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THE EQUIVALENCE OF WEAK, STRONG AND COMPLETE
CONVERGENCE IN L, FOR KERNEL DENSITY ESTIMATES'

By Luc DEVROYE

McGill University
Let f be a density on R?, and let £, be the kernel estimate of f,
fo(x) = (nh?) 7 Ty K((x — Xi)/R)

where h = h, is a sequence of positive numbers, and K is an absolutely
integrable function with [ K(x) dx = 1. Let J» = [ | fu(x) — f(x) | dx. We show
that when lim,A = 0 and lim,nh? = o, then for every ¢ > 0 there exist
constants 7, no > 0 such that P(J, = €) < exp(—rn), n = n,. Also, when ¢/, —
0 in probability as n —  and K is a density, then lim,2 = 0 and lim,nh? =

oo,

.

1. Introduction. The purpose of this paper is to point out that for the celebrated
Parzen-Rosenblatt density estimate (Parzen, 1962; Rosenblatt, 1956) all types of L.
consistency are equivalent. We consider a sample Xi, - --, X, of independent R%valued
random vectors with common density £, and estimate f(x) by

fa(x) = (nh?)™ Tt K((x — Xi)/h)

where & = h, is a sequence of positive numbers and K is a Borel measurable function
satisfying £ = 0, [ K = 1. The natural measure of the closeness of f, to f is its L, distance,

I = f | fo(x) — f(x)] dx.
Our main result is:

THEOREM 1. Let K be a nonnegative Borel measurable function on R? with
[ K(x) dx = 1. Then the following conditions are equivalent: (i) J, — 0 in probability as
n — o, some f; (i) J, — 0 in probability as n — =, all f; (iii) J, — 0 almost surely asn
— o, all f; (iv) J, — 0 exponentially as n — « (i.e. for all e > 0, there exist r, no > 0 such
that P(J, =€) <e™™ n=ny), all f; (v) lim,h = 0 and lim,nh? = «. Also, (v) implies (iv)
when K is merely absolutely integrable and [ K(x) dx = 1.0

A weak analogue of Theorem 1 for histogram estimates was obtained by Abou-Jaoude
(19764, 1976b, 1976¢c). Theorem 1 improves Devroye and Wagner (1979), where L, conver-
gence results are obtained from pointwise convergence results (such as Deheuvels, 1974)
and Scheffé’s Theorem (Scheffé, 1947; see also Glick, 1974 and Devroye, 1979).

2. Proof of Theorem 1. We will try to extract the key facts needed in the proof of
Theorem 1. They are condensed in several lemmas of independent interest. Lemmas 1 and
2 are integral and pointwise versions of the Lebesgue density theorem. Lemma 3 contains
a crucial inequality for the multinomial distribution, and in Lemma 4 we prove that (v)
=> (iv). Lemma 5 is an L, version of the non-existence of unbiased kernel density estimates.
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The implication (i) = (v) is established in Lemma 6. Since (iv) = (iii) = (ii) = (i), this
would then complete the proof of Theorem 1.

LEMMA 1. (L, version of Bochner’s theorem). Let K be an absolutely integrable
function on R® with [ K(x) dx = 1, and let h = h,, be a sequence of positive numbers

satisfying lim, h = 0. For each density f, we have lim, [ | gn(x) — f(x) | dx = 0, where gn(x)
=k~ [ K((x — y)/Mf(y) dy.

Proor oF LEMMA 1. The proof is based on a technique of Kantorovich and Akilov
(1964). I am grateful to Laszlo Gyorfi for pointing this reference out to me. We let C =
| | K(x) | dx, and note that by a change of integral, for any function f,

(6Y) f |gn(x) | dx = jj R K((x — y) /W) || f(y)| dy dx = Cf | f(9)] dy.

For each ¢ > 0 there exists a continuous function ¥* vanishing outside a com-
pact set, say Sor, where S, is the closed sphere of radius r centered at x, such that
J | f(x) = f*(x) | dx < e. Thus, if we write gx(f, x) to make the dependence upon f explicit,
then

jlgh(f, x) — f(x)| dx
5] |gh(f-f*,x)|dx+f | gr(f*, x) — f*(x)| dx"’f | F*(x) — f(x)| dx
=(C+ I)J’|f*(x)—f(x)| dx+f|gh(f*,x)—f*(x)| dx

=(C+1e+ j | gn(f*, x) — f*(x)] dx.

