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BINARY EXPERIMENTS, MINIMAX TESTS AND 2-ALTERNATING
CAPACITIES!

BY TADEUSZ BEDNARSKI

Mathematical Institute of the Polish Academy of Sciences, Wroclaw

The concept of Choquet’s 2-alternating capacity is explored from the
viewpoint of Le Cam’s experiment theory. It is shown that there always exists
a least informative binary experiment for two sets of probability measures
generated by 2-alternating capacities. This result easily implies the Neyman-
Pearson lemma for capacities. Moreover, its proof gives a new method of
construction of minimax tests for problems in which hypotheses are generated
by 2-alternating capacities. It is also proved that the existence of least
informative binary experiments is sufficient for a set of probability measures
to be generated by a 2-alternating capacity. This gives a new characterization
of 2-alternating capacities, closely related to that of Huber and Strassen.

1. Introduction. Robust test problems between two approximately known probability
measures P and @ are usually formalized as minimax test problems between neighborhoods
of P and Q. It was proved by Strassen (1964, 1965) for finite spaces and then by Huber and
Strassen (1973) for Polish spaces that the Neyman-Pearson lemma generalizes to Choquet’s
2-alternating capacities. This result in particular implies that if neighborhoods of P and @
can be described in terms of 2-alternating capacities, then the minimax tests have a simple
Neyman-Pearson structure (see Huber, 1969 and Huber and Strassen, 1973). Fortunately,
all neighborhoods used to formalize inaccuracies in spemﬁcatlon of underlying distributions
can be described by 2-alternating capacities.

Let Q be a Polish space and let £ stand for the Borel o-field on Q. By .# we denote the
set of all probability measures on 4. The concept of alternating capacity of order n was
introduced by G. Choquet (1953, 1959) and resulted from problems of potential theory.
The 2-alternating capacity used by Huber and Strassen (1973) can be defined as a set
function v from # to [0, 1] which is the upper probability of a weakly compact set of
probability measures, and it satisfies the condition v(A U B) + v(A N B) < v(A) + v (B)
for all A, B € 4. A set 2 of all probability measures majorized by v, i.e. = {P €./ : P(A)
=v(A), for all A € £}, is said to be generated by v.

In this paper we examine connections between 2-alternating capacities and binary
experiments.

In Section 2 we state basic facts concerning finite experiments and 2-alternating
capacities. Also, some preliminary results are proved. The existence of least informative
binary experiments in % X %, where £, are subsets of .# generated by 2-alternating
capacities, is proved in Section 3. This result is closely related to the main result of Huber
and Strassen (1973) in the sense that each one of the results can be easily derived from the
other. The proof we give here is based on quite elementary considerations and it implies
a general method of construction of minimax solutions for hypotheses generated by 2-
alternating capacities. In Section 4 we prove a necessity of 2-alternating capacities, namely,
if 2 C M is convex and weakly compact and for every probability measure @ € .# and
every finite field o C % there exists a least informative binary experiment in the closure
of 2% {@} | &, then 2 has to be generated by a 2-alternating capacity.
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2. Notation and basic facts. Notions and facts concerning the finite statistical
experiment can be found in Blackwell (1951), Le Cam (1964, 1969, 1972) and Torgersen
(1970). Below we recall some of them.

Let O be a finite set. An experiment E indexed by © is defined by a ¢-field 2 and a map
0 — P, from © to the set of all probability measures on 4. When @ is a two-element set
then experiments indexed by © are called binary experiments. Let E = (Po, P1) and F' =
(Qo, @) be binary experiments. The deficiency 8(E, F) of E with respect to F can be
evaluated by the following formula proved by Torgersen (1970) (see also Le Cam, 1977).

Define fby fd(Po + P;) = dPy. For each a € [0, 1], let m. () be the function defined on
[0, 1] by m.(x) = min[ax, (1 — «)(1 — u)] and let To(Po, P1) = [ mo(f)d(Po + P1). The
formula says that

2.1) (E, F) = sup{Tu(Po, P1) — Ta(Qo, @) :x € [0, 1]}.

