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This paper extends and unifies the theory of simultaneous estimation for
the discrete exponential family. We discuss construction of estimators which
theoretically dominate the uniformly minimum variance unbiased estimator
(UMVUE) under a weighted squared error loss function, and show by means
of computer simulation results that new simultaneous Poisson means esti-
mators perform more favorably than those previously proposed. Our improved
estimators shift the UMVUE towards a possibly nonzero point or a data-based
point.

1. Introduction. Stein (1956) obtained the surprising result that for estimating p
independent normal means simultaneously, the sample mean was inadmissible under
squared error loss when p = 3. An explicit estimator dominating the sample mean was
introduced by James and Stein (1961). Later, Stein (1973) introduced an integration by
parts technique to transform the problem of finding improved estimators of the sample
mean into that of solving certain differential inequalities. This technique has been used in
the problem of multiparameter estimation for the continuous exponential family (Hudson,
1978), as well as in the multivariate normal mean estimation problem. The important role
of differential inequalities in the study of inadmissibility was also emphasized by Brown
(1979).

Various improved multivariate normal mean estimators have been derived under
different assumptions about the covariance structure. The covariance matrix may be
assumed to be known or unknown, or perhaps diagonal. The loss function used in much of
the research is quadratic. (Brown (1966) discussed a wider class of loss functions for the
simultaneous estimation problem.) Berger et al. (1977), Berger and Haff (1981), and other
references cited therein describe the results more fully.

There has also been considerable interest in simultaneous estimation problems for
nonnormal distributions, particularly in estimating the parameters 6., - - -, 6, of p inde-
pendent Poisson distributions, with one observation available from each of the p Poisson
populations. (This one observational setting can always be obtained by a sufficiency
reduction.)

Let

(1.1) L,(8,8) = Y21 (6. — 8,)%/67

where 8 = (81, -- - , §,) is an estimator of (6;, -+, 6,) and m = (my, ---, m,) is a vector of
p nonnegative integers. Though the maximum likelihood estimator (MLE), which is also
the uniformly minimum variance unbiased estimator (UMVUE), is admissible under L,,
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TABLE 1
Catalog of some recent results in simultaneous estimation of the parameters of p independent
distributions belonging to one-parameter exponential families (discrete or continuous)

Values of m; in

Authors loss function (1.1) Distributions Results
Hudson (1974) 0 Cont. Exp. A(p=4)
Clevenson and Zidek (1975) 1 Poisson A(p=2)
Peng (1975) 0 Poisson A(p=3)
Hudson (1978) 0 Disc. Exp. A(p=4)
Hudson (1978) 0 Cont. Exp. A, C(p=4)
Tsui and Press (1977 and 1982) m* >0 Poisson A(p=2)
Tsui (1978) possibly different Poisson A(p=2)
positive integers
Tsui (1979) 0 Disc. Exp. B,C(p=4)
Tsui (1981a) 0 Poisson B,C(p=3)
Berger (1980) integer m* Cont. Exp. AD(p=2)
Hwang (1979) possibly different Disc. Exp. A(p=3)
nonnegative integers
Hudson and Tsui (1981) 0 Poisson B(p=3)
Ghosh and Parsian (1980) integer m* Cont. Exp. A(p=2)
Ghosh, Hwang and Tsuitt possibly different Disc. Exp. B,C(p=3)

nonnegative integers

1 A—Improved estimator shifts the components of the UMVUE towards zero.

B—Improved estimator shifts the components of the UMVUE towards some fixed point.
C—Improved estimator shifts the components of the UMVUE towards some data-based point.
D—Improved estimator shifts the components of the UMVUE possibly towards infinity.
1t—This paper.

for p = 1 (see, e.g., Hodges and Lehmann, 1951), it is shown to be inadmissible for large p.
The case when m; =1,i=1, ..., p, was considered by Clevenson and Zidek (1975) (see
also Ghosh and Parsian, 1981), who obtained a class of estimators which are uniformly
better than the MLE provided that p = 2. In the squared error loss case (i.e., m, =0, i =
1, ---, p), Peng (1975) showed that the MLE is inadmissible when p = 3, rather than
when p = 2. Tsui and Press (1977) considered L, the special case of (1.1) in which all the
m/s are equal to a constant, m*, and provided estimators that dominate the MLE under
such loss functions for all positive integers m*, as long as p = 2. Tsui and Press (1982)
further developed their results and performed computer simulations, which showed that
their Poisson parameters estimators can in some situations improve on the risk of the
MLE by over 30%. Tsui (1978) showed that the MLE is inadmissible under the most
general loss function (1.1) for p = 2 if all the m.’s are positive.

More generally, Hudson (1978) showed that under squared error loss, the UMVUE is
inadmissible in simultaneously estimating the natural parameters of p independent distri-
butions belonging to a one-parameter discrete exponential family, provided p = 4. This
family of distributions includes the Poisson distribution and the negative binomial distri-
bution as special cases. Some of Hudson’s results were generalized by Tsui (1979a) and
Hwang (1982). Almost all of the inadmissibility results for the Poisson case, and more
generally, for the one-parameter discrete exponential family case, were obtained by first
deriving some difference inequalities using Stein’s (1973) idea, and then solving these
inequalities by guesswork. The same approach was used to obtain inadmissibility results
for the continuous exponential family. The solutions of these inequalities were used to
construct the improved estimators. Table 1 summarizes some recent results. In Table 1,
not all the papers listed discussed improving on the UMVUE. In many problems, such as
those considered in Berger (1980), the UMVUE is inadmissible even in the one dimensional
case. This, however, does not occur in the Poisson and negative binomial estimation
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problems considered in this paper. The one dimensional estimators are all admissible
under L,,.

The desirability of finding general methods of solving these types of inequalities was
evident; Berger’s (1980) suggestion of some general methods for solving differential
inequalities for the continuous exponential family was therefore a welcome advancement.
He constructed, for example, improved estimators for the scale parameters of several
independent gamma distributions when L~ is the loss function, where m* is an arbitrary
integer. Some of his results were extended by Ghosh and Parsian (1980). Hwang (1979)
adapted Berger’s method and was able to provide some general methods of solving
difference inequalities for the discrete exponential family. However, the solutions of these
differential /difference inequalities mainly lead to improved estimators which shift the
usual one towards the origin.

