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ON THE LIMITING DISTRIBUTION OF AND CRITICAL VALUES FOR
THE MULTIVARIATE CRAMER-VON MISES STATISTIC

BY DEREK S. COTTERILL AND MIKLGS CSORGO*

Department of National Defence and Carleton University, Ottawa

Let Yy, Ys, .-+, Y, (n =1, 2, .-.) be independent random variables
(r.v.’s) uniformly distributed over the d-dimensional unit cube, and let ax(-)
be the empirical process based on this sequence of random samples. Let V.4
(-) be the distribution function of the Cramér-von Mises functional of a.(-),
and define Vi(-) = limpow Via(+), Ar,d = SUPo<x<w | Va,a(x) — Va(x)|. We
deduce that A,.a = O(n™"), d = 1, and calculate also the “usual” levels of
significance of the distribution function V,(-) for d = 2 to 50, using expansion
methods. Previously these were known only for d = 1, 2, 3.

1. Introduction. Let Y3, --., Y, be independent random variables (r.v.’s) uniformly
distributed over the d-dimensional unit cube I¢ (d = 1), and let E,(y) be the empirical
distribution function of Y1, -+ -, Yy, ie, fory= (y1, - -+ , ya) € I¢, E,(y) is the proportion
of Y= (Yj1, -+, Yja),j =1, .-+, n, whose components are less than or equal to the
corresponding components of y, conveniently written as

(1-1) En(y) = En (yl’ Tty yd) = n_l 27=1 H:‘i=1 'I[O,.}’z](in)’
where, for real numbers a, u € [0, 1],
1 ifu<a
1.2) Toar(w) = {0 ifu>a.
The corresponding uniform empirical process is
(1.3) an(y) =n*{E.(y) —\»)}, y€I!, d=1,

where A(y) = IT&, y..

This process occurs in the context of continuous distribution functions F' on R%in
the following way. Let % be the class of continuous distribution functions on d-dimensional
Euclidean space R¢ (d = 1), and let % be the subclass consisting of every member of &
which is a product of its associated one-dimensional marginal distribution functions. Let
Xi, - -+, X, be independent random d-vectors with a common distribution function F €
% and let F,(x) be the empirical distribution of X, -+, X,.. That is, for x = (x1, - - , Xa)
€ R¢,

(1.4) Fo(x) =Fo(x1, -+, %) =n"" Y Hf‘i=1 I oo, x1(Xj),

where, for all real numbers a and v,

‘ 1 fu<a
(1.5) Iwa)(u) = {0 fu>a
Now consider the empirical process
(1.6) Bul(x) = nV2(F,(x) — F(x)}, x=(x,--+,%)ER? d=1

Let y; = F;(x;) be the ith marginal distribution of F € # and let F;'(-) be its inverse.
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Now if F € %, then
Bn(x) = nV*{Fy(x) — [[f~1 Fi(x:)} = nV*{F(F1' (1), «- -, Fa'(3a)) —A(¥)}
= n"2(E,(y) = A(y)} = an (), y=(n, -+ ,y)E I d=1.

Therefore, if F € %, then B, is distribution free.
As to a, (), the following results are known.

(1.7)

THEOREM A. Let X;, --- , X, (n=1, 2, -..) be independent random d-vectors with a
common distribution function F € %, and let o, (-) be as in (1.7). Then one can construct
a probability space (R, #, P) with {a,(y);y €EI*(d=1),n=1,2, ...} and a sequence of
Brownian bridges {B.(y);y € I? (d = 1)} on the space so that for any p.> 0 there exist

a C > 0 such that (cf. Csorgd and Révész, 1975) for each n
1

(1.8) P{supycr? | an(y) — B.(y)| > C(log n)**n 2@+0} =n™*, d=1
Further, if d = 2, then (cf. Tusnady, 1977) for all n and x
(1.9) P{supyer? | an(y) — B.(y)| > n""*(Clog n + x)log n} < Le™*,

where C, L, A are positive absolute constants.

