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A USEFUL EMPIRICAL BAYES IDENTITY

BY NoEL CRESSIE

Visiting Research Scientist, Educational Testing Service, Princeton

For any decision problem, one wishes to find that estimator which
minimizes the expected loss. If the loss function is squared error, then the
estimator is the mean of the Bayes posterior distribution. Unfortunately the
prior distribution may be unknown, but in certain situations empirical Bayes
methods can circumvent this problem by using past observations to estimate
either the prior or the Bayes estimate directly. Empirical Bayes methods are
particularly appealing when the Bayes estimate depends only on the marginal
distribution of the observed variable, yielding what is known as a simple
empirical Bayes estimate. The paper looks at the underlying circumstance of
when a simple empirical Bayes estimator is available, and shows its occurrence
not to be happenstance.

1. Introduction. A statistician is often faced with the following problem: Observations
Xi, ---, X, from some probability distribution have been collected and the statistical
model has been chosen as A(x|{). The parameter ¢ is interpretable with regard to the
phenomenon under study, and so some inference is needed from data (X, ---, X,) to
parameter {. Sometimes however, the interpretation that { is a fixed but unknown
parameter, is unrealistic. For example, latent trait models in mental testing (Lord and
Novick, 1968) must realistically model a sequence of bivariate random vectors (Xi, Z1),

-, (X, Z,), where Z; is the unobserved trait (or true score) of the ith examinee, and X;
is that examinee’s observed score on a test. The population from which the examinee
comes has a certain distribution of true scores, call it G. So if Z is the true score of a
randomly chosen member of that population, then G({) = Pr(Z = {). Thus there are
contexts where it makes sense to model the unknown parameter ¢{ as also being random.
A sensible question then to ask is: Suppose I observe X = x, what then can I say about the
associated unobserved Z?

The approach we have just been describing would be called empirical Bayes (Robblns
1956, 1964; Maritz, 1970) if we used other observed variables X, -.., X, to make an
inference from observed X = x to unobserved Z. Section 2 briefly sets out the general ideas
behind the empirical Bayes approach and considers the very important notion of a simple
empirical Bayes estimator. Up to now these have been discovered in a very haphazard
way. However, the identity derived in this section shows their appearance not to be
happenstance. The binomial model is used throughout to illustrate the approach and new
results for it are derived. Concluding remarks are made in Section 3.

2. Empirical Bayes and the underlying relation. Consider a probability space
generated by the bivariate random vector (X, Z), where the first member is observable but
the second is not. Let Z have an unknown distribution function G and, given Z = {, X is
modeled to have probability distribution or density A(x| {), where A is known. Hence the
marginal distribution of X is

(2.1) dc(x) = f h(x|$) dG(S).
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Given X = x, we wish to make a decision §(x) about the associated value of Z. Let a loss
L(8(x), §) = {8(x) — ¢}? be incurred when the parameter value is { and the decision 8(x) is
made. The overall expected loss is then £{8(X) — Z}?, and the resulting 8 which minimizes
this, called the Bayes estimator, is the posterior mean 8¢ (x) = [ ¢ dP({|x), written as
éale(Z)y i-e')

(2.2) 621:(2) = {pc ()}~ j $h(x|$) dG (D).

If G were known, the decision 8¢, a function of observed X = x, would be easy to calculate.
The “empirical” part of empirical Bayes involves using an already observed sample X;,
-+ -, X, (n independent and identically distributed observations from ¢¢) independent from
X, to estimate 8¢ and possibly G.

Suppose we rewrite (2.1) as

(2.3) o () = &{h(-|2)},

where &7 is the expectation operator (linear), with expectations being taken over Z. Now
suppose L is a linear functional with domain contained in the space of all real-valued
functions; then, provided the range of Z does not depend upon x,

(2.4) L(¢c(-)) = éz{L(h(-|Z))},

when both sides are well defined. Examples of L are the differential operator D{ f(x)} =
df(x) /dx, (x € R), and the difference operator A{ f(x)} = f(x + ¢) — f(x), (x € R).

Now consider only those x € R for which ¢g(x) > 0, S, = {x:¢s(x) > 0}. Then from
(2.1), forx € S,

JL(h(xl $)) dG(3)
L(¢c(x)) _

40 () Pl ),

=JL(h(xI§))x h(x|$) dGQ) =JL(h(x|§))

A 7
j h(x| @) dG(a) =19 J' h(x| @) dG(a) @19

where P({| x) is the posterior distribution function of Z, given X = x. Thus for x € S,
(2.5) L(¢6(x))/dpc(x) = 6z {L(h(x|Z))/h(x|Z)},

where &7, is the conditional expectation operator (linear), with expectations being taken
over Z conditional upon X = x.
Equation (2.5) is a surprising consequence of (2.3). Define

(2.6) R:f(-) = L(f(-))/f(-),

a functional whose domain is the same as that of L. Then (2.3) to (2.6) together imply that
for x € S,,

(2.7) R(¢c(x)) = 621 {R(h(x|Z))}.