The integral T, (Po, P;) is the Bayes risk for the problem of testing Po against P; with 0,
1 loss function and with prior probabilities o, 1 — o, i.e.

(2.2) T.(Po, P;) = inf{aPo(A) + (1 — a)P1(A°):A € B},

where 4 is a o-field on which P, P; are defined.

If §(E, F) = 0 we say that E is more informative or better than F. The distance A(E, F)
between two experiments E and F is defined as max{8(E, F), 8(F, E)}. If A(E, F)=0we
say that the experiments are equivalent. The equivalence class of an experiment E is called
the type of E. For a given set ©, the experiment types induced by © form a set which is a
compact metric space.

The testing affinity of the pair (P, P;) corresponds to an average Bayes risk for testing
P, against P; and is defined by

(2.3) a(Po, P1) = (%) J 1 - NHfd(P + Pr).

Let Q be a separable, complete and metrizable space and let 4 stand for its Borel o-
field. Let .# be the set of all probability measures on %. Huber and Strassen (1973) give
the following definition.

A set function v from 4 to [0, 1] is called a 2-alternating capacity if the following
conditions are satisfied:

(a) forevery AC B,0=v(@) =v(A)=v(B)=v(Q) =1,

(b) for every sequence of measurable sets A, ./ A we have v(4,) / v(A),
(c) for every sequence of closed sets F, \y F we have v(F,) \ v(F),

(d) for every A, B € # we have v(A U B) + v(A N B) <v(A) + v(B).

We shall say that a family 2 C ./ is generated by a 2-alternating capacity v if 2 is the
largest set of probability measures majorized by v, i.e. = {P € #:P(A) <v(A) forall A
€ #}.

Below we give some important relations between £ and v. The proofs can be found in
Huber and Strassen (1973) and in Choquet (1953, 1959).

(2.4) visregular, i.e. for every A € %
v(A) = sup{v(K) : K compact, A D K} = inf{v(G) : G open, A C G}.

(2.5) The set 2 generated by v is convex and weakly compact.

(2.6) For every A € A there is P € 2 such that P(A) = v(A).

(2.7) For every weakly compact set % C ., its upper probability satisfies (a), (b) and (c).

(2.8) For every monotone sequence of closed sets F1 C F; C - C F,, there exists P €
2 such that P(F;) = v(F;) fori=1, .--,n.

The above properties imply that the 2-alternating capacity can be equivalently defined as
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the upper probability of a weakly compact set of probability measures that satisfies
condition (d).

Let & be a finite field of some subsets of @ and let v be a monotone set function from
& to [0, 1], such that v(J) = 0 and v () = 1. The 2-alternating property of v is characterized
by the following lemma proved by Le Cam (unpublished manuscript).

LEMMA 2.1. Under the above assumptions, the following two conditions are equiva-
lent:

(i) for every A, B € of we have v(A U B) + v(A N B) <v(4) + v(B),

(ii) for every sequence of &/ measurable sets Ay C Ay C ... C A,, there exists a
probability measure P on & such that P(A;) = v(A;) fori=1, --.,nand P(A) =
v(A) for every A in .

Proor. Every finite field is the Borel o-field of a Polish space. Therefore, by (2.8), (ii)
is a consequence of (i). For the converse, it is enough to take P majorized by v and such
that P(ANB)=v(ANB),PAUB)=v(AUB).0O

LEMMA 2.2. Let 2 be a closed and convex set of probability measures defined on a
finite field o/. Then 2 is generated by a 2-alternating capacity iff for every sequence of
& measurable sets Ay C Ay C - .- C A, there is Py € 2 such that Py(A;) = sup{P(A;): P
€ 2}.