For illuminating comments concerning rates of approximation in higher dimensions, we
refer to Tusnady (1977b), and for best possible rates of approximation in case of d = 1, we
refer to Komlés, Major and Tusnady (1975), and Tusnady (1977a). We recall in passing
that a Brownian bridge {B(y); ¥ € I} is a separable Gaussian process with EB(y) = 0
and EB (x)B(y) = [If=1 (x: A yi) — (=1 2) ([T 30).

Given F € %, we are interested in the asymptotic distribution of the multivariate
Cramér-von Mises statistic

(1.10) Wia= f Ba(x) [T dFi(x:) =f ) [Mady, dz1,
Rd Id

where B, (x), an(y), y: = Fi(x;) are as in (1.7). Naturally, say by (1.8), we have for d = 1
that

(1.11) h(an(+)) =9 R(B(-)),

for every continuous functional 4 on the space of real valued functions on I endowed with
the supremum topology, and whence also

(1.12) W2a—o Wi= j

Id

B*(y) dy =9J’ Bi(y)dy=Wi@m), d=1.

Id

Here, and in what follows, dy stands for [[~: dy.. For further results concerning the
distance of W2 ; and W%(n), we refer to Corollary 1 in Csorgé (1979).

Let V;,4(x) be the distribution function of W2 ; of (1.10) and let Vi(x) be that of w?
of (1.12). Then (1.12) reads

(1.13) lim, e P{W2 4=<x} = limy_w Vp,a(x) = Va(x), d=1.
Put A,,q = SUPo<s<w | Vi, a(x) — Va(x)|. Then we have the following.

THEOREM B (Gotze, 1979). A,,1= On™'*) for any ¢ > 0.

Earlier, S. Csorgé (1976) showed that A,,; = O(n""?log n) and, on the basis of his
complete asymptotic expansion for the Laplace transform of W2, he conjectured that
A 1 is of order 1/n. This conjecture was further studied by S. Csorgé and L. Staché (1979)
by giving a recursion formula for the exact distribution function V,,,, of the r.v. W2 .. They
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prove that the latter is [n/2] times continuously differentiable, and reduce the problem
of proving A,; = O(1/n) to that of showing the boundedness of the sequence
([ Vion | Vi(x)| dx}n=ss, where V¥ stands for the 49th derivative of V,, ;. Their recursion
formula is, in principle, also applicable to tabulating V, ; exactly. Actually Gotze (1979)
proved A,; = O(n™") without explicitly stating it: his Remark 2.6 holds for W2, =
nt Yo h(xi, ) with A(x, y) = 27(x® + %) — (x v y) + % (cf. Example 2.13 in Gotze,
1979), and hence (2.5) of Theorem 2.3 in Gotze (1979) implies

COROLLARY 1. A,;=0@®™).

Naturally, much work has already been done to compile tables for V, ;. A survey and
comparison of these can be found in Knott (1974), whose results prove to be the most
accurate so far. All these results and tables are based on some kind of an approximation of
V1. An extensive tabulation of V; (cf. (1.13)) can be found in the recent monograph of
Martynov (1978), where the theory and applications of a wide range of univariate Cramér-
von Mises type statistics are surveyed.

As to higher dimensions, d = 2, no analytic results appear to be known about the exact
distribution of V,, 4 (cf. (1.13)). The characteristic function of V; (cf. (1.13)) is known (cf.
Dugue, 1969; Durbin, 1970), and also it is known that (cf. Anderson and Darling, 1952;
Rosenblatt, 1952) W% may be written in the form

(114) Wi=Ypapi'Xi, d=1,

where the X, are independent standard normal random variables and the u. are the
eigenvalues of the integral equation

(1.15) f E{B(x1)B(x2)} f (x2) dx = pf (x1)
Id

with eigenfunctions f and kernel EB (x1)B(x2). Whence, in order to tabulate V; (d = 2),
just as in the case of V; (cf. Durbin and Knott, 1972) one may try working with a numerical
inversion of the characteristic function of V,, or one may try to calculate a number of the
necessary eigenvalues for (1.14). Unfortunately, both methods turn out to be quite difficult
to follow directly. Durbin (1970) succeeded in solving the latter problem for d = 2, as did
Krivyakova, Martynov and Tyurin (1977) for d = 3. In a similar vein, due to (1.14), one
could also try to approximate critical values of the distribution function V, via a Zolotarev
(1961) or Hoeffding (1964) type tail expansion of the latter. Unfortunately, this route also
requires a number of the eigenvalues for (1.14) and, as just noted, the calculation of these
is difficult in higher dimensions.

