenvalue of the m X m covari-
ance matrix of the {8, ,;} taken as functions of X;. We adopt as an additional

requirement on F that a nonnegative a € R1 can be found such that
liminf,, ,, m*A,, ;> 0 for all j. The following result is proved in the Ap-
pendix.

THEOREM 3.1. Let my = [N7], where 0 < 7 < 1/(2 + 2a). Then, {${")}
is a UL2C sieve for &.

In fact, the proof of Theorem 3.1 permits a stronger statement. Let 0 < y <
3 —7(1+a),and gy =N".

CoROLLARY 3.1a. Under the conditions of Theorem 3.1:

(3.3a) (i) sup gNE |a(;)| = 0;
¢,E\p(N) j=1

(3.3b) (i)

;) — u(di)| -0

pes¥)  j=1j=1

a.s. as N - o, where Y™ is as in Definition 2.3.

If |U| denotes the Euclidean matrix norm of U € R®¥_ Corollary 3.1a
asserts that

(3.4) sup gy|U() - U($)[ -0 as,
¢,E\y(N)

where ¢ is the stochastic image of ¢. Let U denote a compact subset of CM-¥
whose interior contains U(®), and suppose T is differentiable with respect to
U, with T;; = 9T /0U;; bounded for all i, j, and U € U (each of the examples
cited in Section 1.1 satisfy this condition). For N sufficiently large, (3.4) and
the intermediate value theorem assert that for each ¢ € ®"», a matrix
Uy(¢) € U can be found such that

(8.5) T(U()) - T(U(e)) = Z Z (T;(d) — U;(0))T,;(Uy(4)).

i=1j=1

For some 0 < k < », we therefore have

(3.6) |T(0($)) - T(U(e))| = «|0($) - UH)|;

hence,

(3.7) sup gn|T(0()) - T(U(4))| >0 as.
peW)

Let ¢™) € ¥ denote any sequence where d(¢N), ®*) - 0, and take
d y | 0 a positive sequence where d 5 > d(¢™, ®*). Take hy = gn/(gnydy + 1)
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the slower of the growth rates g5 and 1/d,. From (3.3a), (3.3b) and (3.7) we
have the following result.

COROLLARY 3.1b. A ({ — %) > 0 a.5. as N - o,

-

For an example of a UL2C bounded regression sieve, assume that F' is
concentrated and nonnegligible in the unit M-cube; i.e., there exists a number
fmin > 0 such that Prob(X; € S) > f,,;, L(S) for all Borel sets S in the unit
1nterval where L(S) denotes Lebesgue measure. Take 4, ,.(x;) = cos(wrx;),

Am, i 2 2fmin > 0, and Theorem 3.1 applies for any 7 < 1 /2.

Other candidates for bounded regression sieves include Hermite functions,
step functions and B-splines. It should be noted, however, that for the latter
two sieves, A, ; = 0. As a result, Theorem 3.1 is not an effective vehicle for
establishing UL2C rates for these sieves. By a modification to the proof of
Theorem 3.1, it can be shown that, under the same assumptions applied to the
cosine sieve, the UL2C property holds for equispaced knots in either the step
function or B-spline sieve, if the distance between successive knots is on the
order of N™7, with 7 < 1/3. Results on these two sieves will be described in a
forthcoming paper.

3.2. Regularized sieves. Consider the set of functions W{™ c C*~Y0, 1]
for which w € W{™ implies w is & — 1 times continuously differentiable;
w*l(x) = d*w/dx* is piecewise continuous, satisfying

(3.8) [ (w*(x))* dx < m;
0

and w'((0%) = w'P'(17) = 0 for all odd p < & — 1. We will say that an element
¢ € HM is k, m-regularized if each of its coordinates ¢; is in W™, If dGrw
is chosen to be the set of all k&, m y-regularized transformatlons in &y, 1t is
clearly necessary that m, — « if we wish to consider {(I)(”‘N’} as a stochastic
sieve for ®. In this case, we will refer to {@)(mN)} as a k&, mN-reg'ularlzed class.

