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ASYMPTOTIC OPTIMALITY OF THE PRODUCT LIMIT ESTIMATOR'

By JoN A. WELLNER

University of Munich and University of Rochester

The product limit estimator due to Kaplan and Meier (1958) is well-
known to be the nonparametric maximum likelihood estimator of a distribu-
tion function based on censored data. It is shown here that the product limit
estimator is an asymptotically optimal estimator in two senses: in the sense of
a Hajek-Beran type representation theorem for regular estimators; and in an
asymptotic minimax sense similar to the classical result for the uncensored
case due to Dvoretzky, Kiefer, and Wolfowitz (1956). The proofs rely on the
methods of Beran (1977) and Millar (1979).

1. Introduction: the censored data problem. Let (Y1, Yu), i =1, ---, n, be
independent identically distributed pairs of non-negative random variables with distribu-
tion function (df’s) Gi(t) = P(Y1; = t) and Gz(t) = P(Yz; < t), t € [0, ). Assume that Y;;
and Y; are independent for all i, and that G; and G are continuous. In the censored data
problem with random censorship we observe the n pairs of random variables (X, §;), i =
1, .-+, n, where

1 lf Xi= Yli

(1.1) Xi = min{Yy;, Yai), 5‘:{2 if Xi= Yo

The problem is to estimate the distribution function G;.

Let (X), 8y), t =1, - -+, n denote the (X, §) pairs ordered by the X’s; i.e. X1) < X(2)
< ... < X(n). Then the well-known product-limit estimator G, of G, is defined by Gi, =
1 — Si. where

n—i 2-8(,)
(1.2) Sin(t) = Hi:Xmst (m) , 0=t< o

see e.g. Peterson (1977). The product-limit estimator G;, was derived by Kaplan and Meier
(1958) as the “nonparametric maximum likelihood estimator” of G, in the above problem;
see Johansen (1978) and Scholz (1980) for reexaminations of the maximum likelihood
character of (. Because the product limit estimator is a nonparametric maximum
likelihood estimator, it seems to be generally assumed that it will have the optimality
properties characteristic of maximum likelihood estimates in more familiar finite-dimen-
sional problems. But apparently no such optimality properties have been proved so far.
The question remains: Is the product limit estimator a “good” estimator of G, at least
asymptotically?

Our object here is to answer the above question affirmatively. Theorem 1 gives a
representation for the asymptotic distribution of regular estimates of G; which asserts,
roughly, that the limiting process for any sequence of regular estimates (,,; of G; must be
at least as dispersed as the limit process corresponding to the product limit estimator G,;.
This theorem is analogous to the representation theorem established by Beran (1977) in
the uncensored case. Theorem 2 gives asymptotic minimax properties of the product-limit
estimator which cover a wide variety of loss functions. The proof of Theorem 2 is based on
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work of Hajek (1972), LeCam (1972), and, especially, Millar (1979); see also Levit (1978).
Theorem 2 is not quite as strong as the classical asymptotic minimax theorem for the
sample distribution function due to Dvoretzky, Kiefer, and Wolfowitz (1956) (see also
Millar, 1979) essentially because the sup norm of the limit process in the present censored
case is not distribution free.

2. The main results. We first need some notation and easy facts concerning L?
spaces: Let » be a measure on R = (—, o) with respect to which G and G, have densities
&1 and g, respectively (the measure » induced by G + G always works). Then it is easy to
see that the (X, ) pairs observed have a density f with respect to u = » X (counting
measure) on S = R X {1, 2} given by

(2.1) f(x,8) = [{1 = Ge(x)) & () P°[{1 = Gi(x)}&(x)!, (x,8) € S.

It is also easy to recover Gi (or Gz) from f: First by writing f; = f(-; i), Fi(x) = P(X = x,
8=1)= [ . fidr,i=1,2and F(x) = P(X < x) = Fi(x) + F:(x),wehave F=(1-F) =
(1 — G1)(1 — Gy). Then note that

"1
(2.2) exp(—f =f dv) =1- Gi(x),
, F

by an easy computation, where the left side is just a function of f; e.g. see equation (2.2) of
Peterson (1977).

