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ADMISSIBILITY IN LINEAR ESTIMATION

By LYNN Roy LAMOTTE

University of Houston

Necessary and sufficient conditions for a linear estimator to be admissible
among linear estimators are described. The model assumed is general, allowing
for relations between elements of the mean vector and covariance matrix, and
allowing the covariance matrix to vary in an arbitrary subset of nonnegative
definite symmetric matrices.

1. Introduction. The work of Olsen, Seely and Birkes (1976) provided seminal results
in the characterization of admissible linear estimators in the general linear model. They
described necessary conditions for the admissibility of unbiased linear estimators and
showed that the admissible unbiased linear estimators form a minimal complete class of
unbiased linear estimators. Their necessary conditions are demonstrably not sufficient.
LaMotte (1977b) noted an obvious extension of their characterization.

Without the restriction to unbiasedness, admissible linear estimators have been char-
acterized only in special linear models. Cohen (1966) characterized admissible linear
estimators of the mean vector while assuming a covariance matrix of the form ¢°I. C. R.
Rao (1976) accomplished the same characterization for models with mean vectors varying
through a linear subspace and covariance matrices of the form ¢*V with V known (i.e.,
restricted to a subspace of one dimension). Neither of these efforts appears to generalize
to models in which the covariance matrix varies over more than one dimension, or in which
the mean vector and covariance matrix are functionally related, or in which restrictions on
the parameters of the model restrict attention to a subset of the natural parameter space.
For example, in the simple linear regression model, C. R. Rao’s results guarantee that the
least squares estimator is admissible among linear estimators. But Marquardt (1970) and
Perlman (1972) observed that if the parameter space is restricted in certain ways, then the
least squares estimator is not admissible. Olsen, Seely and Birkes (1976) established a
relation between admissibility and bestness (defined below) which allowed them to
establish necessary conditions for admissibility in any given parameter space. The same
sort of relation is used here to characterize admissible linear estimators.

2. Definitions and Summary. Let Y be a random rn-vector with mean vector u and
variance-covariance matrix V, with (g, V) contained in an arbitrary subset £ of the
Cartesian product of Euclidean n-space R" and the set of n X n symmetric nonnegative
definite matrices. Let C be an n X ¢ matrix of constants and consider estimating C’ p by
linear functions L’ Y with L an n X ¢ matrix of constants. Total mean squared error will be
used as the risk function:

(21) TMSEL(V, y) =E{(L'Y - C'p)'(L'Y — C'p)} =tr{L’'VL + (L — C)'pu’ (L — C)}.

For a matrix M, denote the transpose of M, the linear subspace spanned by the columns
of M, and the null space {x:Mx = 0} of M by M’, R(M ), and N(M ), respectively. Denote
the trace of a square matrix M by tr(M ). We will frequently deal with linear subspaces &/
of r X s matrices, in which case the trace inner product tr(MH’) will be used, along with
the corresponding squared norm tr(MM’). If % is a linear subspace of a vector space %,
denote by % a linear subspace such that « is the direct sum of % and %. The minimal
linear subspace containing a set 2 of vectors will be denoted by sp(2). For a subset 2 of
&, [2] will denote the minimal closed convex cone containing 2.
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We shall be concerned with admissibility of estimators L’'Y of C’u among non-empty
affine subsets of n X t matrices of the form ¥ = {L:AL = B}. We shall often refer to
estimators L’Y in terms of L, e.g., as “estimators L € % The set of all n X ¢ matrices is
such an affine set, as is the set {L:X'L = X'C} of unbiased linear estimators of C’y when
sp{u:(p, V) € 2} = R(X) and X is an n X p matrix. With L, € £ and N, a matrix such
that R(N) = N(A), every matrix in % has a representation L = L, + NZ for some matrix
Z.