Proor. Lemma 2.1 guarantees the existence of P, if 2 is generated by a 2-alternating
capacity. For the converse, let us first notice that Lemma 2.1 implies that the upper
probability u(A) = sup{P(A) : P € &} is a 2-alternating capacity. By contradiction, assume
that there is Py & 2 such that Py(A) < u(A) for all A € /. Since 2 is convex and closed,
there exists a hyperplane separating P, and £ Thus there is a positive .«/-measurable
function & such that sup{[ AdP: P € 2} < [ hdP,. Since [ hdP = [§ P(h > t) dt for every
P on </, Lemma 2.1 yields a contradiction. O

Let 2, denote the subset of .# generated by a 2-alternating capacity v, and let .« be a
finite subfield of #. The restriction of 2 and v to the field ./ is further denoted by 2| &/
and v| &, respectively. The subset of ./ | </ generalized by v| .o/ will be denoted by Z,)..
Relations between %,, #, | & and 2,.; are summarized by the following lemma.

LEMMA 2.3. Assume P C M is convex and weakly compact. Then 2 is generated by
a 2-alternating capacity iff for every finite subfield o/ C %, the set?| o (closure of ?| o/
for pointwise convergence on atoms) is generated by a 2-alternating capacity.

ProoF. Suppose 2 C ./ is generated by a 2-alternating capacity v. Lemma 2.2 says
that, for every sequence A; C A; C .- - C A, of &/ measurable sets, there is P € £,, such
that P(A;) = v|«&(A;) for i = 1, ..., n. The same lemma implies that the convex set
generated by such probability measures is %,». By the regularity of v and by (2.8), the
convex set 2| o« has “approximately” the same property in the sense that for every ¢ > 0
there is P € 2| &« such that P(A;) + ¢ = v(A;) fori = 1, ..., n. Hence we have?| & =
Pyt

Now let u be the upper probability of £ Lemma 2.1 and (2.7) imply that u is a 2-
alternating capacity on 4. It remains to show that 2, C 2 Let then P € £,. Consider a
base ¥ = {Gi, Gq, -+ -} of open sets which is closed under finite intersections, and denote
by &, the field generated by {Gi, - --, G.}. Our assumptions about £ imply that 2| <,
= P, 4, and consequently that P| ./, € 2| .. Hence for every ¢ > 0 there exists P, , € #
so that | P..(G:) — P(Gi)| < efori=1, ..., n. Taking P, = P, , for a sequence {e,} of
positive numbers converging to 0, we get by Theorem 2.2 of Billingsley (1968) that P is a
weak limit of the sequence {P,}. Since 2 is weakly compact, we obtain P € £.[]
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3. Existence of least informative binary experiments in case of 2-alternating
capacities. First we shall consider the case of finite @ = {wi, -+, wa.}. Let ./ stand for
the set of all probability measures on Q. For P, @ € ./ the testing affinity a(P, @) can be
written as

% TSI (L= )P+ Qw),  where fi = Qi)/(P + Q)(w).

THEOREM 3.1. If 2 C M and P, C M are generated by 2-alternating capacities, then
there exists a least informative experiment in % X .

ProOOF. Suppose first that for all P € 2, j = 0, 1 we have P(w) > 0 for every w in {.
Following Huber’s (1969) argument, we select a pair (P, @) € % X £ such that

a(P, Q) =sup{a(Z, U):(Z, U) € % X A}

and then by differentiation of a[(1 — B)P + BZ, @] with respect to 8 we obtain that the
density f = d@/d (P + @) is stochastically largest for P in %. Similarly, fis stochastically
smallest for @ in #,. Since f= 1/[1 + dP/d@Q], we also obtain

T.(P, Q) =avo{aP<(1—a)@} + 1 —a)vi{aP= (1 - )@}

for all « € [0, 1], where vy, v; are 2-alternating capacities generating % and 2 respectively.
Hence T, (P, Q) = T.(Z, U) for every (Z, U) € Z X £, and by (2.1) the pair (P, Q) is least
informative.