Let| - |l. and (-, <), and || - ||, and (-, -),, denote the usual norm and inner products
on L*(S, ) and L3(R, »), respectively, and note that for arbitrary functions f = (fi, f2) and
g=(g1,8&)in LS, u) = L*R, ») X LR, »)

(23) (fyg>u=(f1>g1)v+(f2,g2>v'

We will usually write (-, -) for both (-, -), and (-, -), (and similarly for the norms), and
add the subscripts only when confusion might otherwise arise.

Let #(u) denote the set of all densities with respect to u on S. Let 4(f, a) denote the
set of all sequences of densities { . € #(u)} such that

(2.4) lim, e || mY2(f3% = f7%) — a| =0,

where o € L*(S, ). This implies that « is orthogonal to /% in L%(S, ), as is easily shown.
Let %(f) denote the union of all sets { #(f, «) :a € L%(S, p), a L f?}.

Set T; = inf{¢: Gi(t) = 1}, equal to o if the set is empty, for { = 1, 2. Note that we
cannot hope to estimate G; to the right of T, = min(7;, T:) when we observe only the
(X, 8) pairs, since P(X; = To for alli =1, ..., n) = 1. (In many practical situations T, =
Ty < T = .) Thus we will consider estimation of G, on [0, T'] where T' < TY; this will also
simplify our proofs.

Let {f.} € €(f) and let {Gi.} be the corresponding sequence of G:’s obtained via
(2.2): i.e.

(2.5) 1 — Gin(x) = exp(—f F,i/im dv).
0 m

Consider the corresponding sequence of experiments where, in the nth experiment, we
observe n independent pairs (Xyi, x:), i = 1, - -+, n with joint density I[i=1 fo(%n:, 8n:) on
S”. Let {@G,} be any sequence of C[0, T]-valued estimators where G, is a function of
{(Xm', 8,u~), L = 1, LN n}.

We say that an estimating sequence, or estimator, {@1n} of G is regular at f if the
distributions £ {n"?(G1, — G1n)} on C[0, T] converge weakly to the same distributions
9 = 9y, depending only on f, for all sequences { fn} € €(f). Of course 2 may also depend
on the estimator (1. Let Z denote a process with law 2 on C[0, T'].
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Now let Z = {Z(¢)}o=:=r be a mean-zero Gaussian process on [0, T'] with covariance
function

(2.6) E{Z(s)Z(t)} = Gi(s)Gi(t)C(s N\ ¢)

where

2.7) C(t) = ‘1 dv = 1 dGy
. = A i—,—zfl V= Om .

Let 9, = #(Z) denote the distribution of Z on C[0, T'].
The following theorem extends the result of Beran (1977) to the case of randomly
censored data.

THEOREM 1. For any regular estimator (1, of Gy in the random-censorship model
(based only on observation of {(X;, 8;),i =1, --., n}), the limiting law % on C[0, T], T
< T, may be represented as 27+ Dw where Dz is the distribution of the mean zero
Gaussian process Z with covariance function given by (2.6) and 9w is the distribution of
some independent process W. Equivalently,

(2.8) Z=Z+W

in distribution where Z and W are independent.

To see that the product-limit estimator Gy, given in (1.2) is asymptotically optimaj
recall that, by Theorem 5 of Breslow and Crowley (1974), the process

(2.9) Z, = n"(Gn — Gv)

converges weakly to the process Z. In other words, G is a sequence of estimators for
which W = 0 in (2.8), and hence the product limit estimator is optimal in the sense of
Theorem 1. Note that the obvious “lower linear interpolation” of Sin, Sn yields a
continuous estimator (¢, with corresponding process 2 satisfying || 2, — 25 ||§ = 0,(1).
Hence Z also converges weakly to Z, since Z, converges weakly to a continuous Z, n'/? x
(maximum jump of Gy, on [0, T']) = 0,(1).

Now we turn to our asymptotic minimax result for the product limit estimator Gi,.

As in Millar (1979), let ¢ : C[0, T] — R™ be subconves; e.g. £(x) = sup,|x(¢)| = || x|,
¢(x) = [|x(¢)|* d¢t, and ¢(x) = 1{x:| x|| > ¢} are all subconvex. Let & be the collection of
all continuous distributions on S of the form (2.1); i.e.