Using the characteristic function of Dugue (1969), in this paper we obtain a recursive
equation for the cumulants of W%, and then use the Cornish-Fisher asymptotic expansion
to calculate its critical values for d =2, 3, - - - , 50 at various levels of rejection probabilities.
These critical values are within 3% of Durbin’s values for d = 2 and of those of Krivyakova,
Martynov and Tyurin for d = 3. As far as we know, there exist no other tables for d = 4.
Details, as to how to calculate approximate significance points for all d > 1 and tables for
the “usual” levels of significance for d = 2 to 50, are given in Section 3. Proofs for the
statements of the latter are given in Section 4.

As to the question of convergence of the Cornish-Fisher expansion for the distribution
function of the r.v. W%, we do not have more evidence than the good numerical agreement
with Durbin (1970) for d = 2 and with Krivyakova, Martynov and Tyurin (1977) for d =
3 (cf. Remark 3.2 and Table 1 for details). In addition, we note also that errors in our
tables for higher dimensions should be further reduced due to the fact that the cumulants
K, of W% are O(e™®) (cf. Corollary 7 and Remark 3.2). Therefore our tables should be
quite accurate for all the dimensions calculated, indeed improving as d increases. Given
that other methods did not work for us, and that no other tables seem to be available for
d = 4, we decided to proceed with the rigorous calculation of cumulants of V; for the sake
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of the Cornish-Fisher formal expansion of the latter, having observed the good agreement

with existing tables for d = 2 and 3.
Since nothing appears to be known about the exact distribution function V,, 4 for d =

2, it is desirable to have an analogue of Corollary 1 for A, ; when d = 2. A complete solution
to this problem is again contained in Gétze (1979), as outlined in our next section.

2. On Rates of Convergence for V, .(d = 2). As a point of reference here and for
further use in the sequel, we first quote the following.

THEOREM C (Dugue, 1969). The characteristic function ¢(t) of the r.v. Wi(d =1) is

21)  (t) = E exp (itW3) = lim.. E exp (itW5.) = {izd-l dit Cd(t)}_m, d=1,

where
(2.2) Ci(t) = cos{(2it)"/*},
and
t
(2.3) Ca(t) = Cd—l{m}, d=2.

COROLLARY 2 (following Durbin, 1970). For the characteristic function ¢(t) of the
r.v. W% (d = 1) we also have the following forms

(2.4) o) %= —2":—” Cys(t), u=2it(d=1),
where

(2.5) Ci(t) = H?=1{1 - (—]——_%}

and Cy(t) (d = 2) is as in (2.3). Whence

(2.6) o7%(¢t) = P()S(t)

where

2it
P#t) =T - [3=f1 — 4=l
@) =T1I5= -+ I, 1{ (j1_1/2)2...(jd—1/2)27r2d}

(i=%) 2 (Ja—Y) 2™ 1d
= ———log P(¢).
. 21 s 8 P
TG R e (Ja— %)™
Proor. By (2.2) we have (2.5), since (cf. formula (4.3.90) in Abramowitz and Stegun,
1964)

12y _ T _ 2it
2.7 cos{(ZLt) } H,=1{1 G

By (2.3) and differentiation we also get (2.4).