This approach to smoothing is often associated with sphne theory, a subject
of considerable interest in statistics and applied mathematics. Wegman and
Wright (1983) give a thorough survey of the spline literature in statistics,
among which the contributions of Wahba and her colleagues are prominent.
For k =1, the endpoint constraints are absent, and one can argue as in
de Boor (1978) that a minimizer ¢ of {, in CI>(”‘N) can be found such that
the coordinates d)‘N ) are piecewise-linear functlons with derivative discontinu-
ities occurring at the data values X",..., X ™) n general, for natural
endpoint constraints [imposed on the kth through (2k — 1th derivatives],
¢(N ) can similarly be chosen as a spline of order 2% — 1 with knots at the data
values However, for £ > 2, our conditions are not natural, so an association of
{®{") with smoothing splines may be misleading.
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Fix w € W{™, and write w(x) = Z%_; a, cos(mrrx) to denote its Fourier
series. Integrating in (3.8) by parts is easily seen to yield

(3.9) —72k Y a?r? < m.

This establishes a certain similarity between the k-regularized classes and
bounded regression sieves with cosines for the g, ,;, the distinction lying in
the smallness constraints placed on the coefficients. It also seen that, for every
N, the k, m y-regularized sets <I>(’"N) are decreasingly nested in &.

Let 7, = (2k — 1)/4k;ie., 7, = 1/4, and 7, = 3 /8. We give the proof of the
following result in the Appendix.

THEOREM 3.2. Let F be concentrated in the unit M-cube with a density
bounded away from both 0 and ». Choose 7 € (0,7,). Take my = [N"], and let
dG™ denote the set of k, m y-regularized elements of ®y. Then, {d{™) is a
ULZC steve for .

It is interesting to note that Geman (1981), in the context of estimating a
regression function, and using % = 1, obtained an upper bound of 1/4 for the
growth rate of the sieve. Choose 7 in accordance with Theorem 3.2, let

(3.10) () =5 -7 -7

and choose Y€ (0, y,(7)). Take gy = N7, and define % as precedlng Corollary
3.1b. Let [ denote the minimum value of {y($) over ¢ € ("™, where
{<I>(”‘N)} is the k-regularized sieve of Theorem 3.2 or Corollary 3.2a.

CoroLLarY 3.2a. If T(U) satisfies the differentiability conditions of Corol-
lary 3.1b, then hy({F — {*) > 0 a.s. as N - .

4. Discussion. An attractive feature of the method of sieves is that it
permits an elegant, yet very general approach to establishing consistency for a
large range of infinite-dimensional estimation problems. In addition to the
class of nonlinear multivariate problems encompassed in our ACE formalism,
this strategy has been successfully applied to nonparametric regression and
maximum likelihood [Geman (1981) and Geman and Hwang (1982)], to esti-
mating the drift of a diffusion [Geman (1982)] and to estimating the intensity
function of a Poisson process [Karr, Miller and Snyder, (1986)], to name
several applications. While our results required little in the way of problem
specification, or assumptions on the parameter being estimated; a narrower
approach may allow a more comprehensive treatment of consistency properties
in certain problems. We cite the work of Stone (1985) in additive regression
and related nonparametric modeling, and recent work of Burman (1986), who
has obtained results similar to those of Stone in the regression ACE setting, as
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cases in point. Stone (1986) generalizes the additive approach to multivariate
nonparametric estimation within the broad scope of exponential families.
APPENDIX
The proofs of Theorems 3.1 and 3.2 will make use of the following variant of

an inequality due to Hoeffding (1963).

Let Z,,...,Zy denote a sequence of independent random variables which
satisfy |Z;] < C, and E(Z;) =0,i =1,..., N. Then, for every ¢ > 0,

—N min(e?,1/4)
202

1 N
(A.1.1) Prob( =Y Z
N,

> s) < 2exp(

ProoF OF THEOREM 3.1. Our arguments are similar to Theorem 1 of
Geman (1981). Positive constants whose values are not of importance will be
denoted c, ¢y, g, ... . We will adopt the following vector and matrix notation:

a; = (alja“-’amNj)l’ Bj= (BmN,ljv“,BmN,MNj),, éj=Bj_u(Bj),
Norms applied to vectors and matrices are taken in the Euclidean sense. The
notation || - ||,, refers to the sup-norm of a function.
Let ¢: ¢, = a/(B; — A(B,)) denote an element of OV Observe that
1=¢6 (d)]) = a'VmNaJ
(A.12) < 118,17 s (V)

= cmN”ajnz,

where ¢ does not depend on N due to the boundedness of the 8, ;. Hence,
lla; |2 > 1/cm . Since 02(¢ )=a;V, a;>|a|’A,, ;, we conclude that (i)

in Deﬁmtlon 2.2 is satisfied.