Noting that TMSE, is a real-valued linear function on 7 = {(Si, Sz):S2 = pu’, (g, S1)
€ 2}, let # be a linear subspace of {(Si, S2):S; and S; are n X n symmetric matrices}
containing 7; once #"is so chosen, it remains fixed in subsequent developments. Let #4
= {(S1, S2):S: and S; are nnd}; J C #5. Let & C #. Extend TMSE_ to ¥ as TMSE.(S)
= tr[L’S,L + (L — C)’'Sz(L — C)]. The linear estimator K will be said to be as good as L
on Ziff TMSEg(S) = TMSE.(S) for all S € &; and K will be said to be better than L on
Ziff K is as good as L on % and K has less TMSE than L at some point in Z. An estimator
L is admissible among ¥ on % iff L € ¥ and no estimator in .# is better than L on %.
Given S = (81, Sy) in #; L € £ is best among ¥ at S iff TMSE_(S) = TMSEk(S) for every
Kez

Proposition 3.6 of Olsen, Seely and Birkes (1976) may be extended fairly easily to
establish that if L, is admissible among ¥ on J then there exists a non-zero point S, in
[ ] such that L, is best among % at S,.. Further, it may be seen that if L, is best among
£ at S, in [ ] then admissibility of L, among % on J is equivalent to admissibility of L,
among %, = {L € £:L is best among & at S,.} on Z. 4 is of the form {L:A,L = B,},is an
affine subset of .%, and is a proper subset of .# unless every estimator in .# is best among
£ at S,. This suggests that a characterization of admissible estimators among .# can be
obtained by repeated applications of these results, reducing the dimension of % at each
step. However, if [ ] contains a nonzero point at which all members of . are best, then
it cannot be guaranteed that the dimension of .% is less than the dimension of %, Upon
applying these results to %, every member of .4 is best among %4 at S,, so that the
suggested procedure is stymied at the next step.

Define trivial points for & in # as points at which every member of % is best among
Z. Let #denote the set of trivial points for .. The following results are proved in the next
section. #is a linear subspace. If 7 C ¥then every member of .# is admissible among .
onJ. If 7 & ¥ L, is admissible among ¥ on J only if there exists a point S, in [T+ ]
but not in #such that L, is best among % at S,.. Let % denote the set of trivial points for
£ in #. Since S, € [7 + ] is not a trivial point for %, then % contains ¥ as a proper
subset and hence has dimension greater than the dimension of & Thus, given L, € %, in
a finite number of steps, the admissiblity of L, is determined: L, is admissible among ¥
on 7 iff ultimately  C %, with 0 < r < dimension of ¥ — dimension of ¥

It is noted that if L, is best among % at a point S, in [7 + <] such that the rank of
N'(S14 + S2,)Nis maximal among {N'(S: + S2)N:(S1, Sz) = SE€[J + S]} then L, is
admissible among % on J. This leads to the conclusion that L, is admissible among . on
7 iff ultimately L, is best among %, at a point S, in [7 + %] such that N/(Si, + Sz,)N,
has maximal rank among {N(S; + S;)N,:S € [T + ¥]}.

The class & may be replaced initially by an essentially complete class in .# in such a
way that matrices of maximal rank in {N(S; + Sz)N,:S € [F + %]} are positive definite.
Among this essentially complete class, L, is admissible iff ultimately there exists an S, in
[F + %] such that L, is the only member of % best at S,.

3. Propositions and Proofs. Theorem 3.1 provides results on bestness.

THEOREM 3.1. Let S = (S1, S;) € # and define
S11=N'(S1 + S;)N, Sig=N’SiLy + N’S:(Lo — C),
S22 = LoS1Lo + (Lo = C)'Sz2(Lo — C).
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(i) In order that there exist an L best among & at S, it is necessary and sufficient that
S11 be nnd and every column of Si2 be in R(S1).
(ii) In order that L € & be best among & at S, it is necessary and sufficient that S, be
nnd and N'(S; + S2)L = N’S:C.
(iii) If S11 is nnd and H is a matrix such that Si.H + Si2 = 0, then for every L € ¥,

(3.1) TMSEL(S) = tr(Se: — H'SuH).

(iv) In order that every L € &£ be best among £ at S, it is necessary and sufficient that
Su =0 and Slz =0.

(v) There exists exactly one L best among & at S iff Sy is positive definite.

(vi) If there exists an L € & best among & at S then the set of members of & best among
& at S is an affine subset of the form % = {L:A.L = B}, and 4 is a proper subset
of & iff S11 is nonzero.

Proor. For any S € #; with S11, Si2 and S;. defined as above, there exists a matrix H,
whose columns are in R(Si;), and a matrix T, whose columns are in N(Si;), such that —S;.
=SuH + T.With L = L, + NZ,

TMSEL(S) =tr(Z'SuZ + Z’'Sy2 + S Z + Ss2)
=tr{(Z— H)YSu(Z - H) - Z'T—-T'Z} + tr(See — H'SuH).

