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COMBINING INDEPENDENT NONCENTRAL CHI SQUARED
OR F TESTS!

By JouN I. MARDEN

University of Illinois at Urbana-Champaign and Rutgers University

The problem of combining several independent Chi squared or F tests is
considered. The data consist of n independent Chi squared or F variables on
which tests of the null hypothesis that all noncentrality parameters are zero
are based. In each case, necessary conditions and sufficient conditions for a
test to be admissible are given in terms of the monotonicity and convexity of
the acceptance region. The admissibility or inadmissibility of several tests
based upon the observed significance levels of the individual test statistics is
determined. In the Chi squared case, Fisher’s and Tippett’s procedures are
admissible, the inverse normal and inverse logistic procedures are inadmissi-
ble, and the test based upon the sum of the significance levels is inadmissible
when the level is less than a half. The results are similar, but not identical, in
the F case. Several generalized Bayes tests are derived for each problem.

1. Introduction. The problem of combining several independent tests of significance
into one overall test has long been of interest. See Mosteller and Bush (1954) for an
introduction and Oosterhoff (1969) and Rosenthal (1978) for more recent developments. In
this paper we find a minimal complete class of tests in the problem of combining
independent noncentral Chi squared tests, and necessary conditions and sufficient condi-
tions for a test to be admissible in the problem of combining independent noncentral F
tests. Among other results, we show that for almost all cases of interest, Fisher’s and
Tippett’s procedures are admissible while the inverse normal, inverse logistic and sum of
Dpi’s procedures are inadmissible.

The problems we treat fit into the following framework. Let T}, - - -, T}, be real-valued
test statistics, where for each i, T; has density f;(¢; 6;) with respect to Lebesgue measure.
We wish to combine the n problems testing §; = 0 versus §; > 0 into one overall problem
testing

(1.1) Hy:0 =0 versus Ha:0 € Q4 = Q — {0},

where 8= (6, - -+, 6,) and @ = {6 € R"| 6, = 0Vi}. Two types of tests for problem (1.1) are
generalized Bayes tests and those based on the observed significance levels of the individual
T’s. Under general conditions, satisfied in our problems, the former tests are admissible.
See Theorem 5.1 of Farrell (1968). The latter type arise when each f; has monotone
likelihood ratio in 6,. The observed significance level for T, when 7T; = ¢ is observed is
defined to be

p.=pi(t:) = Py(T; > t;),
where P, is probability under H,. Several tests based upon (pi, .-, p.) have been
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proposed. These tests are called nonparametric or omnibus procedures since they are
applicable for any f;’s with monotone likelihood ratio.

Fisher (1938) and Pearson (1933) suggested using the test based upon II p;, or equiva-
lently, the test with rejection region

(1.2) -2 IOg Pi > xgn,oo

where x2, is the upper a point of a central Chi squared variable on » degrees freedom.
Tippett (1931) proposed the test which rejects Hy when
(1.3) min;{p;} <1— (1 — &)/~

Other procedures include the inverse normal (Liptak, 1958; and Stouffer according to
Mosteller and Bush, 1954), inverse logistic (Mudholkar and George, 1977), inverse Chi
squared (Yates, 1955 and Lancaster, 1961), and sum of p;’s (Edgington, 1972) procedures,

which reject Hy when .
(1.4) -2 &7 (p;) > Vn®7'(1 - a),
(1.5) —Zlog[pi/(1 —p)]> ba,
(1.6) 2G7'A = D5 ) > Xpoas
and ‘

1.7) Ipi<ces

respectively, where ® is the standard normal distribution function and G(-; 8) is the x%
distribution function. Note that test (1.6) is equivalent to test (1.2) when all 8;’s are 2, and
that all but test (1.3) are of the form

(1.8) S H'(p) < hu
or

(1.9) SH' 1 —pi) > ho
for some distribution functions H;, - - -, H,.