Consider the set ®™» of transformations ¢ € ® which have the form
¢; = a B,, j =1,..., M. Observe that Stoch(®"») = ("™, and that {®"~)
is a sieve for . We shall proceed to show that (2. 3b) holds by taking
YN = pma); (2.3a) will follow a fortiori. Fix arbitrary ¢ > 0 (actually, taking
0 < ¢ < 1/4 will be more convenient and will entail no loss of generality in the
arguments to follow). By the first Borel-Cantelli lemma, to prove (2 3b) it is
sufficient to establish that

(413 % Prob swp |a(ois) ~ u(6i8,)] > ¢ <=

1 dedmN)
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forall i, j = , M; this follows from

Prob{ sup Z lﬁ(d’id’j) - /“"(¢i¢j)| > 5}
(my) G i=
(A.1.4) "’E‘I‘; S
L Prob{ sup [a(d8,) - (o8| > e}.
i, j=1 pedimm)
An element ¢ € @V with ¢; = a) BJ satisfies ||aJ||2 < ¢;m%. Write
(b)) — w(d;0)) = aiZa,, where Z = a(B)) — p@,B) is an my X my
matrlx of averages of N i.i.d. bounded random variables having mean 0. Using
the Cauchy-Schwarz inequality, we have

12($:b,;) — u(di,)” < lla,l®la,l1Z?
(A.1.5) o 2
< clmN Z er7
r,s=1
where the right-hand side of (A.1.5) does not depend on the coefficient vectors
a;. Using Hoeffding’s inequality, we now obtain

my my
Prob{m%‘," Y zz > 52} < Y Prob{|Z,,|>emy' "}
r,s=1 r,s=1

(A.1.6)
< m% exp{—c,e Nm*~2%}.
Taking m = N7, it is readily seen that the last term in (A.1.6) is summable
with respect to N provided that 0 < 7 < 1/(2 + 2a), thus establishing (2.3b).
To complete the proof, we need to show that {®{"™)} satisfies (i) in Defini-
tion 2.2. Choose arbitrary ¢ € ®. Since {®™)} is a sieve for ®, we can find a
sequence {¢") € &™)} guch that || — ¢||;, — 0. With probablhty 1, for N
sufficiently large, ¢ will admit a stochastic i image M e M [this follows
from (2.3a) and (2.3b)] which moreover satisfies || — ¢™)||,, — 0 a.s. Hence,
|6 — @l = 0 a.s., and the proof is complete. O

ProoF oF CorROLLARY 3.1a. Replace ¢ with N~ 7¢ in the proof of Theorem
3.1. 0O

Proor or THEOREM 3.2. Again we will denote positive constants whose
values are not of importance by c, ¢y, ¢,, ... . Our strategy of proof is similar to
that of Theorem 2 of Geman (1981).

Let ¢ € O™, with ¢; = £7_, a,(cos(mrx;) — fi,;) satisfying

m* Y, air* <2my,  j=1,...,M,
r=1
where fi,; = fi(cos(7rX;)). We will show that {®(r ) satisfies (ii) of Definition

2.2. For an arbitrary 1nteger R > 0, write d) d)‘R) + O(R) where d)SR) is the
sum of the first R terms in the Fourier expansion of d) and O(R) denotes the
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remainder. Observe that

(a21) - a(d) = o(d) + o(3).
Let B,; = cos TrX;, ﬂR,j = (31,’ O BRJ), Vg, M(BR JBR J) VR i =
(Bg, jB% ;) and aR =(ay,...,ag;). We claim that there is a positive

constant c¢; such that lag il = c1 holds for all R a.s. Observe that
&2($§R)) S a’R’jVR’jaR,J‘

S”"R,jnz[)‘max(VR,j) + )‘max(VR,j - VR,j)] ’

where now A (-) denotes the spectral radius of its argument. Because the
density is bounded from above, and 2/j cos wrx cos wsxdx = 5,,, we have
Amax(Vg ;) < ¢, for all R.

Let Z = A(B,;Bs;) — n(B,;B;,)- By Theorem 5.6.7 of Graybill (1983), we
have )tmax(VR - Ve )< SUP; <, < g E .z, o|- Take R = =~ N¥¢ for ¢ > 0 to be
determined later Since Z, . is the mean of Niid. uniformly bounded random
variables, Hoeffding’s 1nequa11ty asserts that

(A.2.3) sup |Z, .| < cs(log N/N)'/?