If Sy, is nnd and columns of S;; are in R(Sy;), then T = 0 and the sufficiency of (i) is clear
upon noting that L, + NH is best among % at S. If not all columns of S. are in R(S1),
then T is nonzero: in this case, with L, = Ly + N(H + oT), {TMSE;.(S):a > 0} is
unbounded below so there is no L in & best at S. If T = 0 and S, is not nnd, let P_ be an
eigenvector of Si; corresponding to a negative eigenvalue of Si; and let Z, = a(P-, 0, - - -0)
+ Hand L, = Lo + NZ,, so that {TMSE_.(S):a > 0} is unbounded below, and thus there
exists no L € & best at S.

Proofs of (ii) through (v) are straightforward. With L = L, + NZ, (ii) is equivalent to S
nnd and S1,Z + Si2 = 0. For (vi), if S permits a best estimator among .%, then the set of n
X ¢t matrices best among £ at Sis 4 = {L:AL = Band N’(S; + S;)L = N’S;C} = {L:A\L
= B;} with

~ A (B
3.2) A= (N'(s1 + s2)>’ B, = <N’SzC>'

A is a proper subset of & iff the rank of A, is greater than the rank of A: it may be seen
that this condition is equivalent to the condition that N’(S; + Sz) N = S;; be nonzero. O

By part (iv) of Theorem 3.1, the set of trivial points for & in # is ¥= {S € # :N'(S;
+ So)N = 0, N’S1Ly + N’Sy(Lo — C) = 0}. The set of points in %" which admit a best
estimator among .% is a convex cone because the conditions of Theorem 3.1(i) are closed
under sums and positive multiples: this set is contained in the closed convex cone {S €
W :N'(S: + S2)N is nnd} and contains the closed convex cone #;. Given L € %, the set
{S € # :L is best among ¥ at S} is a closed convex cone containing <% being the
intersection of {S € # :N’(S: + Sz)N is nnd} and the linear subspace {S € #":N'(S: +
SZ)L = N/SQC}

The following lemma notes that relations (as good as, better than) among % are
equivalent on certain sets.

LEMMA 3.2. Let & C W and let % be a linear subspace in &, Let K and L be members
of &.
(i) K is as good as (better than) L on % iff K is as good as (better than) L on [Z].
(Relations in & are equivalent on ¥ and [ Z].)
(ii) Relations in & are equivalent on & and & + %.
(iii) If M is a subset of W such that [#] + % = [X + ] then relations in & are
equivalent on M and %.
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Proor. To prove (i), note that {S € # : TMSEk(S) = TMSE.(S)} is a closed half-
space, hence a closed convex cone. To prove (ii), note that for any S € # and S, € %,
TMSEx(S + So) — TMSEL(S + Sy) = TMSEk(S) — TMSE.(S): that is, TMSE’s are
parallel along %. The last statement follows from (i) and (ii). O

LeEMMA 3.3. There exists a linear subspace % in ¥ and a closed convex cone M such
that M + S = [T + H) and 4 N &= {0}. If S contains a nonzero point, then % may be
chosen to contain a nonzero point.

ProOF. Let % = Yand A = [T + ¥] N & M is a closed convex cone. For any set 2 in
#; the projection of 2 onto & along Zis (2 + ¥) N Z and 2 + Y= ¥+ ((2 + ¥) N.¥). But
[T + &] D & because [T + ] is a closed convex cone, so, with 2 = [T+ ], [T+ ¥] +
F= [T+ ¥] and hence [T + &] = S+ M. Because .4 C ¥ and & and & meet only at 0,
MNP={0}. O

Our objective is to show that any estimator admissible among ¥ on J must be best
among & at a point which is not trivial for % (unless every point in 7 is trivial, in which
case Lemma 3.2(ii) establishes that every L € ¢ is admissible among % on J ), and to
describe the points in #” at which admissible members of ¥ must be best. Toward this
end, Lemmas 3.2 and 3.3 show that . may be replaced by a suitable closed convex cone
., containing no nonzero trivial point for .%, such that relations in % are equivalent on I
and .#. Note that # C [T + ). '

The following simple result is stated separately because of its importance in the sequel.

LEMMA 3.4. IfS = (S, Sy) is a point in [#; + &] then N'(S: + Sz)N is nnd.