Thus, we need only show the Lemma for all functions f*. For each ¢ > 0, find §(e) > 0 such
that | x — y|| < 8(¢) implies | f*(x) — f*(y) | <e. Thus, if f* = 0 outside Sz, then

flgh(f*,x)—f*(x)|dx=f dx

=l

xlI=R IyI=R, | x—y||=6() IYI=R,|| x~y||>8()

sj (Ce+ le B K((x;y)) ' dy) dx
lIxl=R IyI=R, | x—y|>8()

" = Ce(2R)? + C1(2R)¢ f | K(y)| dy

12yl >8(e)

f h“’K(———(x = y’){f*(y) — @) dy
Ixl=R,|ylI=R

dx

= Ce(2R)? + o(1),

where C; = sup, f*(x). This concludes the proof of Lemma 1.

LemMMA 2. (Lebesgue density theorem). If fis a density on R® and B is a compact
set of R® with A\(B) > 0, then

limy oA~ (RB) f f(y) dy = f(x), almostall x.

x+hB
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ProoF oF LEMMA 2. We know that
Limy, oA ™" (Sxn) f [f(y) — flx)| dy =0
Sen

for almost all x, by the classical version of the Lebesgue density theorem; see for example,
Stein (1970, pages 62-63) or Wheeden and Zygmund (1977, pages 100-109). If Sog is the
smallest sphere containing B, then for almost all x,

A7(x + hB) J’ [£(y) = f(x)| dy = (A(Sor)/A(B))A™" (x + hSor) | f(9) — f(x)| dy
x+hB

x+hSyp

which tends to zero as & | 0.

LEMMA 3. (A multinomial distribution inequality). Let (Xi, ---, X)) be a multino-
mial (n, py, + -+, pr) random vector. For all ¢ € (0, 1) and all k satisfying k/n < €2/20, we
have

P(Y%i | X; — E(X;) | > ne) < 3 exp(—ne?/25).

Proor oF LEMMA 3. The proof is based upon a Poissonization. Let N be a Poisson(n)
random variable independent of U;, U,, ..., which is a sequence of independent
{1, - - ., k}-valued variables distributed according to P(U; = i) = p;, 1 =i < k. Let X; be
the number of occurrences of the value i among Ui, - - -, U,, and let X} be the number of
occurrences of the value i among Uy, - -, Uy. It is clear that X1, - - ., X} are independent
Poisson random variables with means np,, - - -, nps, and that Xj, - .., X} is a multinomial
(n, p1, - - -, px) random vector. Since E(X;) = np;, we have

1 1 1
2 ,’L—X,’— i | = ?;.—Xi—X," + {'z-_-—Xf— il
® 21X = ] = T = | K= X1 + Sty | Xi = ]

Now, when U is Poisson(A), then for ¢ > 0,
E(etlU—)\l) < E{et(U—)\) + et()\—U)} = e)\(e‘—l)—t)\ + e)\(e_t—l)+t)\s 2e)\(e‘—l—t)’
because e + ¢t < e’ — t. Thus,

(3) P(I U- >‘| > AE) < E(etlU—)\l—t)\e) < 2e—t)\ee)\(e‘—l—t)
= 2e)\(e—(l+e)1n(l+e)) < 2e—)\52/2(1+e) < 2e—)\t2/4’

where we took ¢ = In(1 + ¢). By a repetition of the previous argument, using (3) and making
the substitution ¢ = In(1 + 3¢/5), we have

1 2 1 3e
P( {-’=1;|X,~—np,~| 25)5P<|N—n|2n§) +P< {-’=1;|X£—np,~|_>_ng)

- - L
< %e n(2e/5)%/4 +e tn(3e/5) sz=1 {2enp,(e 1 t)}
(4) < 2e —ne21/25 + 2ken(e‘—l—t—3et/5)
< 2e—ne21/25 + ek—n(ae/5)2/4

<3e™V® when k= ne?/20.

REMARK 1. The original manuscript had the bound 1134/(n%®), valid for 2 < ne®/9. I
am grateful to Laszlo Gyorfi for suggesting the exponential inequality of Lemma 3.

LEMMA 4. For any density f on R?, and any absolutely integrable function K with
[ K(x) dx =1, J, — 0 completely as n — « whenever lim,h = 0 and lim,nh® = oo,
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ProorF oF LEMMA 4. Let g, be defined as in the statement of Lemma 3. By Lemma 3,
it suffices to show that [ |f,(x) — gx(x) | dx — O completely as n — . Let p, be the
empirical probability measure for Xj, - - -, X,, and note that

fulx) = A4 f K(‘x — ))un (dy).