F = {F= (Fl,Fz)IFl':J’ (1_G2) dGl,FZ

= J' (1 — G1) dGs for some continuous df’s Gi, G on R*}.

Although we are now using “F” in two ways, this should cause no confusion. As in Millar
(1979), let b denote the procedures (i.e. Markov kernels: for each s € S”, b(s, -) is a
probability on (C[0, T'], ¥) where ¥ = Borel subsets of C[0, 7] with the supremum norm;
and for each A € &, b(-, A) is measurable), and let F* denote the n-fold product measure
corresponding to F. See pages 234-235 of Millar (1979) for more details.

THEOREM 2. For fixed 0 < T <o and0<8<1,let ¢/:C[0, T] > R be subconvex,
andlet F* = FH(T,8) ={F=(F,F;) E:1— F(T)=68>0)}. Then

(2.10)  lim inf, ,.infysupre s+ JJ ¢{n"2(y — G1)}b(s, dy)F*(ds) = supres+ E¢(Z),

where Z is the mean-zero Gaussian process on [0, T with covariance given by (2.6).
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Furthermore, if
(2.11) lim,s e J’ £{n"*(U$, — G1)}F™(ds) = E¢(Z) uniformly in FE F*,
then G$, is asymptotically minimax in F*; i.e.

Supre s+ J {nVX (G5, — G1)}F™(ds)
(2.12) lim, e =1.
inf,Supre &+ J'J ¢{n"*(y — G1)}b(s, dy)F"(ds)

REMARK 1. If ¢(x) = 1{x:||x||J > ¢}, ¢(x) = || x||{, or some nice function of || x||{,
(2.11) can be verified by using the exponential bound given in Theorem 2, page 82, of
Foldes and Rejté (1981) together with the strong approximation result contained in
Corollary 6.1, page 104, of Burke, Csorgd, and Horvath (1981). In particular, taking b, =
{1-F(T)}'=8"'<xforall FE#"in (4.4) on page 94, and thus also on pages 101 and
104, of Burke et al. yields r(n) = O(n""*(log n)*?) uniformly in F € #*. Thus their
Corollary 6.1 on page 104 implies that

@) supres +P{|| Z, — Z.||§ > r(n)} < constant.n~"*?

where Z, =4 n"/*(Gin — G1) and Z, = 4 Z for all n = 1. After a truncation argument, with
the truncation error controlled uniformly in F € &#* by use of the exponential bound of
Foldes and Rejt6 (1981), (a) implies (2.11) for loss functions ¢ which are nice functions of
[EZ R

REMARK 2. A more satisfactory asymptotic minimax theorem for the product limit
estimator would allow loss functions ¢ defined on C[0, T,], To = min(T;, T:) < «. Results
of this type may be possible using the fact that if C(7,) = oo, then || Zwr||§° =a | B||d is
distribution free where wr = (1 + C)~(1 — G1)~' is a weight function, C is the function
defined in (2.7), and B° denotes a Brownian bridge process on [0, 1]; see Hall and Wellner
(1980).

3. Proof of the theorems. We begin with several lemmas, whose proofs we will defer
until Section 4. Lemma 1 describes the behaviour of the likelihood ratios

(3.1) L, = 2log [[: {f¥*(X, 8:)/fV*(Xi, 8:)}

for {f.} € %(f, a); this result has been used repeatedly by Beran, e.g. Beran (1977), and
can be deduced easily from LeCam’s second lemma. Lemmas 2 and 3 give the limiting
behaviour of n/*(Gy, — G,) for { .} € 4(f, a); the characteristic functional of the process
Z is computed in Lemma 4; the results of some straightforward L? computations are
summarized in Lemma 5.

LEMMA 1. If {f.} € 4(f, a), a € LS, u), then for every ¢ > 0, limn—.Ps{| L, —
2n"V2 Y a(X, 86:)fFTVA(X;, &) + 2"(1"2] >e} =0.