Several authors have studied admissibility of combination procedures. Birnbaum (1954)
showed that given any nonparametric combination procedure which has an acceptance
region A monotone increasing in the p/’s (i.e., if (p?, - - -, p%) € A and p; = p? for all i, then
(p1, - -+, pn) €E A), there exists a problem for which the procedure is most powerful against
some alternative. In fact, Brown, Cohen and Strawderman (1976) have shown such tests
form a complete class. Thus there is no hope in general deciding which of the nonparametric
procedures is best. When each T} has an exponential family density with natural parameter
6;, the minimal complete class of tests is given by all tests with acceptance region
(essentially) convex and monotone decreasing in T-space. See Birnbaum (1954, 1955) and
Eaton (1970). In this case, Birnbaum (1954) strongly suggested that Fisher’s procedure
(1.2) is admissible, proved that Tippett’s procedure (1.3) is admissible, and showed that
tests based upon

(1.10) II1(1—ps)

or the rth (r > 1) smallest p, are inadmissible.

Oosterhoff (1969) applies Birnbaum’s ideas to find a minimal complete class of invariant
tests in a (non-exponential) problem involving the combination of nonindependent non-
central ¢-tests. In this paper we apply the techniques of the above authors to the Chi
squared and F situations. Ghia (1976) has conjectured minimal complete classes in these
problems (proved when each variable is Chi squared on 1 degree of freedom) under the
assumption that the null and alternative parameter spaces are topologically separated.
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Marden (1978) and Marden and Perlman (1981) exhibit the minimal complete class for the
F case.
In Sections 2 and 8 we observe X3, - - ., X2 independent, where

(1.11) X~ xn(ed),

i.e., X7 is a noncentral Chi squared variable with »; degrees of freedom and noncentrality
parameter 77. Here we base problem (1.1) on X = (X, ---, X,) where § = 7= (7, - --,
Tn).

Bhattacharya (1961) performed Monte Carlo experiments to compare the powers of
tests (1.2), (1.3) and the test with rejection region

(1.12) = X?> x%, (sum test).

Koziol and Perlman (1978) numerically compared the powers of the three tests Bhatta-
charya treated, plus test (1.4) and the tests with the following rejection regions:

(1.13) 3 X, > ¢, (sum of Chi’s test),
and
(1.14) 3 b; exp(c;X?) > d,,

where b; > 0 and ¢; > 0 for all i. They also derive some Bayes tests, including the sum test
(1.12) and test (1.14). Their calculations reveal that the inverse normal test performs
poorly while Fisher’s procedure (1.2) and the sum test (1.12) have good power over a wide
range of alternatives. Tippett’s procedure (1.3) and test (1.14) have good power only along
the axes of 2, and the sum of Chi’s test (1.13) has good power only when each »; = 1 and
the alternatives are near the line (1, 1, - - -, 1).

They note that when all »’s = 2, Fisher’s test (1.2) is “relatively minimax” in the sense
that it minimizes the maximum shortcoming in power at certain points * among tests they
consider. When all »/s are 1, the sum test (1.12) has this property. They consequently
propose the test with rejection region

(1.15) Sien Xt — 23ier, log pi(Xi) > Xh +2nya

where Iy = {i|»; = 1}, I, = {i| v: > 1}, and n;, = #I,.. This test is expected to perform well
with respect to the relatively minimax criterion.

We are able to adapt Birnbaum’s results on exponential families to this case (a la
Oosterhoff (1969), Theorems 1.4.1 and 1.4.3) since the density of X is close to exponential
with natural parameter 7 (see (2.5)). In Section 2 it is shown that a necessary and sufficient
condition for a test to be admissible is that its acceptance region is convex and monotone
decreasing in the X-space. Using this result, we show in Section 3 that tests (1.2), (1.3),
(1.12), (1.13), (1.14) and (1.15) are admissible for all levels a, tests (1.4) and (1.5) are
inadmissible for 0 < a < 1, and test (1.7) is inadmissible for 0 < a <1 — 1/n! We conjecture
that test (1.6) is admissible for all a, since both special cases (1.2) and (1.12) (when »; =
B) are. L. Brown and W. Strawderman (Koziol and Perlman, 1976, page 23) have already
shown that Tippett’s procedure (1.3) is admissible. Thus our results complement those of
Koziol and Perlman. For tests with reasonable power overall, Fisher’s procedure, the sum
test, and test (1.15) are recommended. They are admissible, so cannot be dominated, are
easy to calculate, and have easily obtained cutoff points.