Proor. ¥ + & is contained in the closed convex cone {S € #" :N'(S; + S2)N is nnd}
so alsois [#4 + %] O

The following result follows from the observation that TMSE’s are parallel along &£

LEMMA 3.5. If 9 C Sthen every L € &£ is admissible among & on J.

THEOREM 3.6. If L, is best among ¥ at S, € [T + ¥] and N’(S1, + S:,)N has
maximal rank among {N'(S; + S:)N:(S1, S;) = S € [T + ]} then L, is admissible
among Lon Tand IC A = {SE W every L € A is best among ¥, at S}.

Proor. With L, best among £ at S, € [ + ¥], admissibility of L, among £ on 7

is equivalent to admissibility of L, among 4 = {L € £:L is best among £ at S,} on .
(Necessity of this statement is immediate. To show sufficiency, suppose L € £ is better
than L, on J. Then L is better than L, on [+ ], by Lemma 3.2, so that L € 4, and L,
is not admissible among % on [+ <], hence on 7.) By the proof of Theorem 3.1(vi), %4
— 7 AL = B;} with A, and B, from (3.2) at S,,. Let N; be a matrix such that R(N;) =
C N(A) = R(N); thus there exists a matrix P such that N; = NP. Because N’(Si,

N1 =0, columns of P are in N[N’(S;, + Sz,)N]. By the proof of Lemma 1 in LaMotte

) and Lemma 3.4, because {N'(S; + Sz)N:S € [T+ #]} is a convex subset of nnd

es, NIN'(S1, + S2,)N] C N[N'(S, + So)N] for all S € [+ &]. Thus P'N’(S; +
=N1S1+ S;)N1=0forall S € [T+ ). If S € J then Ni(S: + Sz)N; = 0 implies
"181=N1S: =0, so that 7C ¥ = {S € #" every L € %, is best among %, at S}. By

a 3.5, every L € 4 is admissible among 4 on . By the first statement of this proof,

L € %, is admissible among £on 7. [

IMA 3.7. Let # be a closed convex cone and let % be the maximal linear subspace
If # contains a point not in %, then there exists a compact convex subset € of M
hat 0 £, [¢]1 N % = {0}, and M = [€] + %.
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Proor. Because.# is a closed convex cone,.# = (# N %) + %. ./ contains a point not
in % so M N % contains a nonzero point. Further, # N % is a closed convex cone
containing no linear subspace of positive dimension. We shall find a compact convex subset
@suchthat []l=MNU.Let R=MN%.

Let 2 = {S € #:tr(SS’) = 1}. # N X is compact. Let € be the minimal convex set
containing 4 N 4. By Theorem 17.2 in Rockafellar (1970), ¥ is compact. For any nonzero
S ER,S/Vtr(SS') EBNARC % s0[¥]DR; and Z is a closed convex cone containing ¥
S0 Z D [¥]; therefore [¥] = . If 0 € ¥ then there exist points Sy, ---, S, in ZN Z and
positive numbers A;, «++, A,, A1 + --- + A, = 1, such that 0 = \;S; + - - + A,S,. Clearly,
r> 1since Ois not in ZN . Thus S; = —(A2S2 + - -+ + A.S,)/A; is nonzero and in Z and
—S; is in Z because Z is a convex cone, so sp(S;) C £ contrary to the fact that # contains
no nontrivial linear subspace. Therefore 0 € . O

LEMMA 3.8. If € is a compact convex subset of matrices and if Co € ¥ has minimum
norm in %, then tr(C¢C) = tr(CoCo) for all C € 4.

Proor. Show that the orthogonal projection AC, of C € € onto sp(Co) has A = 1, or see
Rockafellar (1970, page 271). O

THEOREM 3.9. Let / be a closed convex cone in [#+ + ] and let U be the maximal
linear subspace in M. Suppose U # M. If L € L is not best among &£ at any nonzero S
€ M then there exists L, € £ which is better on M/ than L and strictly better on M \%U.

PROOF. Suppose L = Lo + NZ is best among % in .# only at 0. Then Fz(S) = SuZ +
S12 is nonzero in .# except at 0. With % # ., from Lemma 3.7, # = [¢] + %, where ¥ is
a compact convex subset, not containing 0, such that[¢] = .# N % . By Lemma 3.4, Sy, is
nnd throughout % ; with —S also in %, this implies that Si; = 0 throughout %.