A question which is frequently raised is whether there are improved estimators for the
discrete or continuous exponential family that shift the usual one towards a point other
than the origin. This question has been answered affirmatively for the multivariate normal
mean problem under quadratic loss; see, for example, Lindley’s discussion in Stein (1962),
and Stein (1981). Similarly, improved estimators which shift the usual one towards a
prefixed point or towards a data-based point have been suggested by Tsui (1981a) and
Hudson and Tsui (1981) for the Poisson distribution, by Hudson (1978) for the continuous
exponential family, and by Tsui (1979) for the discrete exponential family. The loss
function in these cases was the squared error loss function. It is natural to conjecture that
the general methods of solving inequalities developed by Hwang (1979) and Berger (1980)
can be modified in order to yield improved estimators shifting the usual one towards a
point other than the origin. This is desirable in view of the simulation results of Tsui
(1981a), which indicate that in many cases, shrinking towards a data-based point yields
more reduction in risk than shrinking towards the origin. In this paper, we demonstrate
that Hwang’s (1979) method can be modified in such a way that most previous discrete
exponential simultaneous estimation results can be encompassed and the desirable exten-
sions outlined above can be accommodated.

Sections 3 and 4 are devoted to the general theory of simultaneous estimation for the
one-parameter exponential family. In particular, Section 3 focuses on improved estimators
which shrink the UMVUE toward a prefixed point; adaptive estimators (those which
shrink towards a point determined by the data) are derived in Section 4. The most
important special case is that of estimating several Poisson parameters. Improved esti-
mators have been applied to oil well discovery (Clevenson and Zidek, 1975), crime rate
estimation (Rolph, Chaiken and Houchens, 1981), and error rate estimation in audit
sampling (Matsumura and Tsui, 1982). Most of these improved estimators are similar to
the ones proposed in this paper. Because of the importance of the improved Poisson means
estimators, their theoretical properties and simulated performances are discussed in detail
in Section 2.

2. Representative estimators and simulation results. In order to provide con-
creteness to the general theory developed in later sections, we first introduce and discuss
some simple improved estimators in the simultaneous estimation problem for the Poisson
distributions. We also report the results of a computer simulation study designed to test
the performances of several Poisson means estimators.

It will be convenient to first define our notation. Let X = (Xi, ---, X,), where the X,’s
are p independent Poisson random variables with means 6, ..., 6,, respectively. If there
is no ambiguity, X; will also be used to denote the realization of X, as well. The UMVUE
of § = (6, ---, 6,) is 8°(X) = X based on X. The improved estimator §* = (§%, ..., 6%)
is defined as 6* = X + ¢(X), where ¢(X) = (¢:1(X), ---, ¢(X)) and the ¢;’s satisfy the
following regularity conditions:

(2.1) ¢(X)=0 if X,<m;
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and
(2.2) Eip?(X) < oo,

Let e; be a p-dimensional vector whose ith coordinate is one and whose other coordinates
are zero. Let A;F(X) be the finite difference F(X) — F(X — e;). For any integer a, let
1/a"™=a+1,a”=1anda™” =a(@a—1) --- (@ — n + 1) for any positive integer n.
From Tsui and Press (1982, Lemmas 1-4), the difference in risks of 8 * and 8° under the
loss (1.1) can be written as

(2.3) R(6,8*) — R(6, 8° = 2E,9(X),
where
Aigi(X + mie) | ¢F X + mie;)
=Vp
(24) @(X) =1 {(X, + mi — 1) m,—1) 2(Xl ¥ ml)(m') } .

It is clear from (2.3) and (2.4) that an estimator 8* which has a correction term ¢ that
satisfies (2.1), (2.2) and 2(X) =< 0 for all X, with strict inequality for some X, dominates
8°(X) = X. Two special cases of (1.1), and hence (2.4), are of special interest. One is the
squared error loss case, Lo (i.e., m; = 0 for all i), and the other is the normalized squared
error loss case, L;(m, = 1 for all i). For these two cases, 2(X) < 0 becomes, respectively

(2.5) 2(X) = T {Xidigi(X) + % ¢7(X)} = 0,
(2.6) 2X) =Y {Aipi X +e) + %ol (X +e)/(X;+ 1)} < 0.

In the remainder of this paper, } %, S; is defined to be zero if b < a.

We now consider a Poisson means estimator which shifts the UMVUE towards a fixed
point A = (Ay, ---, Ap), where the As are nonnegative integers. Intuitively, shrinkage
estimators tend to do very well only at points (or subspaces) to which they shrink. Thus
if 4 is thought to be away from the origin, an estimator shrinking only to the origin will not
offer much improvement. Therefore, in order to realize substantial improvement, one
should use prior information to guess 6 and use an improved estimator that shrinks the
usual estimator toward the prior guess of 6. The following example provides a pertinent
estimator when the prior guess of 6 is A.

ExamPLE 2.1 (Under L;). Let (C)+ = max{C, 0} for any real number C.
Define

2.7) NX)=#{i:X, > \,}
and
(2.8) h(j)=Y4i=11/n, j=1,2, - ,zero otherwise.

Furthermore, let D(X) = Y2, d;(X;), where '

(AX) —hA)E+% BRN) — 2} if Xi<A
(2.9) d.(X,) =

{(A(X) —AA)MHAX, +1) —hQA)} if X =A.
Let 8'(X) = X + ¢(X) be an estimator of 8 with ith component

(210  8(X) =X, — (N(X) - 2}. (h(X,) = hA)}/DX), i=1,---,p.
Then, it follows from Theorem 3.1 in Section 3 that (2.5) becomes
(2.11) 2X)= - % {NX) - 2}3/D(X).

Thus, 8' dominates §°(X) = X under L, if p = 3, and the reduction in risk is expected to be
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sizable if D (X) is likely to be small and (N (X) — 2). is likely to be large. This will occur if
A is close to the true §, and the components of A are not large.