1<r,s<R

(A.2.2)

holds for all N a.s. for a constant ¢, that depends on &. Hence,
6'2($(R)) <|ag, j||2(‘32 + c3R(log N/N)l/z)

(A.2.4) \ s
<cilla, ;| (1 + R(log N/N)'?) aus.

We also obtain

F(BM) <2 ¥ s a2
(A 2 5) s=R+1 r=1
2 NT
< C5_R2k_1 .

Combining (A.2.1), (A.2.4) and (A.2.5) yields

(A2.6) 1=<c,ag,|(1+R(log N/N)Y2)"* + cy(N/R*-1)? 4
By choosing 7/(2k — 1) < ¢ < 1/2, both R(log N/N)l/2 -0 and N7/
R?~1 50, and |ag ;| > 01 a.s. as claimed.

Since 02(¢> )2 2fimlay; > 2 foinc?, (i) in Definition 2.2 is satisfied. It
likewise follows that if o is the deterministic i image of an element ¢ € "V,
then on a set with probability 1, ¢, will satisfy the boundedness condition (3 9)
for a rate p, taken proportlonal to my. Thus, if ®™ denotes the class of
k, m-regularized transformations in ®, we have

(A.2.7) S c Stoch(d@PN).

By considering truncated cosine series, it is not hard to show that {®®~)} is a
sieve for ®. Taking &~ to play the role of ¥ in Definition 2.3, we will
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proceed to show that this sieve satisfies (2.3a) and (2.3b). By arguments
similar to those used in the proof of Theorem 3.1, this will be sufficient to
complete the proof of Theorem 3.2.

Fixing i and j, we will show that (A.1.3) holds, with ®(» replaced by
&P~ where py = N™. Let 7 > 0 be some number to be determined later, and
let R=Ry=N". For ¢ € dPV, we again write ¢; = ¢{® + 6. We then
have

Iﬁ(¢i¢j) - ,U«(¢i¢j)| =

A(P05) — u(dPei)|
A(6o)| +|a(6e5™)| +

+[ (80| +]w(0P6P) | + | (6PafP)],

(A.2.8) +

)]

where

® 1/2 1/2

@®| <2 b2.p2k -2k

(A.2.92) 5% (Zl g ) (rglr )

S041)11\/27

®© 1/2 o 1/2

O(R) < 2 b2_r2k —2k

(A.2.9b) |51 (Z g ) (% )

1/2p-Q2k—-1)/2

If m is chosen so that py Ry®*~1/2 0 as N — o, then the last six terms in
the right-hand side sum in (A.2.8) will surely go to 0 uniformly. Assuming that
this is the case, we will now find conditions for the first of these terms to go to
0 uniformly.

Let B i derlote the R:Vect_or of functions cos 7rX; — u,;,, r=1,..., R, and
let Z = ﬁ(BR,iﬂ'r,j) - M(BR,iB'r,j)- We thus have ﬂ(¢§R)¢§R)) - M(¢§R)¢§R)) =
by ;Zby ;, where

1/2
bk,iZbR,j = PN(

~—

1

rv

R 1/2
1 r

r=

R
Y (rs)"*z2

R 1/4
(A.2.10) <pn Y z;*s)

’

1

= CgPN

R 1/4
3 z;:) .

r,s=1

The last term in (A.2.10) does not depend on the coefficients b, ;, and the Z,,
are averages of N i.id. bounded random variables having zero mean. Using
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Hoeffding’s inequality, we obtain

R R
Prob{ px Z: > et} < Prob{|Z,,| > epy'Ry"2

r,s=1 r,s=1

< R} exp{—c,e2Np5°Ry'}.

In order for the rightmost term in (A.2.11) and for p, R%Z*~Y/2 to both go to
0, the following conditions need to be satisfied:

(1) 7,m > 0;

(A2.12) (2) 21+ 1 <1;
2k -1

(3) T — -—2——77 <0.

It is easy to see that the largest 7 in the closure of this admissible region is
* = (2k — 1)/4k, and the claim of the theorem is affirmed. O

ProoF oF CoROLLARY 3.2a. Replace ¢ by N~ ”¢ in the proof of Theorem 3.2,
treating 7 as fixed. The conclusion follows from straightforward calculations
leading to conditions similar to (A.2.12). O
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