In order to find L, € & which is better on .# than L, we shall find a positive scalar y
and a matrix H in Fz(%)™ (the orthogonal complement of the linear subspace Fz(%)) such
that, with L, = Lo + N(Z — yH),

(3.3) 0 = TMSEL(S) — TMSE, (S) = 2y tr[H'Fz(S)] — ytr (H'Su H)

is satisfied throughout %, hence throughout [%].

The orthogonal projection of Fz(%) onto Fz(%)* is a compact convex set (a linear
mapping) and does not contain 0. (Let S € %. F4(S) = X1 + X, with X; € Fz(%) and X; €
Fz(%)*. If X, = 0 then Fz(S) = X, = Fz(U) forsome UE€ % But # 2 %soS— U€E .;
and Fz(S — U) = 0 implies, under the hypothesis that F is zero only at 0 in .#, that S =
U € %, contrary to the fact that S € ¥ C.# N % and % does not contain 0.) Using Lemma
3.8, let H be the element of minimum norm in the orthogonal projection of Fz(%) onto
Fz(%)*. Because tr(H’S,; H), with S1; = N’(S: + S2)N, is continuous on %, it is bounded
above on ¥by M > 0. Let y = tr(H'H)/M.

If S € ¥ then Fz(S) = X; + X, with X; € Fz(%) and X, € Fz(%)*, so

2y tr[H'Fz(S)] — vtr(H'SuH) = 2y tr(H'X,) — y*tr(H'Sn H)
=2y tr(H'H) — y*M = y*M > 0.
Thus L, = Lo + N(Z — yH) is better on ¥ than L = L, + NZ, hence L, is better than L on

[6] =40 % (strictly better except at 0). Because # = % + .# N % and S;; = 0 in % and
H € Fz(%)*, it follows that L, is better than L on.Z. 0

COROLLARY 3.10. In order that L, € & be admissible among & on J it is necessary
and sufficient that either 7 C S or there exist a point S, in [T+ ], which is not trivial
for &, such that L, is best among & at S, and is admissible among ¥, = {L € &: L is
best among L at S,.} on I.
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Proor. By Lemma 3.5, if 7C & then every L € £is admissible among £ on J.

If L, is best among % at S, € [+ &] and admissible among %, any L € % better
than L, on J must also be best at S, contrary to the admissibility of L, among #; on J.

To show necessity, suppose 7 contains a point not in & and either L, is not best among
& at any nontrivial point in [ + ] or L, is best among % at a nontrivial point S, in
[Z + &]but L, is not admissible among .

As in Lemma 3.3, let # =[7 + ] N & Let S = (81, S2) be the projection onto ¥
along & of a point S in J and not in & Then N'(S: + S;)N = N’(S; + Sz) N is nnd and
nonzero (otherwise S € %), so . is not a linear subspace (otherwise —S € # implies that
N'(Si + S;)N = 0). Finally, # + & =[7 + &] C [#: + &), and relations in & are
equivalent on .# and J; by Lemma 3.2(iii). By Theorem 3.9, if L, is not best among % at
any nonzero point in .# (i.e., any nontrivial point in [ + &]) then L, is not admissible
among £ on ., hence on 7. If L, is best among & at a point S, in [ + &] which is not
trivial for %, but L, is not admissible among % on J, then L, is not admissible among
L on J because ¥, C & 0O :

COROLLARY 3.11. Let .# be a closed convex cone, and let % be a linear subspace in
& such that M + % =[T + %]. In order that L, € & be admissible among & on 7,
it is necessary and sufficient that either I C & or there exist a nonzero point S, in M
such that L, is best among & at S, and is admissible among £ = (L € £:L is best
among ¥ at S,} on J.

ProoF. Relations are equivalent on .# and 7 so sufficiency is obvious. Proof of
necessity follows the argument in Corollary 3.10 after observing that, if 7 contains a point
not in % then ./ is not a linear subspace. O

THEOREM 3.12. IfL, € & is best among ¥ at S, €[T + Fland T C A= {SE
W : every L € &, is best among %, at S}, then N’'(S1, + S2,)N has maximal rank among
{N'(S1 + S2)N:S € [T + &1} (Here, .= (L € £:L is best among & at S, } = {L:A:L
= B1}.)