Estimator 8’ given above is similar to some of the estimators proposed by Hudson and
Tsui (1981, Theorems 1 and 2). However, p = 3 is required here instead of p = 4.

A better understanding of the structure of the Poisson means estimators under L, can
be gained by examining the James-Stein estimator 6’ and the Lindley estimator 8" in the
simultaneous normal means estimation problem. To this end, let Y1, - - -, Y, be independ-
ent, normally distributed, and have variance 1 with means p;, - - -, y,, respectively. Let Y
= (Y, -+, Yp) and Y = Y2, Y,/p. The forms of 8’ and 8", respectively, are

(2.12) 85(Y)=Y. - (p—2(Y. — /321 (Y, — )3,
(2.13) YY) =Y. - (p=3(Y,— V)/S0 (Y, = ¥),,  i=1,---,p

where n = (11, - -+, 1) is a prechosen point, often taken to be the origin when the James-
Stein estimator is quoted. Now observe that A(X,) given in (2.8) is close to In X, when X,
is large and is close to VX, when X, is small. Moreover, both the log transform and the
square-root transform are commonly used for the Poisson data with the transformed data
treated as approximately normally distributed. Thus, the correction term of 8’ given in
(2.10) is similar to that of 8”° given in (2.12). With this observation, one might speculate
that most, if not all, the normal theory results can be adapted to yield similar estimators
for the Poisson means. In particular, an estimator 8 similar to the Lindley estimator given
in (2.13) should have a correction term of the following form

(2.14) ¢'(X) = ~CX){h(X) — h}/T0-1 {R(X) —h)*, i=1,---,p,

where A(X) = Y2_; (X)) /p and C(X) is some appropriate function similar to (N(X) — 2)
given in (2.10). One guess for C(X) is [#{i:A(X,) > A(X)} — 2]+. Since A(X)) = In X,, we
have A(X ) = In ([]5-1 X,)”? and 6™ therefore shifts the UMVUE, X, towards the “geometric
mean” of the X/s. Although 8" is intuitively appealing, its dominance over the UMVUE
8° is difficult to prove with the tools developed in Section 4, or with any other known
technique.

Hudson (1981) attempted to apply the normal theory results by using the log transform
and approximating finite differences in (2.5) by differentials, resulting in the differential
inequality 2*(X) =< 0 derived in the normal means case. He then proposed estimators
whose correction terms satisfy 2* (X)) < 0, but it is not known if these estimators dominate
8°. Adaptive estimators which do theoretically dominate the usual one under squared error
loss are described in the examples below.

ExampPLE 2.2. For random variables Yi, +.-, Y,, let Y3y = Yo = -+ = Y|, be the
order statistics. Define N(X) = #{i:X, > X}; and Hi(X) = h(X,) — h(Xw),i=1, ---, p,
where A(-) is as given in (2.8). Let D(X) = Y, H,(X)H;(X + e;). Consider the estimator
8% with the ith component

(215) 8(X) =X +¢(X) and ¢(X)=—{NX) -2} H(X)/D, i=1,---,p.

This § shifts the UMVUE, 8°, towards the minimum of the X.’s. Its correction term oS
satisfies (2.11) for 2(X) given in (2.5), and hence dominates 8° under L, if p = 4. This new
estimator is similar to the one proposed by Tsui (1981a), but, according to our simulation
results, has greater reduction in risk over §° than that of Tsui. Notice that the ¢,’s.given in
(2.15) can be obtained by replacing the A,’s in (2.10) with X;,. Thus, X{;, can be viewed as
a conservative estimate of the /s, towards which the usual estimator should be corrected.
Other order statistics can be used to construct adaptive estimators in the same manner.
One such example is described below.

ExaMPLE 2.3. Define the median med(X) of X = (Xi, .-, X,) to be the smallest
integer ¢ such that #{i:X; < ¢} = p/2. The estimator §°, whose ith component is given by
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TABLE 2
Percentage reductions in risk under Ly for estimators* 8', §2, 8%, 8%, and 8™ over §°.

Range of the p=6 p=10
Parameters 6; st 52 53 5 st 52 5 5 oM
(0, 4) 7.1 8.8 5.5 7.0 15.6 9.7 12.0 8.3 28.5
(0, 8) 8.5 12.8 3.8 1.3 9.3 13.7 6.3 2.0 36.9
(8, 12) 5.4 15.0 2.3 T 52 158 3.6 8 42.7
(12, 16) 4.1 15.9 1.6 3 3.7 174 2.4 5 434
**(0, 12) — — — — 5.9 2.8 3.8 1.5 9.6
**(4, 16) — — — — 5.7 6.5 3.0 0.6 19.0
*§8° is the UMVUE, &' shifts 8° towards A = (A,, -+, A,) where A, = integer part of 6,, 82 shifts §°

towards the minimum of the Poisson observations, §? shifts §° towards the median of the Poisson
observations, 8° shifts §° towards the origin (i.e., §' with A, = 0 for all i), 8 shifts 6° towards the
“geometric mean” of the Poisson observations.

** simulation results for this range were only done for p = 10.

(2.7) through (2.10) except that the A,’s are replaced by med (X ), shifts the UMVUE toward
the median of the X,’s. That is,

81(X) = X, — {N(X) - 2}.+{h(X) — hMed(X))}/D(X), i=1,---,p.

This adaptive estimator dominates the UMVUE under L, if p = 6. Although this estimator
is intuitively appealing, the simulation results below show that its performance is not as
good as that of §” given in Example 2.2 when the Poisson parameters are large but close to
each other. For purposes of comparison, we also recorded the performance of 8% an
estimator which is the same as 6" except that all the A’s are equal to zero. This estimator
is similar to Peng’s estimator.