It follows from Theorem 2.9 and the calculations of Example (2.13) of Gotze (1979) that
not only does one have Corollary 1, but also that asymptotic expansions of arbitrary order
of V,, exist; cf. also S. Csorgé (1976). Commenting on an earlier version of our paper, Dr.
Gotze (private correspondence, 1980) pointed out to us that the same is true for the
distribution function V, 4 (d = 2) (cf. (1.13)). Namely for W2 4 (d = 2), whose limit in
distribution is (1.14), it follows from the just-quoted result of Dugue (1969) that infinitely
many p' of the latter are nonzero and hence (2.4) of Theorem 2.9 in Gétze (1979) is
satisfied. As to the remaining smoothness condition (2.8) of Theorem 2.9 in Gotze (1979),

one has
(2.8) Wi a=n""'Yi-1h(x, y)

S(t) = 2;‘91=1 e ZZ=1




MULTIVARIATE CRAMER-VON MISES STATISTIC 237

where

h,y) =TIp-1 (1 = (v o)} = [[5-1 271 — xp) — [[f-1 271 — y5) + 37%

Since x +—> A (x, y) is differentiable if x, # y, for every p and fulfills the conditions of Lemma
2.2 of Bhattacharya and Ghosh (1978), it follows from this lemma that

lim supyg>c>o

J exp{ith(x,y)} dx; --- dxqa | <1-3, §>0.
Id

for every y € I, and condition (2.8) of Theorem 2.9 in Gétze (1979) also follows, resulting
in an asymptotic expansion of arbitrary order for V, 4.

This result that there exist asymptotic expansions of arbitrary order of V, q4 is, at
present, of theoretical interest only, since there exist so far no expressions for the limiting
distribution V, of V,,, s and for its first few approximations in terms of power series (defining
the distribution function) instead of their characteristic functions. Hence it is of interest to
note that Remark 2.6 in Gotze (1979) holds also for A (x, y) of (2.8) above, and hence (2.5)
of Theorem 2.3 in Gotze (1979) also implies the following.

COROLLARY 3. Let A, s (d = 1) be as in Section 1. Then
Ana=0(n™), d=1.

3. Calculation of the Critical Value of the d-Dimensional Cramér-von Mises
Distribution. Our first goal is to calculate the cumulants of the r.v. W% (cf. (1.12)). Our
starting point is Theorem C via its Corollary 1. To obtain the required cumulants, we need
the following lemma.

LEmMMA 1. For
d
ks . . d © d n
|u| < (—2—> , with uw=2t - T log Cy(t) =Y 7—0 Lyau”,
where
© . 14)2,..2y —n 2 o © *\ —2n 2 o
Ln = Ef=1 {(] - /é) w } = —’/; 2]’=0 (1 + 2]) = ; }\(271),

and A (m) is a tabulated function (cf., e.g., formula (23.2.20) in Abramowitz and Stegun,
1964).

As mentioned in the Introduction, all the required proofs of this section are given in
Section 4.

THEOREM 1. Using the above nomenclature, the cumulant function log ¢(t) of the
r.v. W% is the solution of the differential equation:

d
2 v log ¢(t) = Zi(t) — Zx(t)/Z:(2),
where

d . d

Zl(t) = E;.:=0 Lg+1un, Zz(t) = -CEZl(t), u= 21t, | u ' < (g) .
COROLLARY 4. The characteristic function ¢(t) of the r.v. W% is given by
—2 d d ,n ® " . AN
¢ At) =2y n—0 Ll exp(— Yr-1Ly 7), u=2it, |u|l< (5) .

We note that the above series converge rapidly, so it is easy to calculate the values of
¢(t) in the manner indicated.
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COROLLARY 5. The numerical values of the cumulants K, of the rv. W% are calcu-
lated, in sequence, from the system of equations
K, = 2n_1(Zn - Xn+1),
where

Zns1= n!LZH, Xno = {Zn+2 - 27=1 (7) Xn+2—ij+1}/Z1-

COROLLARY 6. The numerical values of the moments M, of the r.v. W% are calculated,
in sequence, from the system of equations
Mn = 2nPn+1,
where
. [n
2Pn+2 = Qn+2 + Zj=1 (]) Qn+2—1Pj+1; Qn+1 = Zn - Xn+1

.

and Z,, X, are defined in Corollary 5.