In Sections 4 and 5 we follow a similar program when we base (1.1) on Fi, .-, F,
independent, where

2 .
(1.16) F, ~ X8

2
X

’

the numerator and denominator Chi squared being independent. Now 8 = A = (A, ---,
An).
Zelen (1957) and Zelen and Joel (1959) look at the test for n = 2 based upon p{p: and
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Pape (1972) considers tests for n = 2 based on II p%, where the F’s arise from incomplete
block designs. They suggest weights d or d;. Monti and Sen (1976) propose using the test
based upon X v; Y, (see (1.17)) and show that for the proper weights y;, the test has locally
optimal properties.

Using the methods in Section 2, we show in Section 4 that a sufficient condition for a
test to be admissible is that its acceptance region is convex and monotone decreasing in
the space of Y = (Y3, - .-, Y,), where

— Fi
- 1+Fi'

(1.17) Y.
A necessary condition is that the acceptance region be convex and monotone decreasing
the space of Y* = (Y%, ..., Y), where

(1.18) Y=Y}

and r; is defined in (4.2).
Section 5 contains some generalized Bayes tests, including those which reject Ho when

(1.19) 2F;>fa
(1.20) 2Yi> ya,
and

(1.21) A+ F)>g..

We apply the results of Section 4 to show that Fisher’s procedure (1.2) is admissible for 0
< a < 1if and only if all »;’s = 2; Tippett’s procedure (1.3) is always admissible; the inverse
normal (1.4) and inverse logistic (1.5) procedures are inadmissible for 0 < a < 1 if either
n>2orn=2and »; < rig, and are admissible if n = 2, 0 < a < %, both »;’s = 2 and both
w’s < 2; and the sum of p;’s procedure (1.7) is inadmissible for 0 < a < 1 — 1/n! if some
wi > 2, and admissible if all »,’s = 2 and all y;’s < 2.

2. Chi squared case: Conditions. Consider problem (1.1) based on X as in (1.11)
and immediately thereafter. Let the space of X be denoted &= {x € R"|x; > 0 for all i}.
We assume the reader is familiar with the standard terminology of decision theory as in
Ferguson (1967). Test functions on & will be denoted ¢(x), and the risk function is given
by

ro(¢) = Eo(¢)[1 ~ E.(¢)] if 7=0[r€ Q]

Define % to be the class of sets C C Z satisfying the following two conditions:
(i) Cis monotone decreasing, i.e., x € C and y; < x;Vi, y € & implies that y € C.
(ii) Cis closed and convex in &.

Let

®={¢|lp=1-1I;,CE¥) and P ={¢|¢p=0ae [p]¢ED)},

where I is the indicator function of the set B C %, and p is Lebesgue measure on %. The
main result of this section follows.

THEOREM 2.1. ® is a minimal complete class of tests for problem (1.1) based on X.

The proof of Theorem 2.1 is presented in two parts. Part I is a combination of Theorems
1.4.1 and 1.4.3 of Oosterhoff (1969).

ProOF OF THEOREM 2.1. Part I: ® is complete. We start with Theorem 5.8 of Wald
(1950), which states that the set of all proper Bayes tests and their weak* limits constitute
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an essentially complete class. Any proper Bayes test for problem (1.1) is essentially of the
form

1 ifj R.(x)7(d7) > d
(21) ¢ = Q4

0 otherwise

for some proper measure 7 on 4 and finite constant d, where
(2‘2) R-.-(x) = H R-,,(xi; Vl)’

and R.(x; ») = f.(x; »)/fo(x; ), f.(x; ») being the density of a (X?(7?))'/? variable. From
Anderson (1958), pages 112-113, we have

T(r/2)T'(1/2 + k) (r7x?)*

T'(»/2 + k)F(l(Z) (2k)!