For given ¢ > 0, find finite constants M, L, N, ai, - - -, ay and disjoint finite rectangles A,,
+++, Ay in R? such that the function

K*(x) = 2;111 a; I, (x)

satisfies: | K* | = M, K* = 0 outside [—-L, L]% and [ | K(x) — K*(x) | dx < e. Define g# and
[ as gn and f, with K* instead of K. Then

flfn'(x) —gn(x)| dx= j | ful®) — f¥(x)| dx
+ f | fr(x) — gk(x)| dx +f | g#(x) — gn(x)| dx
= f h“’f | K*((x — 3)/h) — K((x — )/h)| f(y) dy dx
+ f h_df IK*(;x —¥)/h) — K((x — y)h) | p (dy) dx
+f|f,’5(x)—g;"i(x)| dx

=2+ f [fE(x) — gi(x)| dx

by a double change of integral. But if s is the probability measure for f, then

j|f;t(x)—g:(x)|dxsz£i1|ai|f|h“’f f() dy—h“’j i (dy) | dx

x+hA, x+hA,

=Mhn— ifilf|u<x+hA,-)—,L,,(x+hA,~)| dx.

Lemma 4 follows if we can show that for all finite rectangles A of R, A7 [ | u(x + hA) —
fa(x + hA) | dx — 0 exponentially as n — . Choose an A, and let ¢ > 0 be arbitrary.
Consider the partition of R into sets B that are d-fold products of intervals of the form
[ —1)k/N, ih/N), where i is an integer, and N is a fixed constant to be chosen later. Call
the partition ¥. Let A = [[%, [x;, x; + @;), min;a; = 2/N and A* = [[%, [x: + 1/N, x: + a;
— 1/N). Define

C.=x+ hA — Upey,pcx+na BC x + h(A — A*) = C*.
Clearly,
(5) |u(x + hA) — pa(x + hA) | dx
= f YBew,Bcx+ra | W(B) — pn(B) | dx + J’ {w(Cs) + pa(Cy)} dx.

The last term in (5) equals
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2A(R(A — A%)) = 2h*NA — A*) = 2R ([[41 a; — [[E (a; — 2/N))
=2rANA)1 - TIL: (1 — 2/(Na))) < 4h°N(A) T ai!/N < h?

by choice of N. We used the fact that for any set C, and any probability measure » on the
Borel sets of R, [ v(x + hC) dx = A(hC). For any finite constant R > 0, we can bound the
first term in (5) from above by

(6)  Xpew.Bnsimss |un(B) — u(B) | dx + f dx{pn(S6r) — u(Sér) + 21(Str)}.
BCx+hA BCx+hA

Here (-)° denotes the complement of a set. Clearly, ¢ [Bcx+na dx = N(A), and u(Str) <
¢ by our choice of R. Also,

P{u.(Sr) — w(Sér) > &} < e 2"

by Hoeffding’s inequality for binomial random variables (Hoeffding, 1963). Finally, since
the collection of sets B € ¥ with B N Syr 5 ¢ has at most (2RN/A + 2)¢ = o(n) elements,
we see that by Lemma 3, for all n large enough,

P(Ysev,Bnsorss | pn(B) — p(B) | > &) < 3e ™1,

Now collect bounds. This concludes the proof of Lemma 4.

LEMMA 5. (Nonexistence of unbiased kernel density estimates). Let K and [ be
arbitrary densities on R®, and let g, be defined as in Lemma 1. Then [ | f(x) — ga(x) | dx
> 0 for all a > 0. Also, when ay is a positive number sequence, lim, [ | f(x) — 8o, (%) | dx
= 0 implies that lim,a, = 0.

Proor oF LEMMA 5. Let ¢ and y be the characteristic functions of f and K respectively.
Clearly, ga(x) = E{ fu(x)} has characteristic function y(at)¢(t). Now, [ | f(x) — ga(x) | dx
= 0 implies f = g, for almost all x, and thus ¢(£) = ¢(¢)y(at) for all £ € R®. For ¢(t) # 0, i.e.
at least in a neighborhood of the origin, y/(at) = 1. But since a # 0, this implies that y
cannot be the characteristic function of a density on R¢ and we have a contradiction.
Thus, [ | f(x) — g.(x) | dx = 0 implies a = 0.