For each ¢t € [0, T'] define y;: S — R by
1
Ye(s, 1) = 1[0'1](3){?6 + C(t) — C(S)}fl/Z(S, 1)
(3.2) yi(s, 8) =

1i(s, 2) = 11,0 (8){C(t) — C(s)}f*(s, 2)

where C is given by (2.7).
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LEMMA 2. If {f,} € 4(f, a) and {G1,,} is defined by (2.5), then supo=i<r|n'>{ G1.(t)
= Gi(t)} — 2Gi(t)(a, y:)| = 0 as n — oo; recall that T < To = min(T, Ts).

Let v be a function of bounded variation on [0, T'], set
T T
(3.3) V(s) = J G, dv, U(s) = J’ G.C dv,

and define n: S — R by

3.4) (s, 8) = |15 D =[{V()/F(s)}) + Uls) = Cs) V(s)If*(s, Vo7 (s)
’ e 7(s, 2) = {U(s) — C(s) V(8)} f/2(s, 2)1go,71(8).

LEmMmA 3. If {f.} € €(f, a), {Gi.} is given by (2.5), and v is a function of bounded
variation on [0, T'], then
T

T
limn_,wf n"*(Gin— G)) dv = 2J Gi(t)(a, v¢) dv(t) = 2(a, 7).
(] )

LEMMA 4. The characteristic functional of the Gaussian process Z on [0, T'| with
covariance function (2.6) is

’ : 1
(3.5) E exp(i f Zdv) = exp(— - 02)
R 2

where
T T T 2 1
.6 2= o%(v) = 2dC = G e .
(3.6) o’ = o*(v) jo vidC JO (J GldU) G%ngG)
LEMMA 5. Let n be the function defined in (3.4); then
@) [nl* =0+ 5> and (n, f"*) =¥,

where ¢ = o*v) is defined in (36) and b = U(0). Hence n = n -—
(n, fY2 Y% =y — bf? and o, = no/o satisfy no L f*%, a, L f*? (trivially) and

(ll) " Mo "2 = 02» "0(* "2 =1, ((X* ’ "1) = 0.
ProoF oF THE(ZREM 1. Let {Gi,) be a regular estimator of G;. The characteristic
functional of n'/%({,, — Gi.) under f, is given by
T T
Efnexp{i" nY*(Gn — Gin) dv} = Efexp{if (G, — Gin) dv + L,,}
0 0

3.7) r
= Efexp{if nV%(Gi — Gi) dv — 2i(a, ) + L,,} + o(1),
0

by Lemma 3, the latter being true for all « € L%(S, u), @ L f*? and all functions v of
bounded variation on [0, T']. By regularity, (3.7) converges to E exp(i [§ Z dv). The rest
of the proof proceeds exactly as in Beran (1977), except that we choose a = Aa, where
a, given in Lemma 5 satisfies a,, L /2 || a, || = 1, and (a,, n) = o. The final result is that

9(v, 0) = p(v, —0)exp(—Y0a?)

where (v, 0) is the characteristic functional of Z exp(—Y%a?) is the characteristic functional
of Z by Lemma 4, and ¢(v, —o) is the characteristic functional of W.0O
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PrOOF OF THEOREM 2. Most of the proof follows directly from Lemmas 1 through 5
together with the methods and results of Millar (1979), so we only give a sketch here. To
make appropriate identifications with Millar’s Section 3, for fixed F € # * with density f,
take H = {a € L%(S, p):a L f*}, B = C[0, T], B* = BV[0, T'] = functions of bounded
variation on [0, T'], and define 7: L%(S, u) — C[0, T'] by ra(¢) = Gi(t)(a, y.) where v, is
given in (3.2). Also define 7*:BV[0, Tl = H by 7*v = no where 7o is given by (3.4) and
Lemma 5. Then 7* is the adjoint of 7: by Lemmas 3 and 5 (a, 7*v) = (a, 70) = (o, ) =
[T Gi(a, v.) dv = [T (ra) dv for a € H. Thus, by way of Lemmas 4 and 5 || 7*v||* = || no ||
= ¢%(v) and hence Millar’s P, is the law of Z on C[0, T'], while P, is the law of Z + th =
Z + 27a, letting A = 2a.