Proor. Note that  C % implies that [ + &] C & because & C ¥. Let N1 be a
matrix such that R(NV;) = N(4,). Let 2 € N{N’(S1, + Sz,,)N}. Then ANz = 0 and N'(S1,
+ S;,)Nz = 0so Nz € R(N,). But every point in [ + &] is a trivial point with respect to
% and Ni(S; + S;)N:;=0forall SE€ %, soforany SE[J + ], 2’N’(S1 + Se)Nz =0 and
N’(S; + S2)N is nnd, so 2 € N{N'(S; + Sz)N}. Thus N{N’(S1, + Sz,)N} is a subset of
N{N'(S; + S:)N} for every S in [ + )], therefore N'(S1, + Sz,)N has maximal rank
among {N'(S; + S;)N:Se[J+ &]}. O

LEmMA 3.13. IfS, €[T + Sl and S, € & and L, is best among & at S, = (S,
Sz,), then & is a proper subset of &, = (S € W : every L € ¥ is best among % at S}.

PRrOOF. ¥ C & implies that % D & and the inclusion is proper because S, is in ¥
andnotin & 0O

Given L, € %, Corollary 3.10 or Corollary 3.11 can be applied repeatedly to determine
the admissibility of L, in a finite number of steps (by Lemma 3.13, at most the lesser of
dimension of #-dimension of ¥ and dimension of % steps). This may be seen with the
1" ing procedure.

7 C & then L, is admissible among £ on J.

7C
If there is no point in [7 + %] and not in & at which L, is best among %, then L,
is not admissible among % on J.
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2.2. If there exists a point S, in [7 + ] and not in & at which L, is best among %,
admissibility of L, among % on 7 is equivalent to admissibility of L, among %
= {L € &£:L is best among & at S,} = (L:A,L = B} on 7. Replace ¥ and &
accordingly and return to 1.

Each time through, from step 2.2 to step 1, the rank of N decreases, the dimension of %
decreases and the dimension of . increases (Lemma 3.13), so that in a finite number of
times through this procedure, either 1 or 2.1 must hold. This is summarized as follows
without need of further proof.

Let ﬂo) be z 5’?0) be % N(o) be N, A(o) = A, and B(o) = B. Let S*(1), e, S*(r) be a

sequence of points in #. Foreachi=1, ..., r, let

Ay = ( ’ Ac-n ), B = ( ) Bay )
Ni—(S1ew + S2v) Ny SeC
where N is a matrix such that R(Ny)) = N(4(;)). Let
Py = {L € Li-1:L is best among 2@_‘1) at S,u}
={L:AnL = Bw}.
Let
Si={SE#:. every LE %, Iisbestamong %; at S}.

THEOREM 3.14. In order that L, be admissible among & on J, it is necessary and
sufficient that either I C Yy or there exist a finite sequence S, *++, Sy Of points in
W such that L, € %), Syw) €E [T + Hi—1] and S, is not in ;1) foreachi=1, ... r,
and Ni—1)(Six¢) + S2xn)Nu—1) has maximal rank among {N'—1)(S1 + S2)N¢—1): (S1, Sz)
E[T + %]}

When points S in [ + &] having maximal rank of N’(S; + S2)N have N’(S: + Sz)N
singular, the elements of .# best among ¥ at S form an affine subset of positive dimension,
and all such estimators have identical TMSEs on 7. The simplest way to systematically
choose one of each such set is to transform the problem so that N’(S; + Sz)N is positive
definite at maximal points in [ 7 + ], following LaMotte (1977a). This may be accom-
plished in several ways; following are two. In each, let columns of N form an orthonormal
basis for N(A) and let L, be the unique matrix in . whose columns are in R(A’).

Let S, have maximal rank in [Z]. Let columns of F form a basis for R(S;, + Sa,).
Every n-vector x has a unique representation x = Fy + z with z € N(S;, + Sz,.), so that
y= (F'F)'F’x. For any L € &%, F(F'F)™'F'L has the same TMSE on 7 as L. For any S
of maximal rank in [ 7], F'(S: + S:) F'is positive definite. (To see this, observe that y’'F’(S;
+ S2)Fy = 0 implies that Fy € N(S; + Sz), but Fy € R(S1, + S2,) = R(S: + S2) because
S has maximal rank in [ 7 ]. Thus Fy = 0 so that y = 0.) Replace “estimate C’'u by L'Y, L
€ % on J ” by “estimate {(F'F)'F'CY (F'n) by M'(F'Y),M € {(F'F)"'F'L:L € ¥}, on
{(F'S\F, F'S;F):(S1, Sz) € 7}.” Here, we replace Y by F'Y, with corresponding replace-
ments of C, %, and 7.