Table 2 summarizes our computer simulation results for p = 6 and p = 10 when the loss
function is Lo; the entries are the percentages of reduction in risk, [R(6, 8°) — R(4, 8)]-
100%/R (8, 8°), of the estimator 8 over the UMVUE, §°, where 8 is 8%, 82, §°, 87, or 8™. Since
R(9, 8° = Y., 6, the absolute reduction in risk can be very large for, say, 62 The
simulation procedure is as described in Tsui and Press (1982, pages 97-98), with the
exception that the third step is repeated 1000 times instead of 2000 times. The 6,’s are p
random samples from a uniform distribution over a fixed interval. The simulation results
indicate that 6% the estimator that shifts the UMVUE towards the minimum of the
Poisson observations, is good in almost all the situations when the parameters are close to
one another. Its percentage of reduction in risk over the UMVUE increases as the
parameters §, become larger but close to one another. Estimators 8! and 6%, which are
described in Examples 2.1 and 2.3, respectively, perform remarkably well when the 8,’s are
small and p is large. This favorable performance of §' is expected, since it adjusts the
UMVUE to a point A = (Ay, .-+, A,) close to the true 6,’s. In this simulation study, A, was
chosen to the integer part of §,. This is, of course, not realistic in practical situations
(because A, depends on 8,), but we desired to determine how well §' could perform in most
favorable situations. When the 6,’s are large but close to one another, the performances of
both ' and §” are somewhat disappointing. The percentages of reduction in risk for both
8" and &° over 8° decrease as the 6,’s become larger. Looking closely at (2.9) and (2.11) for
8', and the corresponding expressions for 8°, we discover that this is because the expression
D(X) is dominated by the terms % {3A(\,) — 2}. in the case of §', and by the terms
%{8h(med(X)) — 2}, in the case of §°. These terms are likely to be large when the 8’s are
large, and hence the reductions in risk are likely to be small. Furthermore, the N(X) terms
for 8' or §° are likely to be smaller than N(X) for 82 These reasons partly explain why the
risk reduction percentage of 8 is bigger than those of 8* or §° when the 8,’s are large. For
comparison, simulation results for relatively larger ranges of #’s were performed. Esti-
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TABLE 3
Percentage reductions in risk under L, for the estimators* §*, §° over §°.

Range of the p=6 p=10
Parameters 6; 5 5° 54 5°
0, 4) 25.2 26.0 26.3 314
4, 8) 114 22.6 11.3 23.7
(8, 12) 5.9 17.8 6.9 204
(12, 16) 4.9 17.0 5.2 18.6
** (0, 12) — — 124 13.3
**(4, 16) — — 7.3 13.9

* § shrinks 6° towards the origin, 8° shrinks §° towards the minimum of the Poisson observations.
** Simulation results for this range were only done for p = 10.

mators 8, 8% and §° all have similar performances which are better than §°’s. Although
8™ given in (2.14), is not known to dominate 8°, its performance was tested out of curiosity.
The simulation results in Table 2 show that, rather surprisingly, §*’s performance is
impressive both when the 6/s are close to one another as well as when they are relatively
far apart.

We next consider the Poisson means estimators which dominate the UMVUE under

normalized squared error, Li(m; = 1 for all i in (1.1)). Motivation for using such a loss
function has been discussed by Clevenson and Zidek (1975) and Tsui and Press (1982).

ExaMPLE 2.4. Consider the estimator 8 with correction term
0X)=—(p-DX/CP-1X,+p—-1), i=1---,p.

This estimator, proposed by Clevenson and Zidek (1975), dominates §°(X) = X under L,.
In fact, 2(X) given in (2.6) becomes

(2.16) 2X)=—-%(p -1V (Tr-1 X, + p).

Therefore, by Jensen’s inequality, the reduction in risk, 2E,2(X ), of §* over 8°, is at least
(p — 1)*/(35-1 6, + p). Large savings are thus expected when the sum Y?_,; 6, is close to
zero. This is intuitively clear because 8* shrinks 8° towards the origin. What if the 6,’s are
large? As above, it should be advantageous to shrink §° toward some prior guess of . In
Section 3, we show that this is true under the general loss (1.1). Moreover, the following
adaptive estimator is proved, in Section 4, to dominate §° under L;.

ExampLE 2.5. Recall X;) = min?_(X;). Let N(X) = #{i: X, > X(;)}. Define g,(X) = X,
- X, DX) = Y41 g(X) and
_ —[NX) - 1]}.8(X)
D(X)

(217) ‘["l(X) s l = 1’ e, P

Consider the estimator §°(X ) with correction term ¢(X ), whose ith component is ¢.(X ) =
Yi(X — e;), where y(X) is as given in (2.17). This estimator dominates §°(X) = X under L,,
and 2(X) given in (2.6) satisfies the inequality

(2.18) 2X) = — % {NX) - 1}3/D(X),

indicating that 2(X) can be sizable if all the ;s are large, as long as they are close to one
another. This is not so for §*, whose corresponding #(X) is likely to be small when the
/s are large. We thus expect that §° will perform better than §* when the 6,s are large,
especially if the 6’s are close to one another. Our simulation results reported in Table 3
show that the performance of §° is outstanding.
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The use of the loss function (1.1) with positive m/’s implies that a heavy penalty is
imposed for overestimating small parameters 6,. Since uniform domination requires that
R(8, §) = R(6, §°) be true for all §, it is known to be very difficult to shift the UMVUE, §°,
upward. This is the motivation for the construction of §° as well as estimators proposed in
Sections 3 and 4 when such a loss is considered.

The general theory for the discrete exponential family under loss (1.1) will be developed
in the next two sections.

3. Adjusting the UMVUE towards a fixed point. Suppose X,,i=1, .-, parep
independent random variables having discrete density of the form

(3.1) : f(Xi]6) = &(0)t(X)0T,  X,=0,1,---,

where 6, is a positive unknown parameter varying in a certain known interval. The problem
of interest is estimating 6 = (6, - - -, 6,) based on the vector of observations X = (Xj, - - -,
X,). The UMVUE of 6, is 8)(X,) = (X, — 1)/t:(X;), where we define ¢,(y) = 0 if y < 0. To
improve upon the estimator §°(X) = (§Y(X), - - -, 85(X)), one writes the competitor §*(X)
as 8*(X) + ¢(X), where ¢(X) = (¢1(X), - -+, $p(X)). Our goal in Sections 3 and 4 is to find
various ¢(X ) such that §* dominates §° under the loss L,, given by (1.1).

