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Carl Morris and I worried about this a lot in our 1971 and 1972 papers, and
also in the specific examples of 1975. Our hard-working 18 baseball players
were offered as a simplified test case for thinking about the trade-offs between
d, and d;; see also Section 8 of Efron (1982).
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1. Introduction. Professor Brown has presented a comprehensive dis-
cussion of multiple regression in relation to admissibility and the ancillarity
principle. He concludes that there is a paradox: That the results with multiple
regression contradict “the widely held notion that statistical inference in the
presence of ancillary statistics should be independent of the distribution of
these ancillary statistics.” The reader thus receives the impression that there
is something wrong or inappropriate with conditional inference. The basic
assumption of conditional inference is that only the conditional model is
examined and that information from the marginal model is ignored. This is not
a “notion” that inference “should” be independent of the marginal model as
interpreted by Professor Brown, but that inference should not use or make
reference to that model.

The technical point then is that there is a conflict between conditional
methods and classical optimality criteria. We feel that this should be no
surprise, let alone paradox. In Section 5 we present a simple example that also
illustrates the conflict. ,

Our broader viewpoint is that the familiar optimality criteria of statistics
are in fact in conflict with scientific principles and that this provides the
explanation for the issues raised in the paper; see Section 2.

In a concluding Section 6, we argue that conditional methods are close to
the core of the scientific method, and note that conditional inference from both
a theoretical and pragmatic orientation is a recently active area of research
and presents exciting possibilities for research development.

Standard statistical theory uses a range of optimality criteria, such as
maximum power for a test at a given size @, minimum length for a confidence
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interval with a given coverage 8, minimum variance for an unbiased estimate,
minimax risk and admissibility. In any problem an optimum procedure may or
may not exist. If not, then from a pragmatic view, the criteria provide some
directions in which to search.

The theory of conditional inference has evolved from Fisher’s recommenda-
tion to condition on an ancillary, often taken to be a variable with a fixed
distribution, although Fisher clearly had more in mind. We prefer to empha-
size that the variable should describe some objective characteristics of the
physical problem, and we feel that this captures a main part of the intent in
Fisher.

We thus have the classical optimality criteria and the conditional inference
prescription. We feel the conflict between these is well documented in the
literature; Professor Brown adds admissibility to the documented criteria. We
argue in Section 3 that the conflict should be no surprise and in Section 4 that
the resolution censures the broad-base use of the criteria and favours current
directions of conditional inference.

2. Ancillaries qualified. An ancillary as a variable with a fixed distribu-
tion needs to be qualified in various ways, even to express the intentions in
Fisher’s early papers on conditioning. A few examples close to his discussions
are:

1. Random choice of measuring instrument.

2. Random choice of sample size.

3. Location, location scale and transformation models.

4. Random choice of design matrix for the regression linear model;

for a survey of these and others, see Cox and Hinkley (1974) and Fraser
(1979).

In these examples the conditioning variable represents some physical aspect
that has been singled out in the investigation at hand. In some cases it may
have a fixed distribution but that is typically secondary. For example, the error
distribution underlying the third model may depend on additional parameters;
the conditioning then is on the observed characteristics of that error; for
examples, see Fraser [(1979) Sections 2.1.1, 3.2, 6.1.2 and 7.1.3]. This is
consistent with Fisher but requires scientific aspects of an investigation that
are ordinarily not included in the standard model. Some discussion of aspects
omitted by the standard model may be found in Fraser (1968; 1979, Chapter
1), Evans, Fraser and Monette (1986) and Kalbfleisch (1975). These aspects
bear on the scientific choice of conditioning variable and we view this issue as
being very central to the development of theoretical statistics. For some
comment see Reid and Fraser (1989). '

The conditionality principle, as it is usually formulated, requires condition-
ing on any variable that has a distribution free of the parameter. One difficulty
with defining a conditioning variable as just a variable with a fixed distribution
is clearly illustrated by easily constructed 2 X 2 tables where both the row
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totals and the column totals are ancillary, but the row and column totals
combined do not form an ancillary. This example, first discussed by Fisher,
motivated the definition of the cross-embedded model [Evans, Fraser and
Monette (1985)] and led to the discussion in Evans, Fraser and Monette (1986)
showing that the conditionality principle implies the likelihood principle. The
likelihood principle, of course, undercuts all the optimality criteria mentioned
in Section 1: One just records a likelihood interval without any reference to
asymptotic or distribution properties, such as variance, power, etc.

The conflict mentioned in Section 1 that Professor Brown discusses is one
aspect of something much bigger: the complete rejection of the optimality
criteria based on conventional conditioning.

Even the general notion that a conditioning variable should represent some
clear physical aspect of an investigation needs some qualifying. For finite
population sampling and for experimental design, a fixed objective distribution
is imposed to obtain the randomness needed to make statistical statements.
The randomness was imposed to obtain a statistical model; conditioning on the
observed randomness would eliminate the model. The use of such randomiza-
tion is thus a scientific issue.

3. Conflict: Optimality versus conditioning. The conflict between the
optimality criteria and the conventional conditional inference prescription can
be documented from quite general considerations. Compare the two possibili-
ties:

1. Examine all statistical procedures of a given type as discussed in Section 1.
2. Examine all statistical procedures of a given type, conditionally for each
value of the ancillary.