COROLLARY 7. The mean pq and the variance o% of the r.v. W2 are

5\ -d
pa=2"9-3"9% o= 2.3—”’{2—"— 2(§> + 3—"}.

CoROLLARY 8. From Corollary 7, as d increases, ua and ¢% tend to zero and the V,
distribution (cf. (1.24)) concentrates as a unit mass at the origin.

COROLLARY Y. From Corollary 5 and using the Cornish-Fisher asymptotic expansion,
(cf., e.g., Abramowitz and Stegun, 1964 (26.2.49)) a table of critical values of Vg is
calculated and summarized in Table 1.

REMARK 3.1. The critical values of Table 1 were calculated by digital computer, using
the recursion formula of Corollary 5 to calculate the first 6 cumulants, and then using

TABLE 1.
Critical Values for d-Dimensional Cramér-Von Mises Statistic

Probability of Exceeding Critical Value

D‘IiM Mult* Source
25 .10 .05 .025 .01 .005 .0025 .001 .0005
1 347 461 743 1.168 K-S
2 25533 32611 50166 .58 app 77app .85 app D
2 165427 255847  .330883 409203 514715  .594055 671778 770489 841437 C
3 101916 149276  .188768  .230000 .285406 .326865 .367230 417995 454015 C
3 .1489 .1860 2779 3191 4166 4592 KMT
4 056837  .079600  .098645  .118543  .145260 .165216 .184595 .208871  .226002 C
5 030197  .040609  .049338  .058458  .070690  .079807 .088637 099652  .107381 C
6 1015621 020235 024108 028151 033564  .037586 1041467 046280 049630 C
7 007956  .009957 011637 .013390 .015729 .017460 019122 021167 022576 C
8 .004015  .004869  .005587  .006334 .007328  .008059 008758 .009608  .010186 C
9 .002015  .002376  .002678  .002993  .003410 .003715 004004 004352  .004584 C
10 .001008 001159 001285 1001417 .001590 .001716 001834 .001974 002066 C
10 1072 10078 11588 12854 14167 15899 17154 18340 19743 20662 C
15 107* 31106 .32907 .34403 .35933 .37896 .39266 40487 41804 42537 C
20 10°° .09620 .09822 .09988 .10155 .10364 .10504 10622 10735 10782 C
25 1077 .29910 .30133 .30312 .30490 .30709 .30853 .30969 .31072 .31103 C
30 107° 93268 93511 93702 93891 94122 94274 94397 94505 94538 C
35 107" .29120 29147 29167 .29187 29212 .29229 29243 .29256 .29261 C
40 107" 90965 90998 91020 91041 91068 91087 91103 91120 91129 C
45 107 28424 .28427 .28430 .28432 .28435 .28437 .28439 28441 28443 C
50 107" .88821 .88824 88827 .88829 88832 .88835 88837 88840 .88842 C

Sources: K-S Kendall and Stuart (1967) from Anderson and Darling (1952); D Durbin (1970); KMT Krivyakova, Martynov,
Tyurin (1977); C Present work.
* Each line in the table is to be multiplied by the factor given in this column.
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these in the Cornish-Fisher asymptotic expansion. The coefficients of the latter are
tabulated in Abramowitz and Stegun (1964, (26.2.51)). The computer program is fairly
brief, and is available for us upon request.

REMARK 3.2. For the two-dimensional case, d = 2, the critical values for the V;,
distribution are compared with those calculated by Durbin (1970) as follows.

CRITICAL VALUES

P Durbin Present work Error %
.10 0.25533 0.25585 .00052 0.20365
.05 0.32611 0.33088 00477 1.46269
.01 0.50166 0.51471 101305 2.60136
005 0.58 app. 0.5940 . 0140 2.4137
.001 0.77 app. 0.7705 .0005 0.065
.0005 0.85 app. 0.8414 .0086 -1.012

The error is attributed to the use of the Cornish-Fisher expansion, which calculates the
critical values as a function of the standardized cumulants K,/¢". We used the first 6
cumulants. For higher orders, K, /6" becomes very large, as follows.

n = 3 4 5 6 7 8 9 10
K,./o"=2390 9.271 48.78 322.23 2557 23682 250682 2985300

For higher dimensions, d > 2, the errors are reduced because the cumulants K,, decrease
as d increases, K, = O(e™).