Another way to modify the problem so that maximal points in [ + %] admit a unique
best estimator in . is to augment the constraints describing % Let S, be maximal in
[ 7], in the sense that N{N'(S1, + Sz, )N} C N{N’(S1 + S:)N} for all S € [7]. Let q be
the column dimension of N. Let P be the orthogonal projection matrix onto N{N'(S1, +
Sz, )N}. Replace # by {L:AL = B and PN’'L = 0} = %,. Let columns of N, form a basis
for N(#4). Then R(N,) C R(N) so N, = NQ for some Q. Suppose z’N’,(S1, + Sz, )N, 2
= 0. Then Qz € N{N'(S1, + Sz2+)N}, and PN’N, z = PQz = 0 so @z = 0; but columns of
@ are linearly independent (otherwise N/, N, is singular), so z = 0. Therefore N’ (S:, +
Sz, )N, is positive definite; hence for every maximal point S in [ 7] (hence [F + &),
N'(S1 + S2)N, is positive definite. Note that for each L € & there is an L, € %, with
identical TMSE on 4 so that %, forms an essentially complete class in &.
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Fi1c.1 2 X 2 symmetric matrices in the plane {S:tr(S) = 1}

4. Examples. Two examples are discussed here. The purpose of the first example is
to illustrate the machinery of Section 3. The second example is the regression model, first
with its natural parameter set, then with a restricted parameter set in which the inadmis-
sibility of some biased linear estimators is demonstrated.

The thesis by Azzam (1980) has independently developed similar results and applied
them to unbiased estimation when J is contained in a finitely generated convex cone in
W

4.1. Example 1. With n = 2, p = (u, p2)’ and the set of all 2 X 2 nnd symmetric
matrices is the minimal closed convex cone containing the large circle and its interior in
Figure 1. The circle and its interior form the intersection of the nnd matrices with the
plane {S:tr(S) = 1}. Suppose # = (V:(V, pu’) € #} is the doubly-shaded region in Figure
1 and the cone it generates: this region is tangent to the line through(8}) and %(i1) at
(39). Consider unbiased linear estimation of gz when {u:(g, V) € 2} = R(9). Let Lo = (%)
and N = (}). One application of Lemma 3.2(ii) allows us to replace .7 with J#. With # the
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set of 2 X 2 symmetric matrices, & = {S:si; = s12 = 0}, and # intersects & in the ray
through (3%). Every point Sin 2 not on this ray has N’SN nonsingular. [ # + & ] intersects
the plane of Figure 1 in the singly-shaded area. For any z > —1, it may be seen that L, +
Nz is best at a point S in # with N’SN nonsingular, and hence is admissible among £
The estimator L = Ly — N = (7}) is best among & in # only on the ray of trivial points
but it is best among Zin [% + %] at % (1), which has N’'SN > 0, hence (1) is admissible
among % on J.

4.2. The regression model. In this model 2 = {(XB, ¢*I):8 € R” and ¢* = 0}, where
X is an n X p matrix of rank p < n. Then

[7]= {(y], X®X'):y = 0, ® is a p X p symmetric nnd matrix}.

Let # = {(al, XT'X’) :areal, I symmetric} . We shall examine the class of linear estimators
of C’XB, where Cisn X t,s0 & = {L:L is n X t}. Points of maximal rank in [ ] have y
> 0, so if L is best among % at (yI, X®X’) with y >0 then L is admissible among %.

Suppose L, is best among % at (0, X®X’). Let columns of N; form an orthonormal
basis for N(X®,X’). Then

A = {L:XOX'L = XPyX'C} and
% = {(al, X®X’):Ni(al + XPX')N; = 0, NI X®X'(Ly — C) = 0}

with Lo the unique element of % with columns in R(X®,X’). In [7 + #], it may be seen
that N1SiN; and NiS:N; are nnd: that is, that y/ and N1 X®X'N; are nnd for any
(vI, X®X') € [T + H]; note that S; =0 for all S € A.