Once these identifications have been made, the proof of (2.10) proceeds much as the
proof of Millar’s Proposition 5.1, using Millar’s Propositions 2.1 and 3.1 and Remark 1; we
omit the details. Then (2.12) follows directly from (2.10) and (2.11). ]

4. Proofs of the lemmas.

ProoF oF LEMMA 2. Let || - ||{’ = supo</=r| - | denote the supremum norm on C[0, T'].
First note that

(4.1) supose=7| nA{Fa(t) — F(£)} — 2(a, f*1p0,1)| = 0

where

(4.2) (&, f*10,q) = f {a(s, Df%(s, 1) + a(s, 2)f2(s, 2)} dv (s);
0

this is similar to (2.9) of Beran (1977). Thus | F, — F||§ — 0, and || F/F,||{ — 1 since T <
T, implies F(T) > 0. Hence we have

"fuls, 1) “f(s, 1)
1/2 An —_ = — -
n'2(An(t) — A(2)) { T dr(s) i T —=—dv(s )}
= f n'2f%(s, 1) — f12(s, DI{f%(s, 1) + f3(s, 1)}F( dv(s)

A )

! f(s, 1)
/2 - o
+f0 n/*{F.(s) — F(s)} FOF.() dv(s)

f(s, )

T ¥

— 2f als, Df%(s, 1) =— dv(s) +2f (a, fho,5) =

( )

= 2(“» Yt))

where v, is defined by (3._2_), by using (4.2) and then Fubini’s theorem on the second term.
It is easily shown, using F(T) > 0, that this convergence is uniformin 0 <t =< T} i.e.

RY2(An = A) — 2(a, y.)||§ = 0 asn— .

Then it follows, by a mean value theorem argument, that with || A¥ — A|J < | A. — AT

— 0,
n"*(Gn — G1) = n'*{exp(=/A\,) — exp(=A\)} = —exp(=A\F)n'*(N\, = /)
— —exp(-N\)2(a, v.) = —2Gi(a, v.)

uniformly on [0, T']. 0

Proor oF LEMMA 3. The convergence part of Lemma 3 follows immediately from
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Lemma 2 together with the fact that v is of bounded variation. The second equality results
from straightforward computation using Fubini’s theorem: («, y:) = (a1, y1:) + (a2, y2¢)
where

¢ t
(e, yie) = f ouf%”(l- - C) dv + C(t) j aft? dv,
0 F o

¢ ¢
(02, yae) = _J axfy*C dv + C(t) j oef¥* dv.
0 0
Hence, using Fubini’s theorem with V and U given in (3.3),

T T T
J Gi(t)(a, v:) dv(t) =] {V(%, - C> + U}auf%/2 dv +f (U~ CV)asfs? dv
o )

0

= (a, m) + (az, n2) = (a,n). . 0

Proor oF LEMMA 4. Since Z is mean-zero Gaussian, its characteristic functional on
[0, T'] is given by exp{—%o0?%(v)} where, for functions of bounded variation v on [0, T'],

T 2 T T
o(v) = E(J VA dv) = j f G1(s)G1(t)C(s A t) dv(s) dv(t)
0 0 0
T

T T T !
=f J GI(S)G_I(t)J 1po,sne1(r) dC(r) du(s) dv(t) =f V(r)* dC(r)
0 0 o

0

by repeated use of Fubini’s theorem. []

ProoF oF LEMMA 5. Now
T T T
||n1||2=f (V/F)*f dv+2J' (V/F)(U - VOfy dv+f (U - VC)*f, dv
0 0 0
and
T
lmz = J' (U - VC)*;, dv.

0

This yields, noting that [§ (V/F)*f. dv = [§ V* dC = ¢*(v),
T T
Inl? = o*(v) + QJ (V/FWU — VC)f, dv +f (U — VC) dF.
0 0

But, upon noting that d(U — VC) = dU — CdV — VdC = —-G,C dv + G:C dv — V dC
= —V dC, an integration by parts yields

T T
f (U-VC)*dF = —2f (V/F)(U - VC)f. dv + U(0)*.
0 0

Thus || 9]|> = ¢® + U(0)? = o* + b% Moreover, by way of a similar integration by parts,
(n, f*%)y = U(0) = b. Part (ii) of the Lemma follows easily from (i). 0
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