CoROLLARY 10. Each of the critical values given in Table 1 can be written as
C(p, d) = pa + 0a- W(p, d)
where pq and o may be calculated from Corollary 4.
Thus the values W(p, d) are shift- and scale-free critical values, and they are listed in
Table 2.

TABLE 2.
“Scale-Free” Critical values W( P, d) for d-Dimensional Cramér-Von Mises Statistic

Probability of Exceeding Critical Value

DIM Mean S.D. s 1
d p Py ource
25 .10 .05 025 01 005 .0025 .001 .0005
1 1.2095 1.9742 3.8659 6.7169 K-S
2 .138889 095581 1.2182 1.9588 3.7954 4.614 6.602  7.439 D
2 .138889 .095581 27765 1.22365 2.00870 2.82810 3.93200 4.76208 5.57524 6.60798 7.35025 C
3 087963 050212 27788 1.22108 2.00758 2.82874 3.93218 4.75786 5.56174 6.57274 7.29010 C
4 050154 024163 276565 1.21863 2.00684 2.83032 3.93605 4.76191 5.56396 6.56861 7.27759 C
5 027135 011069 27669 1.21738 2.00600 2.82994 3.93504 4.75870 5.55651 6.55166 7.24999 C
6 .0142533 .004914 27835 1.21715 2.00503 2.82772 3.92902 4.74733 5.53702 6.51627 7.19802 C
7 0073552 0021368 28127 1.21772 2.00393 2.82398 3.91873 4.72882 5.50669 6.46372 7.12288 C
8 0037538 00091524 .28522 1.21888 2.00269 2.81893 3.90484 4.70427 5.46717 6.39650 7.02779 C
9 0019023 00038775 29001 1.22052 2.00126 2.81272 3.88788 4.67463 5.41994 6.31709 6.91621 C
10 00095963 .00016293 295562 1.22251 1.99961 2.80543 3.86826 4.64069 5.36636 6.22782 6.79146 C
10 95963 (—3)* .16293 (—3) 29552 1.22251 1.99962 2.80543 3.86826 4.64070 5.36636 6.22782 6.79146 C
15 .30448 (—4)  .19910 (-5) 33044 1.23517 1.98669 2.75491 3.74111 4.42907 5.04215 5.70386 6.07200 C
20 195339 (—6)  .23121 (=7) 37165 1.24761 1.96418 2.68586 3.58893 4.19423 4.70429 5.19339 5.39920 ¢}
25 29801 (=7)  .26423 (—9) 41326 1.25641 1.93308 2.60667 3.43616 3.97889 4.42022 4.80808 4.92824 C
30 93132 (—9)  .30041 (—11) 45178 1.26103 1.89700 2.52558 3.29687 3.80080 4.21036 4.57001 4.68075 C
35 .29104 (—10) .34095 (—13) 48562 1.26233 1.85977 2.44858 3.17655 3.66123 4.06750 4.45290 4.60928 C
40 90949 (—12) .38675 (—15) 51437 1.26156 1.82434 2.37915 3.07560 3.55407 3.97452 4.41679 4.64938 C
45 .28422 (—13) 43863 (—17) 53828 1.25981 1.79253 2.31879 2.99201 3.47137 3.91394 4.42512 4.74441 C
50 .88818 (—15) .49743 (—19) 55789 1.25789 1.76521 2.26767 2.92296 3.40586 3.87164 4.45030 4.85281 C

Critical value = pq + 04 - W(P, d)
! Same sources as Table 1.
* By .95963 (-3) we mean .95963 X 107",
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4. Proofs of Statements in Section 3.