Asin Section 2, it is assumed that the correction term ¢(X ) satisfies regularity conditions
(2.1) and (2.2). Under the loss (1.1), the difference in risk of §* and §° equals (cf. Hwang,
1979, pages 20-22, or Tsui and Press, 1982)

(3.2) R, 8% — R(8, 8°) = 2E,2(X)

where

t(X)) 26(X,)

Examples of (3.3) for Poisson X;’s are given in (2.4) for the loss function (1.1), in (2.5) for
Lo, and in (2.6) for L;.

As mentioned before, in order to find an estimator 8* that improves upon 8°, it suffices
to find ¢ such that 2(X) = 0, with

(3.4) E¢y9(X) <0 for some 4.

(3.3) 2X)=Yr, {t‘(Xl +m = 1) A X + mee) +M¢?(X + m,e,)}.

The inequality 2(X) < 0 can be rewritten as
(3.5) DX) = T (U X)A(X) + wX WHX)} =<0

WIth Uz(Xz) = tL(XL + m, — ]-)/tZ(XL)) wL(X) = ti(XL + mz)/{2tl(Xl)}y and \I/L(X) = (;bL(X + miel)~
The solutions to (3.5) that are provided in this paper apply to general v; and w; functions.
Our solutions are obtained under:

AssuMpTION Al. For each i = 1, ..., p, there exists some «a; for which v,(X,) > 0
whenever X, = q,. .

In the Poisson problems, this assumption is satisfied for «, = 1 under Lo, and for a, = 0
under L.

Our solutions to (3.5), similar to those in Hwang (1982), have the form
—-C(X)H.(X.)

(3.6) Wi(X) = DX

where D(X) = Y71 d,(X)).

The functions H,, C(X) = 0 and d,(X,) = 0 are specified in Assumptions AII through AIV
below. We first explain the essence of these functions and then state the conditions on
them more precisely. The function C(X) is essentially a positive constant, and is often
taken to be a function of the number of X,’s that are larger than prespecified or data-based
values. The function H, is typically of the form

(37) Hz(Xz) = hl(Xl) - hi0\1)> hl(Xl) = E;&A; vl_l(j)’
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where A, is an integer chosen according to some prior information about 6, (cf. Example
2.1). The function d,(X;) will be, for some nonnegative constants f8; and b,, similar to
H%(X,) + b,. Nontrivial solutions are provided only for p > max<;=,8,. It is reasonable to
have some restriction on p, since in many cases, estimators can be improved only when p
is large.

The precise assumptions on H, and d, are as follows:

AssuMpPTION AIl. For an integer A, = o, — 1, H,(X;) = H,(X,|\) is an arbitrary
nondecreasing function such that A.H,(X,) = v;'(X,) if X, > A, and H,(A,) = 0.
AssumpTION AlIL  Let di(X.) = di(Xi| A)) be an nonnegative function satisfying
(3.8) v(X)H(X, — DA, d(X,) = Bimin(d.(X, — 1), di(X.))
for all X; # A, and some nonnegative constant 3,. (Note that (3.8) is automatically satisfied
ifX;=A +1)
AssuMPTION AIV. There exists a finite constant K so that
(3.9) Yo wiX)H X)) = KD(X).

We now provide some solutions to the difference inequality (3.5). Define 8 = max;<.<,f..

THEOREM 3.1. Under Assumptions Al through AIV, Y(X ) = (X)), - - -, $,(X)) given
in (3.6) is a solution to (3.5) where for all X, C(X) satisfies

(3.10) H(X, -1DACX)=0

and

(3.11) 0=CX)=K'(NX) - p)..
Furthermore,

(3.12) 2X) = -CX){NX) - B - KCX)}+/DX),

with strict inequality for those X satisfying the following condition:

(3.13) CX)H;(X, — 1)A, d/(X)) >0 for at least two i’s.

ProorF. Clearly,

—CX)HX)  CX - e)H X, — 1)
D DX —e)

Au(X) = = -C(X)A{H.(X,)/DX)},

where the last inequality follows from (3.10). Now, by defining D, = D(X — e), direct
calculation shows that

~AH(X) | H(X.— DAD
D DD; '
Let D' = ¥ % min{d;(X, — 1), d;(X)}. Since X, > A, implies X, = a;, it follows that

Y v(X)A(X) < % ¥y [—v,(X»A,H,(XJ + {"‘(X’)H‘(X’; DA, d"(X")}*}

(3.14)

—A{H/(X)/D(X)} =

X
s—C(D L[-NG) + 3 (XX, - DA d(X))/D')

In the last transition, the inequality is strict for those X satisfying (3.13). By (3.8), the
upper bound in (3.14) is, in turn, bounded above by C(X )(8 — N(X))/D. From Assumption
ALV, it follows that ¥ Y4 X )w,(X) < KC?*X)/D. These last two statements then imply
that
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2(X) = -C(X){N(X) — B — KC(X)}/D.

By condition (3.11), C(X){N(X) — 8 — KC(X)} = C(X){N(X) — 8 — KC(X)}+, and hence
(3.12) is established.

One remaining question is how to choose each d; so that it satisfies (3.8) and has a
simple form. The functions d,(X;) proposed in this paper are non-increasing for X, = \; and
nondecreasing for X; = A, + 1. Thus, for X; = A, + 1, condition (3.8) reduces to

(3.15) v(X)Hi(X: — DA; d(X) = B, di(X; — 1),

which is the inequality considered in Hwang (1982). Simple choices of d;’s satisfying (3.15)
as given in Hwang (1982) will be used here for X; = A; + 1. Therefore, in the following
corollaries, we focus on the choice of d; only for X; < A,. Recall that Z?za S; is defined to be
zero whenever a > b.

COROLLARY 3.1. Let
h(X) = Ti%a, vi'())
and H,(X)) = h.(X,) — h(\). Define, for X, <A,,
di(X) = | H(X)) |* + a,,
where B, is an arbitrary number greater or equal to one and

a = maxmsX.s)\‘—l{IH’(X‘ -1) |'Bz — IHi(Xi)'/’z}+.

Then H, satisfies Assumption All and d/(X;) satisfies Alll for X; < A,. In particular, if
B1 = 2 and v,(X,) is nondecreasing, the same conclusion holds for a; = vi*(a;){% hi(\;) —
hia)}+.