(2.3) R.(x; v) = exp(—7%/2) Y50

1

(2.4) =exp(—72/2)f e™h,(du),

-1

where A, is a probability measure on [—1, 1] whose density with respect to Lebesgue
measure is proportional to (1 — 2% ¥%[_; ywhen » = 2, and which equals % (§_; + 81)
when v = 1, where §, is the measure putting a point mass 1 at y. By (2.2) and (2.4),

(2.5) R.(x) = exp(—ET?/2)J exp(Zr.u;x;)h(du),

K4

where A (du) = II A, (du;) is a probability measure on %, the closed unit cube in R".
Equation (2.5) shows that R.(x) is convex in x, and equation (2.3) shows that R.(x) is
strictly increasing in each x,. Thus {x | [ R.(x)7 (dT) = d} € %, and ¢ of (2.1) isin ®. The
argument in the proof of Theorem 3.1 of Eaton (1970), which refers to Birnbaum (1955)
and Matthes and Truax (1967), shows that any weak* limit of tests in ® must be in ®.
Thus ® is essentially complete by Wald’s Theorem.

We argue that the family of densities considered here is complete (in the sense of
Lehmann (1959), page 113), which implies that ® is complete. Each X; can be thought of
as arising from a sample of »; independent normal variates with variance 1 and means
unconstrained except to have norm 7;. If 7 is allowed to range over £, the family of densities
of the totality of these normal variates is complete, hence the family of densities of X is.

Part I1. All $ € ® are admissible. We adapt the proof of the theorem in Stein (1956).
Our proof is very similar to part b) of the proof of Theorem 4.6 in Ghia (1976). We could
also have used Theorem 1 of Nandi (1963). For a set B C %, define D(B) to be the set of
all test functions ¢ such that ¢ = 1 a.e. [u] on B¢, ie., the acceptance region of ¢ is
essentially contained in B. The following lemma contains the main step in the proof.

LeEmMMA 2.2, For C€ %, if ¢ € D(C) and y & D(C), then there exists T € Qa such that
r: (¢) <r.(Y).

Take ¢ € ®, and let C be the set in ¥ corresponding to ¢. Clearly ¢ € D(C). Lemma 2.2
shows that for any test y such that Eo(¢) = Eo(y) and u({¢ # ¢}) > 0, since ¢y & D(C), ¢
dominates y at some alternative. Thus ¢ is admissible.

Proor oF LEMMA 2.2. Note that C can be expressed as an intersection of halfspaces of
Z of the form H = {x € &| Zy;x; < ¢} for y € €4 and ¢ > 0. Thus for some H, ¢ € D(H)
and ¢ & D(H). Use the fact that u({Zy;x; = ¢}) = 0 to obtain for s > 0 that
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(2.6)  exp(s°=yi/2) exp(—sc)[ry (V) — 1y (9)]

= f (6 — YT, s)o(X)p (dx) + | (1 —P)TX, s)p(x)p (dx),
int (H)

He¢

where from (2.5),

(2.7) T(x,s) = j exp(s(Zy.uix; — ¢))h (du).
U

We will show that as s — o, the limit of the left-hand side of (2.6) is +o, which proves the
lemma. Start by taking the limit of the first integral of the right-hand side of (2.6). Since
each u; < 1, (2.7) shows that | T'(x, s) | = 1 and lim,,..T(Xx, s) = 0 for x € int(H). Thus
application of the Dominated Convergence Theorem shows the limit is zero. Now take the
limit infimum of the second integral. Since u;, ---, u, can be simultaneously arbitrarily
close to 1 with positive A-measure, (2.7) shows that for x € H*, lim, ,.T(x, s) = +oo.
Because 1 — ¢ = 0, Fatou’s Lemma and the fact that ({1 — ¢. > 0} N H°) > 0 implies
that the limit infimum of this term is +o. Hence the result.

