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OPTIMAL STOPPING REGIONS WITH ISLANDS AND PENINSULAS

By DoNALD A. BERRY! AND PECHENG WANG

University of Minnesota

An urn contains a known number of balls, an unknown number R of
which are red. Sequential sampling with replacement is possible and cost is
proportional to sample size. The objective is to estimate R with 0-1 loss, given
that a priori R has a discrete uniform distribution. It is shown that optimal
stopping regions may be disconnected and composed of islands and peninsulas.

1. Introduction. In most sequential sampling problems that can be stated simply,
the stopping and continuation regions are connected sets. We present a problem which can
have a disconnected stopping region. An unusual example of the problem is described in
Section 2.

An urn contains a known finite number N of balls; an unknown number R of the balls
are red. The prior distribution for R is uniform on {0, 1, - - - , N}. We are allowed to sample
sequentially from the urn with replacement; Berry (1974) considers a similar problem for
sampling without replacement. The present objective is to guess R with loss 0 if correct, 1
if not. Each observation costs ¢, and loss and sampling cost are assumed to be additive. An
equivalent formulation is in terms of coin-tossing: the prior for the probability of heads is
uniform on {0, 1/N, 2/N, --., 1}, but the loss structure is much less natural in this
formulation. :

A terminal Bayes rule is any mode of the current posterior distribution of R which,
given r red balls in a sample of n, is

(1L1) PR=jlr,n) = (N =j)""[She ' (N = )", j=0,1,--,n.

The mode of this posterior is an integer adjacent to the maximum likelihood estimate
Nr/n of R. What is of interest here is the nature of optimal sampling rules.

This is a typical problem in sequential decision theory and can be solved using dynamic
programming, or backward induction, provided optimal rules are bounded. However, the
usual techniques for finding a bound (Ray, 1965) do not apply; in fact, in general an
optimal rule is not bounded. To see this, suppose c is very small and N is moderate in size;
take N to be odd for convenience. Suppose the sample gives red and non-red in alternation
and indefinitely. Of course, as n — o, P(|r/n — 1/2| < &) — 0 since N is odd, but obtaining
red on every other draw has positive probability for » finite and so must be reckoned with.
Along this alternating sequence, for sufficiently large n, the probabilities of R = (N — 1)/
2 and (N + 1)/2 both become greater than % — ¢ for any positive ¢ when n is even and the
larger probability is between %(1 + N™') — ¢ and %(1 + N~") when 7 is odd. In both cases
it is optimal to continue sampling for sufficiently small ¢, so that sampling can continue
indefinitely. (Of course, an intelligent sampler would soon come to question the original
assumptions.)

The above discussion applies whenever the sample proportion of reds hovers midway
between j/N and (j + 1)/N. When the sample proportion gets sufficently close to j/N for
n large, the probability (1.1) that R = j becomes greater than 1 — c and so sampling should
not continue—perhaps it should have stopped previously. Therefore, for sufficiently small
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Fic 1. The optimal stopping rule when N = 9, ¢ = 0.02, and sampling is truncated at 20
observations. Each box corresponds to a possible state of information and the boxes in a row
correspond tor =0tor=n.

¢, the optimal continuation region has N “fingers” which extend indefinitely in the direction
of n, and complementary stopping fingers or peninsulas.

Though sampling may continue indefinitely, the probability of being in one of these
continuation fingers tends to 0 as n increases. Therefore, there is always an e-optimal rule
that is truncated for any positive e.

The example presented in the next section does not show these continuation fingers
since c¢ is moderately large. It is presented because its stopping region is so unusual.

2. An example. Let S(r, n) denote the stopping risk and W(r, n) the optimal risk
after r reds and n — r nonreds. Then
S(r,n) =1 —max;P(R =j|r, n) + nc,

where the posterior probabilities are given by (1.1). When the optimal rule (selection of n)
is bounded by M* then it can be found as follows. For M = M*andr=20,1, --- , M, set

(2.1) W, M) = S(r, M).
Then, forn=M-1,M—-2,...,0andr=0,1, ..., n, calculate
(2.2) W(r, n) = min{S(r, n), C(r, n)}

where C is the continuation risk

r+1 r+1
C(r,n)—n—+-2-W(r+1,n+1)+<1—n+2

Keeping track of whether W = S or W = C (or both) gives all optimal rules. When M* =
o then, as indicated in the previous section, solving this system using a particular M gives
at best an approximation to an optimal rule and to W(0, 0), the minimum Bayes risk.

By way of example, suppose N = 9 and ¢ = 0.02. Figure 1 gives the optimal stopping
rule when sampling is truncated at M = 20. The top-most box corresponds to the starting
point. With each observation, the process moves to the next lower row of boxes, the box on
the right if the ball is red and the box on the left otherwise. Boxes in which stopping is
optimal are shaded. We find W (0, 0) = 0.728.

)W(r, n+1).
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We have checked that the rule given in Figure 1 is actually optimal among all rules,
truncated or not, using the following device. Solving (2.1) and (2.2) for any M = 0 gives
lower bounds on the various W(r, n). By replacing (2.1) with

W(r, M) = Mc

(which would be obtained if an outside source reveals the value of R after M observations)
and then solving (2.2) gives upper bounds on the various W(r, n). (This implies that if
stopping is optimal in this modified problem it is optimal in the original problem as well.)
If the upper and lower bounds and the implicit rules agree (for those (r, n) which can be
reached) then the optimal rule is bounded and it is the rule common to both variations.
We find this to be the case in our example for M = 50 and therefore the optimal rule is the
one given in Figure 1.

There are many continuation points in Figure 1 that cannot be reached following the
indicated optimal procedure. But the most interesting feature of the procedure is the
stopping island between n = 6 and n = 7. Presumably, one could find values of N and c for
which there are many such stopping islands. Stopping islands can also be present when ¢
is sufficiently small for there to be infinite continuation fingers and stopping peninsulas.

3. Conclusion. When sampling exchangeable Bernoulli variables sequentially in an
estimation problem, the optimal stopping region can be disconnected and can appear quite
strange if the prior distribution is discrete—population size known and finite. The problem
considered here assumes 0-1 loss but it is the discreteness of the prior distribution and not
the form of the loss function which causes these remarkable stopping regions.
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