Suppose L, is best among % at (0, X®:X’) in [7 + %] with N1X®; X'N; # 0. With @,
=P X' XD, + &, X’N; N, X®,, which is nnd, note that X®, X’ has greater rank than X®, X",
and L, is best among £ at (0, X®,X’) € [ ]. Given that L, is best among £ at a point
in [ 7 ], we may take such a point to be of maximal rank among those at which L, is best.
With X®,X’ so chosen, it is clear that if L, is best among # at (y:I, X®:X') in [T + HA]
then y; > 0 and Ni(y:I + X®; X’)N; is pd and hence L, is admissible among %.

Following the procedure described in Section 8, L,, is admissible among & iff L, is best
at (yI, X®X') € [ ] with y > 0, or L, is best at (0, XPoX’) € [7 ] with X®o X" # 0 and
best among % at (1, X®:X’) € [T + ] with y; > 0. In the first case,

(4.1) L, = (yI + X®X')'X0X'C.

In the second case, L, is the unique solution to

XX’ [ XDoX'
“2) <N;(y11 + X(I>1X'))L = (NithX’)C'
In this case it may be shown that
(4.3) L, =lim_o*(Ay:i I + X0 X’') ' X9, X'C

where @, = (1 — A)®, + A®;. That is, L, is a limit of matrices best among £ at points
along the line segment joining (0, X®,X’) and (y: I, X®; X’). To show that (4.3) holds, note
that, though X®; X’ may not be nnd, there exists a A, > 0 such that Ay I + X® X" is pd for
allA € (0, A,).

We conclude that L is admissible among % on 7 iff L satisfies (4.1) or (4.2) and hence
(4.3). If L satisfies (4.1), a little algebra shows that L = XPA"V2DA™?*P’X'C, where X'X
= PAP’ is a spectral decomposition of X’X and

4.4) D = AV*P'®PAVX(yI + AY*P'®PA?)™!

is a symmetric nnd matrix with all its eigenvalues in [0, 1). If L satisfies (4.3) then L =
XPAY2DAY2P’X’C for some symmetric nnd D with eigenvalues in [0, 1]. On the other
hand, for any symmetric nnd D with all its eigenvalues in [0, 1], it may be shown that
there exists a nnd ® and y > 0 such that (4.4) is true; and, for such a D with all its
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eigenvalues in [0, 1], there exist nnd ®, and ®; such that
(4.5) D = lims o+ AY2P'®; PAY*(8I + AV?P'®s PAY?)7!

with ®; = (1 — §)®y + 8®;. Thus we see that L is admissible among ¥ on J iff L =
XPAY2DA™V2P'X’C for some nnd symmetric D with all its eigenvalues in [0, 1]. This is
precisely the characterization of admissible linear estimators obtained by specializing the
results of Rao (1976) and Cohen (1966) to this model. Note that the least squares estimator
(D = I), the generalized ridge estimators (Hoerl and Kennard, 1970), with

(4.6) D=+ A'K), K = diag(k; = 0),
the fractional rank estimators (Marquardt 1970), with

L 00
D={0 ¢ O s 0=c<l1,
0 00 b

and fixed-scalar shrinkage estimators with D = ¢I, 0 < ¢ < 1, are all admissible among .¥
on J.

Now consider the restricted parameter space % = {(XB, ¢’I):0* =0, 8 € R?, 8’8 <
Mq?}, for fixed M > 0. Consider estimating 3, so that C’XB = 8. Here, [ 2] = {(vI, X®X'):
vy=0, ® nnd, tr ® < My}. In [ F4], y = 0 implies that ® = 0. But any L, € .# which is
admissible among ¥ on 3 must be best among & at a nonzero point in [ %, ], so that

. = (] + X0X') X0

for some (yI, XPX') € [ Ja] with y > 0. Thus, if L, is admissible among ¥ on J then
L. XB = B only if B = 0. This means that no unbiased or conditionally unbiased estimator
in .% is admissible among % on J4. In particular, the least squares estimator, the fractional
rank estimators and ridge estimators with some %; = 0 are all not admissible on .
Further, it may be seen that the ridge estimator (4.6) is admissible among . on 3, only
ifk;i=1/M,i=1, --.,p.

Ju corresponds to Perlman’s (1972) conditions, which we may state as I C {(S1, S2):
MS; — S; nnd}. Perlman showed that no unbiased linear estimator is admissible on 3.
LaMotte (1979, 1980) noted that linear models for invariant quadratics in multivariate
normal random variables have this structure and that therefore no such invariant quadratic
estimator (except 0) is admissible among invariant quadratic estimators of its expectation.
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