Proor orF LEMMA 1. By Corollary 2 to Theorem C, we have

- ¢ I . ut
Cd(t) = Hn=1 Cd_l{(n——l/z)zﬂz-}’ Cl(t) = Hn=1 {1 m}

Let u = 2it. Then

- _ u
log Ci(¢) = Y log{l o 1/2)2,,2}-
Thus

o ) — u .
198 Cat) = Ziew + -+ 25 1°g{1 = (e 1/2)%2«1}

=Ym=1 oo Dmg=1108(1 — uA, .. .ny),

where
Anpoong = {1 = %)% + -+ (na — %) 7™} 7,

and so

d
ZZZ log Cd(t) = _Z::FI e 2:d=1 Anl~-~nd(1 - uAﬂ]'“ﬂd)_I'

This can be expanded in powers of u provided that |uA,,..... | < 1, that is, if |u| <

5"

d
Then ~Tu log Ca(t) = Y r=0 Sp+1t™,

where
Sp=Yret e St Aling = Tt o+ Tmpm1 {1 = B)2 oo+ (na — %) %) "

= (251 (G = %)) e
Thus

d . -
_E log Ca(t) = Z:f=0 L;iwlun, L,= 2};1 [(] - 1/2)2‘”'2] ",

Hence the required result. We may write

2 2n o \ —2n
L,= p iz (1 +2))

with
Y=o (14 25)7" = A (2n),

a function tabulated in Abramowitz and Stegun (1964, (23.2.20)) and related to the
Riemann Zeta function. (This relationship might be useful in any attempt to find an
expression for the V; distribution in terms of standard functions. The series converges

very rapidly so that we simply sum it directly.)
PRrROOF OF THEOREM 1. From Corollary 1 to Theorem C
d
2= 29— Cq(t), = 2it.
¢ (¢) au a(t) u

From Lemma 1

d
- log Cu(t) = Zi(t) = Yr-0 Lii+1u™
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Thus — L Cut) = Zue) Culd).
du

Combining, we have

$(8) 7 = 29Z:(8) Ca(2),
or
4.1) 277 = ¢*(t)Z:(¢)Ca (8).
Differentiate with respect to u = 2it to obtain

d
0= gz {6X(8))Z:(¢)Calt) + “’2(”{61% zl(t)}cd (t) +¢*()Z: (t){@ Ca <t>}~
Substitute L ait) = —2u0)Cate),
du

. d

and write Zo(t) = — Zi(t).
du

Then
(4.2) 0= Cd(t)[% {6%(£)}Z1(2) + ¢2(8){Z2(2) — Z%(t)}]-

From the definition of Cy(¢), we have C4(0) = 1 and so Cy(¢) # 0 for small ¢. Since
Zy(t) = Yr-o Liw",

Z,0) = L¢ = {(3)2)\(2)}'1.
T

But A(2) = 7%/8, hence Z,(0) = 27 and so Z(t) # 0 for small ¢. Hence by (4.1), $*(0) = 1
as it should be since ¢(¢) is a characteristic function. Hence ¢2(t) # 0 for small ¢
Consequently we can cancel Cy(¢), Z:(¢) and ¢%(¢) in (4.2) to obtain

SO

d
0=9¢"%(t) o 6*(t) + {Z(t)/Z:(8)} — Zi(2),

and so 2 d% log 6(¢) = Zu(£) — Zo(8)/ Z:(0),

the required result.

REMARK 4.1. Having expressed the cumulant function in terms of power series in ¢
with known coefficients, the remaining results follow directly.

PrOOF OF COROLLARY 4. By Theorem 1, and after integrating Z:(¢) term by term to
give

n

_ V' a U
ZO(t) 2n=1 Ln n >
we have
d s d d
dn log ¢7°(¢) = — 'Ezo(t) +Tl;log Z(t).

Integrating the latter gives
log ¢~ %(¢) = — Zo(¢) + log Zi(¢) + K,
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thus
¢7%(t) = CZi(¢) exp{— Zo(¢)},

where C, K are constants of integration. From above ¢2(0) = 1, Z,(0) = 0, Z1(0) = 2% Thus
C =2¢ and

o7%(t) = 2¢ Y=o Li,u" eXp(- Y=t L l:z ),

the required result.