So although R is nonlinear, it exhibits a “quasi” linear property; it can be taken under the
expectation operator but in so doing it modifies the operator to a conditional expectation
operator. This underlying relation (2.7) was presented in terms of distribution functions
for the case where X is a continuous variable by Maritz and Lwin (1975); see also
Rutherford and Krutchkoff (1969) and Nichols and Tsokos (1972) where (2.7) is used for
particular choices of R.

The potential use of (2.7) is apparent if we can find a functional R, for which

(2.8) Ro(h(x|{)) = {u(x) + v(x),

where u is some function such that u(x) > 0 for x € S,, and v is a real-valued function
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defined on S,. Then (2.7) becomes

{Ro(¢a (x)) = v(x)}/ulx) = 2:{Z},
and the Bayes estimate of Z given by (2.2) can be written
(2.9) da(x) = {Ro(pc(x)) — v(x)}/u(x),

where R, satisfies (2.8). The important thing to notice about (2.9) is that the right-hand
side depends only on x and the marginal distribution of the observed variable X. Therefore
an observed sample Xj, ..., X, can be used to estimate it, and by implication 8¢ (x). The
result: a simple empirical Bayes estimator of Z given X = x.

Now (2.7) also suggests another approach to the estimation of Z, given X = x. If we can
find functions «, v and w that satisfy the decomposition

(2.10) Ri(h(x]| ) = u(x)w({) + v(x),
for the particular R; we have chosen, then (2.7) becomes
{Ri(de (x)) — v(x)}/ulx) = &, {w(Z)}.

So in this context, it makes more sense to estimate the “natural” parameter 7' = w(Z),
whose Bayes estimate is {Ri1(¢pg(x)) — v(x)}/u(x).

An example is provided by the binomial model, which we write as
&

(211) hb(xl {) = (i) (1 - g)k{f/(l - g»)?x’ X = 0, 1» M) k.

Then

Ri(ho(x|$)) = holx + 1|$) /s (x]$) = (/A =Nk —x)/(x+1), x=0,1,.---,k—1
Hence from (2.10) the Bayes estimate of T'=Z/(1 — Z), given X = x, is

(2.12) 0(x) = (x + Doe(x + 1)/{(k — x)pc(x)}, x=0,1,---,k—1
Equally, the Bayes estimate of U= (1 — Z)/Z is

(2.13) vix)=(k—x+ 1Dog(x —1)/{xpc(x)}, x=1,2,--- k.
Use of Jensen’s inequality on 8%z |.{Z/(1 — Z)} and &z,:{(1 — Z)/Z} yields
(2.14) /{1+v(x)}=62:{2}=1/{1+0(x)""}, x=0,1,---, &,

where »(0) = « and 6(k) = . It is fortuitous that 6(x)/{1 + 6(x)} = 1/{1 + v(x + 1)}
(x=0,1, --., k), where »(k + 1) = 0. Therefore from (2.13) and (2.14), the quantities

(2.15) O(x—1)/{1+0x—1))}, x=01---, k+1,

where 6(—1) = 0, 8(k) = « are increasing in x and partition the interval [0, 1] into 2 + 1
disjoint intervals such that

(2.16) O0x—1)/{1+0(x—1)}=<62:{Z} =0(x)/{1+0(x)}, x=0,.--, k.

In a personal communication, Professor H. Robbins has informed us of the appearance
of these intervals in a series of lectures given by him at SUNY, Stony Brook in 1979-1980.

Empirical Bayes estimation for the binomial parameter has been studied by a number
of authors; e.g. Martz and Lian (1974), Lord and Cressie (1975), Vardeman (1978), Berry
and Christensen (1979) and Cressie (1979). To solve (2.1) for G in this case is an ill-posed
problem since two G’s with the same first # moments will result in the same ¢¢. It is not
surprising that a simple Bayes estimator of Z has eluded researchers to date, since vastly
different priors G could support the same marginal ¢. What is surprising is that no such
difficulty is encountered for a suitably chosen function Z/(1 — Z) or (1 — Z)/Z. Further-
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more, it has been long known and makes good intuitive sense that &z,.{Z} should be
increasing in x, but now we can do much better since (2.15) defines increasing intervals
given by (2.16) that tie these quantities down even further.