3. Chi squared case: Specific tests. We refer the reader to Koziol and Perlman
(1978) for some generalized Bayes tests. The above authors and Monti and Sen (1976)
have shown that the test based on Zy?X?/#; is locally most powerful for alternatives 7 =
A(y1, =+ +, Y») @8 A — 0. Such tests are admissible. Each test we consider below satisfies the
monotonicity condition (i) for tests in @, hence by Theorem 2.1, admissibility is equivalent
to convexity of the acceptance region. It is easy to see that Tippett’s procedure (1.3), the
sum test (1.12), the sum of Chi’s test (1.13) and test (1.14) have convex acceptance regions,
hence are admissible. To show the same for Fisher’s procedure (1.2), write

—_ d . —_ d “ —_ v,/2—1
T log pi(x) = o Lz exp(—w/2)w dw

=2x [j exp(—(w — x%)/2)(w/x%)"/* dw]
3.1) x2

=2x [j exp(—w/2)(1 + w/x?)"/*! dw]
0

o -1
=2 [f exp(—w/2)(w + x%)~ /2 dw} if »=1
0

Line 3 (line 4 for »; = 1) of (3.1) shows that — (d/dx) log p: is increasing in x, so that
—2 log p: is convex in X, hence the acceptance region is convex. Equation (3.1) also can be
used to show that test (1.15) is admissible.

Consider test (1.8) when each H, is a distribution function whose support contains (a,
o) for some a € [—o, ©), so that

(3.2) H'(p)—>o as x>0,

since p, — 1. Suppose this test has a convex acceptance region A. We show that if A, <
o, then a, the level of the test, is 0, which implies that the test is inadmissible for 0 < a
< 1. Take any x € %. By (1.8) and (3.2), since A1, < %, we can take ¢ > 0 small enough so
that x' = (nxy, €, +++, €); X2 = (g, NX2, & =+, €), +++; X" = (g, -+, & nx,) are in A. By the
assumed convexity of A, (1/n)Zx' =x + (g, -- -, £¢) € A. By the monotonicity of A, x € A.
Thus A = %, proving a = 0. The inverse normal procedure (1.4), inverse logistic procedure
(1.5) and test based on =G ~'(p;; B:) (which reduces to (1.10) when each B; = 2) are of this
form, hence inadmissible for 0 < a < 1.
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A similar argument will show that the sum of p/’s test (1.7) is inadmissible when 0 < ¢,
< n — 1, since, given any value for one coordinate of a point x, the other coordinates can
be chosen small enough so that x is in the acceptance region. Because c,» = n — 1 when
a* =1 — 1/n!, the test (1.7) is inadmissible when 0 < a <1 — 1/n!

Finally, note that weighting the summands by positive constants in any of tests (1.2),
(1.4), (1.5), (1.12), (1.13) or (1.15) does not change the admissibility or inadmissibility of
the test.

4. F case: Conditions. We test (1.1) based upon the variables Fi, - - -, F, defined in
(1.16). We work with Y and Y* defined in (1.17) and (1.18) respectively, where r = r(»,
1) is defined as follows. Let F:(2; a, b) be the confluent hypergeometric function

T'(b) = T(a+k) 2*

4.1) 1Fi(z a, b) = @) ,Eol‘(b+k) "k

See Abramowitz and Stegun (1964), Chapter 13. Define r by )

]
(4.2) r(v, p) = inf{s > 0|inf.5o 5-2-% log \Fi(2; (v + p)/2,v/2) = 0}.

In Marden and Perlman (1981) we show that
(4.3) max(1/2, v/(rv + p)) <r<1.

Table 2.1 of Marden and Perlman (1980) contains some values of r.

The space of Yis # = {y € R*"|0 <y; < 1Vi}, and for Y*is #* = {y* ER"|0 <y} <
1Vi}. Define 2 to be the class of all sets C C % which are closed, monotone decreasing, and
convex in #. Let 2* be the class of all sets C* C % whose images in #* under (1.18) are
closed, monotone decreasing, and convex in #*. A test ¢(y) of (1.1) is a function on #. Let
W (¥*) be the class of (nonrandomized) tests with acceptance regions in 2(2*). Define
¥ = {¢|¢ = ¢ a.e. [u] for some ¢ € ¢}, and ¥* similarly, where p is Lebesgue measure on
%. The main result of this section follows.

THEOREM 4.1. 1) \I_'*_is a complete class of tests for problem (1.1) based on Y. 1I)
All tests in ¥ (hence in ¥) are admissible for problem (1.1) based on Y.