ProOF oF COROLLARY 5. The cumulants K, of the r.v. W3 are defined by

@" u”

log ¢(t) = ¥7-1 Ko = Y1 K27 — U= 2it.
Thus
n dn
Kn =2 Wlog ¢(t) .
From Theorem 1 we have
d _ Zo(t)
2 g o880 =240 = 205
Thus
_ Z>(0)
K, = Z,(0) Z:0)
Write
_ Zs(t) _a _a
Xo(t) = 70y Xn2(2) —sz(t), Zpi1(t) = a Z(t).

Then for n =1,
22" 10g 9(0) = Zu(t) ~ K1)
Thus K, = 2"7{Z,(0) — X»+1(0)},
as required. Since, by definition,
Zi(t) = Yo Lt u”,
then Zp1(0) = n! L,

as required.
By definition, X,(¢) = Zx(t)/Z:(t), so that X»(¢)Zi(t) = Za(t). Then, by repeated
differentiation with respect to u, we get for n = 1

Xonva(t) Zy(t) + ¥ 71 (j) X2 (t) Zj1(t) = Zpio(2).

We now evaluate this expression for ¢ = 0 (¢ = 0) and, for compactness, write

X, =X.00), Z,=Z,0).

n
Xz = {Zn+2 - 21"‘=1 (] ) Xn+2—ij+l}/Z1y

Zn+1 = Zn+1(0) =n! Lﬁﬂ.

Thus

as required with
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PrOOF OF COROLLARY 6. In a formal way, the moments M, of the r.v. W3 may be
expressed as

- @" - U :
¢(t) =1 +2n=1 M,,—n!—= 1 +Z,,=1 Mn2 F, u=2it
dr
Then M, =2"—— ¢(t)
du o

provided that this limit exists. We have, by Theorem 1,

d
2 -(Elog (i)(t) = Zl(t) - X2(t))

where

d
—zlm}‘
Zo(t) { du

Z(t)  Zi(t)

Xo(t) =
Write

n

dn
Pi(t) = $(0), Pasa(t) = Py(t), Qu(t) = 210 Py(t) = 2108 6(6), Quea(t) = 5 Qu(0).

Then 2 Edg log ¢(t) = Q2(t) = Zi(t) — Xu(2),

and by repeated differentiation with respect to «,
Qn+l(t) =Zn(t) _Xn+l(t), n=1.

Also,
Q1(t) = 2log Pi(2), Qq(t) = 2—(‘7710g Py(t) = 2 Py(t)/Pi(t),
so that Q:(t) Pi(t) = 2Py(2).

Then, by repeated differentiation,
Qra(t) Pi(t) + ¥ i <j) Qnro—j(t) Pir1(t) = 2 Ppyo(t)

which generates successive values of P,(t), and
dn

M, =2"
du™

= 2nPn+l (0);

o(2)

t=0
givling the required result when we write P,(0) as P,, @.(0) as @,. Notice that P; = ¢(0)
ProOOF OF COROLLARY 7. The values of the first two cumulants are K; = pq, K2 = 03,
the mean and variance of the V; distribution. From Corollary 5
wi=Ki=Z—Xs, o4=K:=2(Z;—Xs)
and
Z,=L¢, Z,= L%, Zy=2Lj.

2 4 6
L,= (2-) A@Q), L= <£) A4), L;= (‘g‘) A(6).
T ™ m

By Abramowitz and Stegun (1964, (23.2.11) through (23.2.31)), A(2) = #2/8, A(4) = #*/96
and

By Lemma 5
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_ ~ (27r) @278 1 s
- —_— 6 - 6 - -_— —6 o —
AB)=(1-27¢{(6)=(1-27 Ile (1-27°) ——- 26 42 1555
Thus
L1 = 1/2, Lz = 1/6, L3 1/15, Z1 = 2_d, Z2 6~ d Z3 2. 15_d
and Xo=2:/Z,=6%/2%=3"°

Xs = (Zs — X225)/Z, = (215¢ — 3% 9) /27 =2 . ( 125) — 3729,

Thus ps = K; and 63 = K are as required.
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