To prove the second statement of the Lemma, we assume first that lim,a, = «. By
Fatou’s Lemma, [ | f(x) — g,,(x) | dx — 0 implies lim inf, | f(x) — g, (x) | = 0, almost all x.
But since g,(x) — 0 for almost all x, we have f(x) = 0 for almost all x, and this
is impossible. Assume next that lim,a, = ¢ € (0, ©). Now, [ |f(x) — 8o, (x)| dx =
J 1 f(x) — ge(x) | dx —[ | go(x) — &a (x)| dx. By the first part of this Lemma, it suffices to
show that [ | g.(x) — g (x) | dx — 0 to reach a contradiction, thereby concluding the proof
of Lemma 5. Let K.(x) = a “K(x/a). For every ¢ > 0 we can find a continuous bounded
function K* with compact support such that [ | K*(x) — K(x) | dx < e. Now, by (1),

f | 8o(%) — ga ()| dx < f | Ku(x) — Ko, ()| dx =< j | K.(x) — K*(x)| dx
+ j | KX (x) — K& (x)| dx + j | K& (x) — Ko (%)| dx
=2 f | K*(x) — K(x)| dx + J’ | K¥(x) — K& (x)| dx= 2¢ + o(1)

where for the o(1) part we used the Lebesgue dominated convergence theorem.

LEMMA 6. Let K and f be densities on R®. If J, — 0 in probability as n — o, then
lim, A = 0 and lim,nh? = o,

Proor oF LEMMA 6. Since J, < 2 for all n, J, — 0 in probability if and only if
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lim, E(J,) = 0. Define g, as in Lemma 1. Then

EWJ,) = E(f | fulx) = f(x) | dx) = f | E(fo(x)) — f(x)] dx =f | gn(x) — f(x)| dx.

Apply Lemma 5, and conclude that lim,A = 0. This will be assumed for the remainder of
the proof. For the second part, we note that by Lemma 1, lim, E( I | falx) — gu(x) | dx) = 0.
Let M be a large number, and let K*(x) be defined as K(x)Ix=<um. Define f} and g as fn,
&r with K* instead of K. By (1),

j | fo(x) — gn(x) | dx

(7 Zflfi':(x) —g;’{(x)ldx—flfn(x) — fx(x)] dx—J'Igh(x) — gh(x)| dx

=f|fif(x) —gix)| dx—2f | K(x) — K*(x)| dx.

Let us introduce some more notation: L is another large number, A is the event that no X,
1 =i = n, belongs to Sis, K’ = K*Is,, K" = K* — K’, and f}, and f/ are defined as f,
after replacement of K by K’ and K” in the definition. Clearly,

fE(lfi(x) — 8i(x)| dx) = f E(| f¥(x) — gt ()| L) dx

8
Eng(x)P(A) dx — f E(fi(x)14) dx=U, = V,.

We will need the following facts, all corollaries of Lemma 2 (see also Devroye and
Wagner, 1979): for bounded K * with compact support, g#(x) — f(x) [ K*(x) dx, almost all
x, and p(Sy+nznr)/A(Sy+nznr) — f(y) for all z € R? and almost all y € R®. Let C be the
volume of Sp1, and assume that lim,nA? = r € [0, »). By Fatou’s Lemma, we have

lim inf, U, = J’ lim inf, g}(x)lim inf, P(A) dx
= f f(x)lim inf, {1 — p(Scn)}" dx j K'(2) dz
9
= ff(x)eXp(—lim sup.[nu(Scar)/{1 — u(Scrr)}1) dxf K'(2) dz

= f f(x)exp{—rCL%(x)} dx f K*(2) dz.

SOL
Also,
Vo= j E{% " h K" ((x — Xi)/h)IA} dx
= f j R7K"((x = 3)/h) Lgs, () dy{1 — p(Sens )} dx
(10)

= jf(y) j K" ((x — y)/PW{1 = w(Sene )} dx dy
xESynL

= f () f agsor, K" (2)exp{—(n — 1)u(Sy+s-n)} dz dy.
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The integrand of the inner integral of (10) is bounded by an integrable function, K”. Thus,
by the Lebesgue dominated convergence theorem and an earlier remark, we can conclude
that ‘

lim sup,V, < f () K*(z)exp{—rCLf(y)} dz dy

2#SoL
(11)
= ff(y)eXP{—rCLdf(y)} dy K*(2) dz.
2ZSoL
Combining (7), (8), (9) and (11) gives
lim inf, [ E(| fu(x) — gr(x)|) dx + 2f | K(x) — K*(x)| dx
(12)
= j f(x)exp{—rCL%(x)} dx{2j K*(2) dz — 1} .
Sor

Keeping L fixed, and letting M grow large shows that the right-hand-side of (12) is = 0,
with K instead of K* in the last integral. Now, choose any finite L for which [s,, K(2) dz
> Y%. Then, (12) can only be 0 when r = «, and this is a contradiction. Thus, no subsequence
of nh? can tend to a finite limit 7, and therefore, we must have lim,nhA® = c.