PRroOF. Part I. A proper Bayes test relative to the proper measure 7 on 4 is of the
form (2.1) with R, (x) replaced by @a(y) = fa(y)/fo(y), fa(y) being the density of Y when
A € Q obtains. From Anderson (1958), page 114, it is seen that

(4.4) Qa(y) = [T exp(—Ai/2)1F1(Aiyi/2; ai, bi),

where a; = (v; + p;)/2, b; = v;/2, and F; is given in (4.1). Lemma 2.6 (c) of Marden and
Perlman (1980) shows that log:Fi(z; a, b) is convex in z” for r in (4.2). Also, Qa(y) is
clearly increasing in each y;. Thus the acceptance region of ¢ must be in 2*, and ¢ € ¥*,
As in Part I of the proof of Theorem 2.1 for @, any weak* limit of tests in ¥* is in ¥*,
hence ¥* is an essentially complete class of tests by Wald’s Theorem. An argument as in
Part I of the proof of Theorem 2.1 can be made to show that the family of densities of Y
is complete, where each Y; is considered to arise from »; independent normal variates with
variance o7 and an independent 67 X2 variate. Thus ¥* is a complete class.

Part II. For B C %, define D(B) to be the class of all tests ¢ such that ¢ = 1 a.e. [u]
on B°. This part of the theorem will be established by proving the analogue of Lemma 2.2.
(Replace (%, ) there with (2, A) here.) Follow the proof of Lemma 2.2 with (x, %)
replaced by (y, %) until Equation (2.6), which becomes
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(4.5)  57° exp(sZy:/2) exp(—sc/2) [rsy () — rsy ()]

= J (6—DV(y, 9f(y)dy + | Q1-9V(y,s)h(y) dy
int(H)

He
where, by (4.4),
(4.6) V(y, s) = s7" exp(—sc/2) [[i1 1Fi(sv:y:/2; @i, b;)

and ¢ = X(a; — b;). Abramowitz and Stegun (1964), Equation 13.14, states that when a =
b>0,as z— o,

(4.7) 1Fi(z; @, b) ~ [T'(b)/T (a)le*z" .

Hence from (4.7), lim, .. V(y, s) = 0(x) asy € int(H)(H®).

Now an argument similar to the one below Equation (2.7) applied to Equation (4.5) will
prove the analogue of the lemma. To justify use of the Dominated Convergence Theorem
in the first integral here, note that for y € int(H), since e *1F:(z; a, b) is increasing in 2
whena = b>0and eachy; <1,

| V(y, s)| = s [[&1 exp(—sv:/2)1F1(s7:/2; @i, bi).

The right-hand term above is continuous and finite in s > 0, and has limit zero as s — «
by (4.8), hence is bounded in s = ¢ for any ¢ > 0.

REMARK 4.2 There are tests not in ¥ which are admissible. In fact, take any A € Q4
with at least two nonzero components. The test rejecting H, when Qa(y) > c is admissible,
but it can be shown that log @a(y) is strictly concave in y, hence the acceptance region is
not in 9, so that the test is not in ¥. It is an open question whether all tests in ¥* are
admissible.

5. F case: Specific tests. In Section 5.1 we present some generalized Bayes tests. In
Section 5.2 we consider the nonparametric tests except for Tippett’s procedure (1.3), which
is clearly in ¥ *, hence admissible. Marden and Perlman (1981) contains additional results
in the inverse normal or logistic cases when n = 2 and (#1, 1) = (2, p2), and in the sum of
pi’s case when n = 2 or when n > 2 and (»;, u;) = (», p) for all ;. We remark that Monti and
Sen (1976) have shown that the test based on 3v;(»; + w;) Y;/»; is locally most powerful
along A =AyasA— 0.