Proor. See the Appendix.

COROLLARY 3.2. Let Hi(X)) = Y41 0;(j), or —w; according as X, =, or < u;, where
Ui Is @ nonnegative constant. Assume for some nonnegative constant b;, d(X;) = b; for X,
< A.. Then H, satisfies All and d,(X,) satisfies Alll for X; < A;.

ProoF. Assumption All is trivially satisfied. AIII is satisfied for X; < A,, since A; di(X)
=0 for X, <A,.

The following examples illustrate the application of Theorem 3.1 in solving difference
inequalities in order to develop improved estimators. Example 3.1 slightly generalizes
Example 2.1 in Section 2.

ExamPLE 3.1 (Under L,). Let X, ..., X, be independent Poisson random variables
with means @, - - -, §,, respectively. To improve upon §°(X) = X under Ly, it is desired to
solve (2.5). Let H,(X,) = h(X;) — h(\,) where h(-) is as given in (2.8). Let \;,=a; — 1 =0 be
an integer and let di(X;) be as given in (2.9). Assumption AIV is clearly satisfied with
K = %, Condition (3.8) is satisfied when X; < A;, by Corollary 3.1, and by Corollary 2.2.1 in
Hwang (1979) when X; = A, + 1. The rest of the assumptions, Al and AlI, are trivially
satisfied. It follows that ¢°(X) = (¢(X), - - -, ¢5(X)) with,

¢"(X) = —c{N(X) - 2} H(X))/D(X)

is a solution to (2.5) for 0 = ¢ =2 and N(X) asin (2.7). For0 < c¢ =2 and p > 2, (2.1) and
(2.2) are clearly satisfied and, by Theorem 3.1, (3.4) is satisfied. (When ¢ = 2, there are
infinitely many X satisfying (3.13).) Therefore, X + ¢°(X) dominates X for 0 < ¢ < 2 and
P > 2. The optimum choice of ¢, in the sense of minimizing the right hand side of (3.12), is
c=1
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ExaMPLE 3.2 (Continuation of Example 3.1). Corollary 3.2 also provides alternative
solutions. Let Hi(X;) = h(X;) — h(\,) or —p;, according as X; = A, or X; <A, where y; is some
nonnegative constant. Furthermore, define d;(X,) as H(X)H:(X, + 1) or 42, depending on
whether X; = \; or X; < A;. Again, X + ¢°(X) dominates X for 0 < ¢ = 2 and p > 2. These
estimators are similar to those proposed in Tsui (1979a). The recommended choice for ¢ is
1.

In Example 3.3 below, Theorem 3.1 and Corollaries 3.1 and 3.2 can be applied to solve
(2.6), derived under L, nontrivially. However, because some of the solutions fail (2.1), not
every solution corresponds to an estimator dominating X. This forces us to consider H, and
d; only of the form in Corollary 3.2 with u; = 0. In general, this difficulty is encountered
when L,, with some positive m; is used.

EXAMPLE 3.3 (Continuation of Example 3.1 under L;). To apply Theorem 3.1 and
Corollary 3.2 to solve (2.6), let u, = 0, Hi(X,) = (Xi — A+ and d,(X;) = H(X.,). With such
choices and B, = 1, Assumption AIII is satisfied for X; > \; by direct calculation, and is
satisfied for X, < A; by Corollary 3.2. Condition AIV is clearly satisfied with K = Y.
Assumptions Al and AIl also hold for a; = 0. Let Y(X) be as in (3.6) with C(X)
nondecreasing in each coordinate (which implies (3.10)) and 0 < C(X) = 2{N(X) — 1}+,
with N(X) as in (2.7). Furthermore, assume C(X) # 0. It then follows that for p > 1, X is
dominated by X + ¢(X), where the ith component of $(X) is i(X — ;).

The following result provides solutions to the difference inequality (3.5) under the most
general loss Ly, given by (1.1).

THEOREM 3.2. Let Xy, -+, X, be as in Example 3.1. For some nonnegative integers
\i, define H/(X) = {hi(X:) — hi(\)}+, with h, as specified below according to the value of
m;.

(l) Ifm, = 0, define o, = 1, hl(X,) = 5{;1 j_l, and d,(X,) = H,'(Xi + 1)H,(X,)

(i) If m; > 0, define a; = 0, hi(X,) = mi'(X; + m)™, and d\(X)) = m; ' Hi(X,).

Let , be as in (3.6), with C(X) # 0 nondecreasing in each coordinate and satisfying
0 = C(X) = 2{N(X) — maxicj=(a, + 1)}+, and let N(X) be as in (2.7). If p >
maxi<j<p(e, + 1), then §*(X), with ith component X, + Yi(X — mee;), dominates the usual
estimator, 8°(X) = X.

The proof of Theorem 3.2 is similar to that of Example 3.2 and is omitted. The
recommended choice of C(X) is {N(X) — maxi<j=p(a, + 1)}+.

All the above improved estimators shrink the UMVUE towards a point with integer
coordinates. More general improved estimators shrinking towards a point with noninteger
coordinates can be constructed by modifying Theorems 3.2 and 3.1. For details, see Tsui
(1981Db).

Theorem 3.1 will next be applied to the situation in which X,, i =1, ---, p, are
independent negative binomial random variables measuring the number of successes before
the r,th failure. More precisely,

Pﬁz(Xi = xi) - <;L -_'- Ti - 1>0::L(1 - 01')"‘» X = Ov ]-’ cec.
The UMVUE of the success probability vector, 8 = (61, -+, 6,), is 8%X) = (8%UX), - -,
82(X)), where 8%(X;) = X;/(r; + X, — 1). We will consider only the squared error loss, Lq;
a negative binomial example under the more general loss L can be found in Tsui (1981b).
Estimators dominating 8°(X) for p = 3, have ith component

(3.16) 8(X) — ¢{N(X) — 2}+ Hi(X.)/D,

where D = D(X) = Y%, d;(X)), N(X) isasin (2.7),and 0 < c = 2. The functions H, and
d; are specified below, and two choices of these functions are given. In both of these cases
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below, A,(X,) = Y5, (r. +7 — 1)/].