For the second a procedure must satisfy more conditions. It follows that the
second class is a subset of the first class and thus that an optimum procedure
in the second class can be equalled or exceeded by one in the first class. In
other words, you can do better, certainly as well, by using a marginal proce-
dure over a conditional procedure.

Nevertheless, examples do have merit; they can bring into focus the mecha-
nism by which the ““conflict’’ arises. An early example (Welch, 1939) involves a
sample y,, y, from the uniform (0 + 3) distribution. Conditional tests are less
powerful and confidence intervals longer, when defined conditionally given the
configuration statistic y, — y;; Welch favoured the unconditional. A general
discussion of conditional and unconditional confidence intervals with examples
may be found in Fraser and McDunnough (1980). Examples are also given in
Fraser (1979, Chapters 3 and 4).

4. The mechanism. The mechanism by which conditioning frustrates
the standard optimality criteria is a nonlinearity implicit in the process of
choosing an optimal procedure.

The mechanism can perhaps be seen more clearly by examining it in a larger
context. Consider a statistician who advertises that his 95% confidence inter-
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vals are shorter on the average than all his competitors; in fact, he works on
an overall 95% rate rather than a conditional 95% rate for each client contact.
He achieves his special performance by giving longer intervals (above 95%) to
his clients with precise measurements, and shorter intervals (below 95%) to
his clients with imprecise measurements, still maintaining the overall 95%
rate. His intervals will be shorter on the average [for details, see Fraser and
McDunnough (1980)].

From a betting viewpoint he buys his short intervals where they are
statistically cheap for him—from the imprecise clients. Mean length and
coverage are not linearly related. They can be traded off. Should one conclude
that this is better than conditioning on client contact or on the investigation
itself? This is where the scientific aspects enter; the unconditional model,
certainly if made expansive enough, is inappropriate.

5. A simple example. Consider the estimation of # for the 2 X 2 table
with probabilities (6,/3,(1 — 6)/3; (1 — 6)/3,(1 + 6)/3). Let the response be
the generalized indicator (x;;: i, j = 1, 2); for simplicity we record results for
the n = 1 case.

Recall that for an observation x from the Bernoulli (8) distribution, x is the
uniformly minimum variance unbiased (UMVU) estimate of 6 and that
(x +1/2)/(1 + 1) = x/2 + 1/4 is an admissible estimate of § and is minimax
with constant risk 1/16 with respect to squared error loss [Lehmann (1983),
Section 4.2, 4.3].

Conditional on the first column total (x;; + x5, = 1), the estimate x,, is
UMVU; it has mean 6 and variance 6(1 — 0). The minimax estimate is
(8/4)x;; + (1/4)x,,; it is admissible and has risk 1/16. Conditional on the
second column total (x,, + x5, = 1), the estimate —x,, + x5, is UMVU, with
mean 6 and variance 1 — 62. The admissible minimax estimate is —(1,/2)x,, +
(1/2)x45, with risk 1/4. Because either x;. or x,. is 1, the unbiased and
admissible estimates can be written, respectively, in the form ¢, = x,, — x;, +
X459 and

to=(3/4)xy; + (1/4) 23 — (1/2) %15 + (1/2)%g5.
The unconditional variance of ¢, is (1/3X1 — X2 + 36), which has the value
11/16 at 6 = 1/4. The unconditional risk of ¢, is 3/16.

Improved estimates can be obtained by averaging cells x,; and x,,, that is,
by using the minimal sufficient statistic. Let ¢ = x;; — (1/2)(x;5 + Xg;) + X9
and t} = (3/4)xy; — (1/8)xy5 + x9;) + (1/2)x4,. The unconditional variance
of ¢¥ is (1/2)(1 — 6X1 + 26), which takes the value 9/16 at § = 1/4. The
unconditional risk of ¢* is (3/32)(1 + ), which is equal to 0.1172 at 6§ = 1/4.

Thus the conditional UMVU estimator and the conditionally admissible
minimax estimator are dominated in the marginal setting.

6. Conditioning: Now and directions. What sort of conclusions should
we draw from the present discussion?

We feel that the notion of conditioning on variables that define the physical
context in which the interest parameter is being examined is very compelling.
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This can raise issues which are largely external to the ordinary statistical
model and deserve more attention from the scientific side of statistics. It seems
necessary in this development to use the physical context as a guide to the
choice of operating model. In such contexts the issue of marginal optimality is
not of interest: only the conditional calculations matter. Our statistician in
Section 4 who advertises the shorter confidence intervals is guilty of profes-
sional misconduct.

Recent directions in conditional inference have deemphasized the ““princi-
ple”’ aspect of conditioning. One motivation for this is that conditioning can
provide a means to eliminate nuisance parameters and focus on the parameter
of interest. Another is that conditional distributions are often much easier to
calculate, which is especially useful in high-dimensional problems.
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Put briefly, Brown’s paradox is that an estimator can be conditionally
admissible given each value of an ancillary statistic, but inadmissible uncondi-
tionally. Brown is to be congratulated for his insight in pointing out the
conflict between frequentist criteria of good performance for point estimators
and widely held notions concerning ancillary statistics. Brown supports use of
unconditional frequentist measures to guard against ‘‘inconsistency’ (uncon-
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