5.1 Bayes tests. We follow Koziol and Perlman (1978) in considering Type I and II
priors. Given measures i, - - -, 7, on (0, ©), the corresponding Type I and II priors on £4
are [[m (dA;) and 2¢;8;(A)m; (dA), respectively, where the ¢’s are positive constants and
8;(A) =1if A, > 0 and A; = 0 for j # i, and O otherwise. The former measure treats the
A/’s as independent, the latter places all its mass along the axes of Q4. Consider the finite
measures on (0, 2s;), s; > 0, with density exp(A;/2)f (A:/2s;; b;, a; — b;)/2s; where f is the
beta density

(5.1) f(w; my, mg) = B(m1, me)w™ (1 — w)™' for weE (0,1)
and I )
_ mi + mo
Bl me) = R o )

Note that f(y;; v:/2, pi/2) is the null density of Y;. From (4.1), (4.4) and (5.1), the Bayes
tests corresponding to the Type I and II priors constructed from these measures are,
respectively, based on

Sciexp(s;Y;) and Zs;Y..
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Note test (1.20) is of the latter type. Now take a gamma mixture of each of the above
measures on (0, 2s,), i.e., let s, have density

[T(B.)]) ‘B exp(—pBisi)si ' fors;>0, a;>0, B:>0.
These mixtures produce Type I and II priors yielding Bayes tests based on, respectively,
ZeiBi— Y)™ and J[(B.—Y.)™,

where the statistic is taken to be + if Y; = B,. Letting (a;, B:, ¢;) = (1, 1, 1) for all i, by
(1.17) one obtains (1.19) and (1.21).

5.2 Nonparametric tests. Let ¢ be one of the tests (1.2), (1.4), (1.5) or (1.7). It has an
acceptance region in % of the form C = {y € #|Zw;(y.) < ¢} where each w, is strictly
increasing with continuous second derivative. Let C* be the acceptance region in #*, i.e.,

C*={y*€%*|Tu(yf)=c} where w(y?) =wl(yH"").
We denote the boundary of C(C*) in #(%*) by aC(aC*).

LEMMA 5.1. Suppose ¢ is as above.
a) If n = 2, then a sufficient condition for ¢ to be admissible is that

(5.2) o w!(y)/wHy))*=0 forall y€EaC.

b) For arbitrary n = 2, a necessary condition for ¢ to be admissible is that for each
(B, 2), k# ¢4

(6.3) ui(y1)/ Wh(y$)? + ul(y¥)/(wAy?))’ =0 forall y*€sC*

PRrROOF. a) By Theorem 4.1, if C is convex in %, then ¢ is admissible. Since the w,’s are
continuous and strictly increasing, the function A defined on # = {y1]| (y1, y2) € 9C for
some Yy;} via

(5.4) wi(y1) + wa(h(y1)) = ¢

is well defined. Furthermore, since the w;s have continuous second derivatives, % does,
too. Now C is convex if and only if A”(y:) < 0 for all y; € #%. Differentiate both sides of
(5.4) with respect to y; to obtain that A’(y:) = —wi(h(y1))/wi(y1). Differentiate again to
show that —A” ( y1)w$/ (w1)? equals the left-hand side of (5.2). Since w!> 0, —h”(y1) < 0 for
all y; € %, if and only if (5.2) holds, hence part a) is proved.

b) Without loss of generality, take (%, £) = (1, 2). Suppose ¢ is admissible and has level
0 < a < 1. By Theorem 4.1, ¢ must equal a.e. [u] a test with acceptance region D* which
is closed and convex in #*. Thus u((C* — D*) U (D* — C*)) = 0. However, since C* and
D* are both closed, it must be that int(C*) C D* and int(D*) C C*. Furthermore, each of
C* and D* equals the closure of its (nonempty) interior, C* because the w.’s are continuous
and strictly increasing and D* because it is convex. Thus D* = C*, i.e., C* is convex, which
implies that for any fixed y3°, - - -, y*°, the set C** = {(y7, y)| (¥, y5', 3% -+, ) €
dC*} is convex. An argument as in the proof of part a) shows that C*° is convex if and only
if (5.3) holds, which proves part b).