Sometimes it is very difficult in a particular problem to find functions u, v and w, and
a functional R;, to satisfy (2.10). Cressie (1982) shows that for most discrete distributions
such a functional is available. See also Cressie and Holland (1981) for an application to the
Rasch model. Typically, though, we will have R;(h(x|¢)) = a.({), and so Ri(¢c(x)) =
6z x{a«(Z)}. It is still possible to find an empirical Bayes estimate of Z, given X = x, if
some way of undoing the x-dependent transformation can be found. Obviously the naive
choice a;' (R (¢c(x))) will be biased. Even in the case where there is not x-dependence,
care is needed.

The binomial model given by (2.11) once again provides a good illustrative example. If
T=2Z/(1-Z),thenZ =T/(1 + T) = b(T). Hence using the bias correction given by
Kendall and Stuart (1963, page 231) we see that

(217)  &871:(Z} = 0(x)/{1 + 0(x)} — Varr|.(T)/{1 + 0(x)}3: x=0,..-, k-1

When we recognize the first term of (2.17) as the upper bound of &%, .(Z), then clearly the
second term is a compensating correction. Another application of the useful identity (2.7)
yields Varr|.(T) = (x + 1)8(x) — #*(x),x =0, - - -, k — 2. Care is needed here because we
know that &%|.{Z} must lie in the interval given by (2.16). Some slight modification to
Varr . {T}/(1 + 0(x))? will guarantee this; instead of correcting 6(x)/(1 + 6(x)) with
—{0(x + 1)8(x) — 6%(x)}/{1 + 8(x)}?, we propose the following simple approximate Bayes
estimator

0(x) {0(x) — 0(x —1)}0(x)
218)  d(x) =177 I+0@ +0@ma+x-DNa+8w)° 0,y
where 0(-) is given by (2.12) and 6(—1) =0, 6 (k) = . We are led to (2.18) for the following
reasons: it satisfies the important interval constraint (2.16); similar considerations given to
8z,:{(1 — Z)/Z} and a correction from below yields the identical estimator; when G is
assumed to be a beta distribution (as it often is for binomial 4) with parameter r, s then
871:{Z} can be calculated to be (x + r)/(r + s + k), which is exactly d(x) since 8(x) =
(x + r)/(x + 1+ s+ k). Hence there are sensible ways to control for bias.

3. Conclusions. The useful identity presented in Section 2, namely (2.7), explains
why certain families of models are always chosen in the empirical Bayes context. For
discrete distributions, see the family considered by Nichols and Tsokos (1972). This family
is perfectly constructed for the linear operator in (2.6) to be L = F, the ¢/th order forward
shift. Nichols and Tsokos also consider the continuous exponential family of distributions,
which is perfectly constructed for the linear operator in (2.6) to be L = D the ¢th
derivative.

However, we are then faced with the problem of estimating density derivatives ¢ & (x),
£=0,1,2, ..., from marginal observations X, --., X,. This is a non-trivial task as the
number of papers devoted to smooth estimation of a density and its derivatives will testify.
Some of these include Johns and Van Ryzin (1972), Lin (1975), and Kim and Van Ryzin
(1980). The problem is basically that derivatives of density functions are numerically and
statistically very unstable quantities to estimate. Usually an approximation is made by
substituting some sort of smooth differencing for differentiation. This rather circumvent
and approximate approach can be avoided by once again realizing the potential of (2.7).
Instead of choosing D for the linear operator L in (2.6), go immediately to choosing F*:
f() > f(- + £). Soif h(x]$) = exp{x ¢ + a(x) + b({)}; i.e. the continuous exponential
family, then from (2.7),

R (pc(x)) = dpa(x + £)/pc(x) = &z|:[exp(¢Z)-exp{a(x + ¢) — a(x)}].
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Whence,
(3.1) 6z :{exp(Z)} = exp{a(x) — a(x + 1)}¢c(x + 1)/pc (x).

Thus the Bayes estimator of exp(Z) is given by the right-hand side of (3.1), which can be
estimated from observations on X alone more stably than can anything involving deriva-
tives. But it might be the Bayes estimate of Z that we want, so an “undoing” transformation
needs to be applied to yield &z :{Z}, such as for the binomial in the previous section. The
result is an approximate simple empirical Bayes estimate of Z that only requires estimation
of a density and not its derivatives.

Sometimes it is a consequence of the model that the Bayes estimator satisfies certain
smoothness properties. For example, &% {Z} should be monotonic increasing in x for the
binomial model (2.11). Hence any empirical Bayes estimator should reflect this; the
smoothness aspect of empirical Bayes has not been pursued in this short note and the
interested reader is referred to Van Houwelingen (1977).

N
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