) H.(X,) = h(X.) = (\) and
| _[HAX) + bH(X) iXz\,
diX) = {H?(X» +a, i X, < i

where a, = r, (3A,(A,)/2 —1}sand b, = (r, + A, + 1) /(A, + 2).

hz(Xz) - hz(Az) lez = Ai

(ii) H(X) = {_ " EX

for some nonnegative u, and
_ |HHMX) + 5:;H,(X,) ifX, =\,
(X = { u? if X < A,

where b, is as given in (i).
The negative binomial result is summarized in the following theorem, whose proof is
again similar to the one in Example 3.2 and is omitted.

THEOREM 3.3. For the negative binomial problem described above, if the functions
H, and d, are as in either (i) or (ii), then the estimator given componentwise in (3.16)
dominates the UMVUE 8°(X) under L, provided p > 2.

The recommended choice for ¢ is 1.

4. Adaptive estimators for the discrete exponential family. This section devel-
ops improved estimators that shrink the UMVUE towards the nth order statistic of the
observations. Shrinking the UMVUE towards a point which depends on the observations,
rather than towards a constant point (as in Section 3) creates some technical problems in
proving domination. However, the difficulties can be surmounted with the aid of the
following lemmas. Their proofs are direct and are omitted.

LEMMA 4.1. Lety=(yi, ---, ) be a sequence of integers. If y, # y(n), then (y — e;) (n
=Y.

LEMMA 4.2. Letybe asin Lemma 4.1. If y, = y(n), then yoy — 1 =< (y — €.) (n)-

Other solutions to the difference inequality (3.5) are provided in Theorem 4.1 below.

This theorem can be used to generate improved estimators which shrink the\UMVUE
towards X(,). The solutions proposed, similar to (3.6) are of the form

(4.1) w(X) = -C(X)H,(X)/D(X), where D(X)=%7-1d (X).

We assume that the functions H, and d, satisfy Assumptions BI through BIV below, which
are modifications of Assumptions AII through AIV.

AssumprioN BIL. H,(X) and d,(X) = 0 depend on X only through X; and X,,.

AssumpTION BIL.  A,H;(X) =0 for all X, A,H,(X) = v;Y(X,) for X, > X(»), and H;(X)
= 0 whenever X, = X(,).

AssumptioN BIII. For X, # X,
(4.2) [ v (X)) H (X — e)A,d(X)]| = Bmin(d, (X — &), d.(X)).

(Inequality (4.2) is clearly satisfied if X, = X(») + 1, since H,(X — e,) = 0 by BI, BII, and
Lemma 4.1.)

AssumpTioN BIV. Y2, w/(X)H(X)/ Y- d,(X) < K, for some positive constant K.
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Define
(4.3) B =maxi<;<pB, and N(X) =#{i:X,>Xn)}.

THEOREM 4.1. Suppose Assumption Al, and Assumptions BI through BIV hold, and
that C(X) satisfies

(4.4) 0=C(X)=K}YN(X)-8)+
and
(4.5) ] H(X—-e)A,C(X)=0.

Then y, given componentwise in (4.1), is a solution to (3.5) for all X with X ,) = max; <=, q;
— 1. Furthermore, for such X,

(4.6) 2(X) = -C(X){N(X) - —KC(X)}+ /D,
with strict inequality for those X satisfying
(4.7) (Xi = X)) C(X)Hi (X — &)A;d; (X) #0

for at least two i’s.

The proof of Theorem 4.1 is similar to that of Theorem 3.1, and is provided in the
Appendix. Because of Lemma 4.1, X, is essentially constant (like A; in Theorem 3.1) with
respect to the operator A,, except when X,) = X;. In that case, Lemma 4.2 applies.

Corollaries 4.1 and 4.2 below, which provide choices of d; satisfying (4.2), parallel
Corollaries 3.1 and 3.2, and can be similarly proved. Corollary 4.1 concentrates only on the
case B; = 2.

COROLLARY 4.1. Suppose that v/(X,) is nondecreasing in X;. Let h;(X,) =Y ., v:'(j)
and Hi(X,) = hi(X,) — hi(X(n)). Define d,(X) = HX(X) + a., where

a, = Uz_l(az){%hi(X(n)) _hl(ai)}+~
Then d, and H; satisfy (4.2) for X, < X(»).

COROLLARY 4.2. Let H/(X) = h(X;) — hi(X(n)) or —p;, according as X, = or < X(n),
where y; is an arbitrary nonnegative constant and h, is as defined in Corollary 4.1. For
X, < X(n), define d,(X) = b, for some nonnegative constant b,. Then d, and H; satisfy (4.2)
for all X with X < X(n).

The following examples illustrate the application of Theorem 4.1.

EXAMPLE 4.1 (continuation of Example 3.1). To apply Theorem 4.1 to the difference
inequality (2.5), let A(X,) be as in (2.8), H,(X) = h(X,) — h(X(»), and

H(X)H (X +e¢) forX;= X,

di(X) = {H?(X) +a;(X) for X; < X(n),

where a,(X) = (3%2h(X () —1}+. Take
¢i(X) = —c{N(X) —2}+ H(X)/Y 51 d)(X),

where N(X) is as in (4.3). Direct calculation and Corollary 4.1 show that (4.2) is satisfied
with B, = 2. Assumption BIV is also satisfied with K = %. The remaining assumptions in
Theorem 4.1 are clearly satisfied. This implies that ¢ is a solution to (2.5) when p > n + 2
and 0 < ¢ = 2. Therefore, X + ¢(X) dominates X under Lowhenp >n+ 2and 0 <c¢ < 2.
The special case where n = 1 and ¢ = 1 was given in Example 2.2.
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REMARK. Another choice of H; and d; is

3y = V(X)) —hi( X)) Xiz X,
.HI,(X) - {_ Hi Xi <X(n)y

for some constant y; = 0, and

: _ H(X)H;(X + e) if X;= X(,,),
di(X) = {u? if X < Xin).

The corresponding estimator, X + ¢(X), again dominates X whenp >n +2and 0 <c <
2.

Theorem 4.2 below provides some adaptive improved Poisson means estimators under
the general loss function L,,.