3. Discrimination. We would like to point out one important application of Theorem
1. In the discrimination problem, we are given a sequence (Xi, Y1), :--, (Xi, Y,) of
independent R® X {1, - . ., M}-valued random vectors distributed as (X, Y) but independ-
ent of (X, Y). We construct an estimate Y from X and the data sequence, say, Y = g,(X).
The probability of error for the given estimate and data sequence is L, = P{g.(X) #
Y| X, Yy, -+, X, Y.}, and this is always at least equal to the Bayes probability of error

L* = infg.pi,q,... . P{g(X) # Y).
If X has a density f, and if we construct the density estimates
(13) fri(x) = (nh*) ' Tht K((x — Xj) /W) Iy, 1=is< M,

and if we define g,.(x) as the first integer ¢ for which f,:(x) = maxi<z<a fz(x), then how is
L, related to L*? In other words, in what senses does L, converge to L*? The simple rule
mentioned here can be found under the name “potential function method” in the Russian
literature (see e.g. Bashkirov, Braverman and Muchnik, 1964). Its properties were subse-
quently studied by Van Ryzin (1966), Rejto and Révész (1973), Glick (1972, 1976), Greblicki
(1978), Devroye and Wagner (1980a, 1980b) and Spiegelman and Sacks (1980). In this note,
we can offer the following result:

THEOREM 2. Let K be an absolutely integrable function with positive integral over
R, and let X have a density f. Then the discrimination rule defined by (13) satisfies
Y1 n?P(L, — L*>¢) <o, all gq,e>0,
whenever ‘
lim,A =0, and lim,nA%= .
REMARK 2. Theorem 2 contains all previously known consistency results for the

discrimination rule (13) that are based on the assumption that X has a density f. With
additional conditions on K (i.e.,c1Is, = K= CzIs,’rz for some ci, ¢z, r1, r2 > 0), we know that
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L. — L* in probability for all distributions of (X, Y) (Devroye and Wagner, 1980;
Spiegelman and Sacks, 1980). If we also ask that r; = r, and nk%/log n — o, then L, — L*
almost surely for all distributions of (X, Y). From our Theorem, it is clear that the
condition nk%/log n — o is not needed whenever X has a density.

Proor oF THEOREM 2. We introduce some new notation: p; = P(Y = i), pu =
(1/n) Y31 Iy, =i, f; is the density of X given that Y = i, and f.o = Y% f.. Then, by (12) of
Devroye and Wagner (1980b), and defining 0/0 by 0,

* < fm(x) plfl(x)
L.-L*=X& fﬂm> e |
<zﬂfmmm ﬂmnm+zﬂfmu>ﬂ“—1px
an(x)

- YW . . _ fm(x)
- Zt=l pnt j ‘ ﬁ(x) p

dx+f|f(x) fro ()| dx + $H1 | pi — pui]

m(x)
f dx + M, | b — puil.

<22t=lptjlfz( ) ———

Let us look at i = 1 only. By Hoeffding’s inequality (Hoeffding, 1963), P(| p1 — pn1| > €)
=< 2 exp(—2n¢®), all ¢ > 0. Assume that p; > 0, and let N = np,;. Note next that
E {fu1(x)/pn1| N} = gn(x), which is defined as in Lemma 1 when f is replaced by fi. Thus,

ﬁzl (x)

DPn1

fhu

(14)

dxIn-o + 2In-o.

gn(x) — m@

f | fi(x) — gn(x) | dxInso + J

The first term on the right-hand-side of the inequality tends to 0 as # — 0 by Lemma 1.
Conditional on N, the second term is distributed as [ | E { fn(x)} — fn(x) | dxIn=o, where

fv(x) = (NR) ™ T K((x — X.)/h)

and X, ..., Xy are independent random vectors with common density f;. In the proof of
Theorem 1, we have seen that for every ¢ > 0 there exist positive constants c; only
depending upon ¢, K and f; such that P(f | E(fn(x)) — fx(x)| dx > ¢|N) < ¢1/N?, valid

when (cz/h + 1)¢ < ¢sN. Thus
-q
dx Inso > e) < P<N <1“§"i) + cl<%) ,

P( J fr1(x)
pnl
valid when (cs/h + 1)? < Ynp;cs.

Since nh¢ — oo, the last inequality is valid for all n large enough. The term
P(N < np1/2) does not exceed exp(—np3/2) by Hoeffding’s inequality, and the last term of
(14) is treated similarly. Theorem 2 now follows by the arbitrariness of ¢ and q.

&n(x) —

Acknowledgments. The author wishes to thank Clark Penrod and Charles Baker
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