We treat the tests individually. Here, p:(y:) = p(y.; vi, u:) where

ply;v, ) =p(y) = j flw;v/2, u/2) dw,

and we let 8; = B(v:i/2, n./2); see (5.1). For convenience, define ti(yi, si) = t(yi, Si; vi, pi),
where

Hy, s v, W=ty 8)=[@/2—8)1 -y — (u/2 - yly A —y"
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Fisher’s procedure (1.2). Suppose all »;s = 2. Since

1 -1
-4 log p(y) = (1 - y)‘l[f (+y ' (1 —w)y* u du}
dy A

is strictly increasing in y for » = 2, the acceptance region of test (1.2) is convex in y, hence
by Theorem 4.1, the test is admissible. Note that the weighted version of this test is also
admissible. Now suppose »; = 1. On the boundary 8C, p:1p> = exp(—c)/(ps « -+ p»). Thus
since ¢ > 0, we can find y3, - - ., y5 € (0, 1) small enough such that for (yi, y2, ¥3%, ---, ¥%)
€ d4C, as y1 — 0, y. — y% € (0, 1). But

u/(y!) _ . pi(y)
limy, o, .0 0> T2 = lim, .o 5,y 12 Y4, tit;i+1
lmyl 0, Yy—¥y yl (u (yt ))2 lm}'l 0, yy>yy yl ﬁ z (.)’ r)
vy — 2r1
<0 N
201

since »; = 1 and r; > % by (4.3). Thus condition (5.3) is violated, which by Lemma 5.1 b)
proves the test is inadmissible.
Inverse normal procedure (1.4). When n > 2, for any arbitrarily small y; and y., we
can find ys, - - -, ¥, such that y € aC. Using 1’ Hospital’s rule, it can be shown that
u”(y*) = lim (D (p(y))E(y, 1)
- — = 0 —
@' (y*)* @ (p()) ()@ (p()
Thus for small enough y; and y., (5.3) is violated for (&, ¢) = (1, 2), and so the test is
inadmissible. Now let n = 2, a < % (implying ¢ > 0), both s = 2, and both u;’s < 2, so that
t:(y:, 1) = 0. Hence
s Wiy _ o ) (D (pil3:))
=l s el
(wi(y:))? fily)
is positive on aC, since on 8C, —® '(p;) — @ (py) = ¢ > 0.
Thus the test is admissible by Lemma 5.1 a). Finally, suppose n = 2 and »; < riiz. As
y1 — 0 for y on oC, y; — , hence

@ /((J:)))z / D (pi(y1) = —=2ri/v1 + 2/p2 <0,

which violates (5.3), showing the test inadmissible.

(5.5) lim,_o —1=-2r/».

(5.6) ti(yi, 1) = @7 (p(31) — @ (p2(2)

(5.7) limy, 0, yeoc D

Inverse logistic procedure (1.5). Follow the arguments as for the inverse normal
procedure, except replace (5.5) by

o7 = lim, [—————p‘y CZED 13,7y 29) | = =2
replace (5.6) by
s wi(y) —y2, piy)(1 — pi )
T wi(y)? ()
and note that on dC, p1ps/(1 — p1 — p2 + p1p2) = e ° < 1, hence 1 — p; — p; > 0; and replace
(5.7) by

ti(y:;, 1) + 2(1 — pi(y1) — pa(y2))

ul(y)
(wi(yh)?

Sum of p.’s test (1.7). When all »/s = 2 and u’s < 2,
2

d
- ‘@Epi(yi) = fi(y)ti(y:,1) >0

limyﬁ,o, yeaC Zi —2r1/1/1 + 2/‘11,2 <0.
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since £i(y:, 1) > 0. Thus —Y, pi(y;) is convex, implying that C € %, and hence by Theorem
4.1, implying that the test is admissible. Now suppose p; > 2 and 0 < a < 1 — 1/n! The
latter condition implies that 0 < ¢ < n — 1, so that we can findy$, - -, y5 such that 0 <
c®=c— (p3(y9 + -+ + pa(¥%) < 1. The points (i, y2, ¥3, « -+, ¥%) on dC include all
points (1, y2) such that p;(y1) + pa2(y2) = c°. Letting y; — 1 along this curve, we have y,
— y3€(0,1) and

. f(y¥) . ti(yi, 12)
lim, 1, _0(1 — y;)M72 l?___u_____=] oL yayo(1 — yp)72 %=_’
R R 7 T Ay 17

= ([.Ll - 2)/2[31 <0.

Hence by Lemma 5.1 b), the test is inadmissible.
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