THEOREM 4.2. Let Xi, ---, X, be as in Example 3.1. The functions H; and d; are
defined according to the value of m,. Let h; be as in (i) and (ii) of Theorem 3.2. In both
cases below, H(X) = {hi(X)) —hi(X@n)}+. Q) m; =0 a, =1 and di(X) = H(X +
e)H(X), (i) mi>0:a,=0 and di(X)=m; Hi(X).

Let yi(X) = —c(X)H,(X)/Y?-, d;(X), where ¢(X) # 0 is nondecreasing in X; for
X: > X(») and satisfies

(4.8) 0 = c(X) = 2{N(X) — maxi=j=p(a + 1)},

and let N(X) be asin (4.3). If p > n + max; <,<,a, + 1, then §*(X), with ith coordinate X;
+ ;i (X — mye;), dominates the usual estimator, §°(X) = X.

The proof of Theorem 4.2 is similar to that of Theorem 3.2 and Example 3.2 and is
omitted. A recommended choice of ¢(X) is { N(X) — max;<;<p(a; + 1)}, which satisfies
the assumptions of Theorem 4.2.

When all the X,’s belong to the negative binomial family, a theorem similar to Theorem
4.2 can be developed by another application of Theorem 4.1. The details, however, will not
be given here. The result in the squared error loss case can be found in Ghosh and Hwang
(1981).

APPENDIX

Proor oF CorOLLARY 3.1. Clearly, H; satisfies AIL It is also obvious that d; satisfies
AIII for X; < a;, since H;(X;) is a constant for X; < a;, and so is d,. In what follows, we
show that d; satisfies AIIl for o; = X; < A;. Since B; = 1, d;(X;) is nonincreasing for
X; < A;. Assumption AIII is therefore equivalent to

(A1) vi( X)) H(X; — 1)A,di(X;) = Bidi(X;).
By the Mean Value Theorem and the fact that | Hi(X;)| = | H, (X, — 1)| when X; < A;,
(A.2) v(Xs) Hi(X; —1)A.di(X:) = vi(Xi) | H(X, —1)| Bi| Hi(X, =) | o7 (X;)
= B H.(X, —1)|*.
Now the upper bound in the above expression is
Bl Hi(X) [P+ Bi| Hi(X, =) |# = Bi| HA(X,) | =< Bi| HA(X:) | +B.a: = Bidu(X,).

Hence, the first part of this corollary is proved.

When B; = 2, consider again only those X,’s such that d; = X, = A;. Instead of using the
Mean Value Theorem in deriving (A.2), we directly calculate the difference A,d,(X;), and
obtain

v(X)) Hi(X; —1)Aidi(X) = Hi(X; — 1)(Hi(X:) + Hi(X: -1)).
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To show that the above expression is bounded above by 2d,(X;), it is sufficient to show
that

(A.3) H(X, -1)(H.(X;) + H(X; —1)) —2HX(X;) < 2a,.
The left hand side of (A.3) is
{8R(\) —2h:(X)) —hi(X, —1)} v (X)) = (8R:(A:) — 2R, (o)} UTH(X)).

This upper bound is, in turn, bounded by 2a, (due to the monotonicity assumption of
v;(+)), which establishes (A.3).

ProoF oF THEOREM 4.1. We first give two lemmas which are needed for the proof of
Theorem 4.1. The proof of Lemma A.1 is straightforward and is omitted.

LEMMA A.l. Lety be asin Lemma 4.1 and y; # y(). Then (y + €;)(n) = Yn).
LEmMMA A2. Assumption BII implies that H;(X) <0 if X; < X(n).

Proor orF LEMMA A2, If X; = X(,), then H;(X) = 0 by Assumption BIL If X; =
X(n) —1, then Assumption BII implies that H;(X + ¢,) — H;(X) = 0. From Lemma A.1, it
follows that (X + ;) (n) = X(n) = X(n) = X; + 1. The first statement in the proof implies that
H;(X + e;) =0, and hence H,(X) < 0.

For X; = X, — 2, again we have (X + €,) (n) = X(») = (X, + 1) + 1. By the result stated
in the last paragraph, H;(X + e,) = 0. Repeating the above procedure, Lemma A.2 is
established.

To prove Theorem 4.1, note that

-C(X)H(X) C(X—-e)H(X—e)
D(X) D(X - ¢e)
For those X with X, = X(»), H;(X) = 0 by assumption. By Lemma 4.2, X; — 1 = X,) — 1

= (X — €&)(n). It then follows from Lemma A.2 that H;(X — e;) < 0. Moreover, w;(X)$#(X)
= 0, which implies that

(A.5) 2X) <Y

(A.4) Anhi(X) =

oty VXD B (X) + w; (X)$H(X).

Therefore, we need consider only those X with X, # X,) below. By Lemma 4.1, A, treats
X(n) as a constant. It follows from (A.4) and (4.5) that

Ani(X) = - C(X)A{H(X)/D(X)}.

Now
. _ —AH(X) | H(X — e)A;D(X)
Let D’ =Y/, min{d,(X — ¢,), d,(X)}. It then follows that
(6(0'¢ i )(z i\ — € 1&g
T uX)A(X) < —(D‘)‘Z(i:X,#X(m) {— b (X)AHX) + 12 )H(XDA )08 %) I}
(A.7) (6/0.¢
S_(_)T) {= NX) + Yxrsxo |0 XIVH(X — €)Adi(X)|/D’}.

In the last transition, the inequality is strict for those X satisfying (4.7). This is straight-
forward if one considers three cases: (i) A;d,(X) > 0 for both i, (i) A,d;(X) < 0 for both i,
and (iii) A;d;(X) is positive for one i and negative for the other.

By (4.2), the upper bound in (A.7) is, in turn, bounded by C(X)(8 — N(X))/D. From
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Assumption BIV, Yy 2(X)w:(X) < KC*(X)/D. Together, these imply that
2(X) = -C(X){N(X) - 8 — KC(X)}/D.

By (4.4), C(X)(N(X) — 8 — KC(X)) = C(X)(N(X) — B — KC(X))+, which establishes
(4.6). .
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