For arbitrary % and 2, for j = 0, 1, we define subsets 2" of # by 27 = (1 — )%,
+ B.K, where the sequence {8} C (0, 1) converges to 0 and K is a probability measure
defined by K(w;) = 1/n for i = 1, ..., n. For every m = 1, the sets 2§ and 27 are
generated by 2-alternating capacities, and they satisfy the assumptions from the first part
of the proof. Thus for every m there exists a least informative experiment (Pn, @) in
P& X P, For a subsequence {m’} of {m}, the measures P, @. converge on subsets of
Q to some probability measures P and @ respectively. It is easily seen that (P, @) € % X
2, and it forms there the least informative binary experiment. [

Let Q, %, # denote, respectively, a Polish space, its Borel o-field and the set of all
probability measures on 4.

THEOREM 3.2. Let % C M and 2, C M be generated by 2-alternating capacities vo
and vi. Then there exists a least informative binary experiment in %, X 2.

ProoF. For every (Z, U) € % X £ and for all a € [0, 1] by (2.2) we have
M, := inf{avo(A) + (1 — )v1(A°):A € B} = T.(Z, U).

Because of (2.1), it will be sufficient to find a pair (P, @) € % X % for which M, =
T.(P, @) for every a € [0, 1].

Let 4 = {Gi1, Gs, -- -} be a base of open sets in  which is closed under finite unions,
and let for every n = 1, </, denote the field generated by {Gi, ---, G.}. Moreover, we
assume that for every ¢ > 0, there is a compact set K such that K° € ¢ and v, (K°) < ¢ for
i = 0, 1. This assumption can be made here since v, and v; are, by (2.5) and (2.6), the upper
probabilities of weakly compact sets.

Lemma 2.3 and Theorem 3.1 imply that for every n there exists a least informative
binary experiment (P,, @,) in % | &4, X & | ,. Let {A1, - -+, Aiin} be the set of all atoms
of </, and take a sequence of points wi, « - -, wim € & such that w; € Ajforj =1, ---, i(n).
The probability measures P, @* defined by P (w,;) = P.(4,), @¥(w;) = @.(A;) form on
% an experiment equivalent to (P, @,) on </,.

As we shall see, every cluster point (in the topology of weak convergence) of the
sequences {P:} and {@} forms a least informative binary experiment in % X 2.
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The definition of ¥ ensures tightness of the sequences {P;} and {@7}. Let P and @
be, respectively, weak limits of P} and ;. Pormanteau’s Lemma yields P(G) < lim inf,
P (G) < v5(Q) for every G € %. Since ¥ is closed under formation of finite unions, the
regularity of P and v, implies P(A) < vo(A) for every A € %. Thus P € % and in a similar
way we infer that @ € 4.

Since, for every n, &, C n+1 we have To(Pn, @:) = To(Pns1, Qu+1). Thus the
compactness of all binary experiments in A and (2.1) imply the convergence of (P, @.)
(defined on .%7,) and hence of (P, @) (defined on %) to a binary experiment. According
to Proposition 6 of Le Cam (1972), (P, @) forms an experiment which is less informative
or equivalent to the one formed by the limit of (P}, @) in A. Therefore (2.1) and (2.2)
imply that M, < lim, T,(P¥, @) < T.(P, @) for every a € [0, 1]. On the other hand, we
also have (P, Q) € % X #,.. Thus M, = T,(P, @) for every a € [0, 1]. O

The following corollary explains the relation between least informative binary experi-
ments and Huber’s least favourable pairs of distributions. -+

COROLLARY 3.1. Every least informative binary experiment (P, Q) in % X 2 forms
Huber's least favourable pair of distributions, i.e. there is a version q = dQ/dP such that
Plg>t)=wlg>t) and Q(q = t) = vi(q < t), for all t = 0. Also, each least favourable
pair forms a least informative binary experiment in %o X 2.

ProoF. For each a € (0, 1), let ¢ be defined by a = /(1 + ¢). Lemma 3.2 of Huber and
Strassen (1973) says that there exists a decreasing family of measurable sets As, s = 0,
such that

A =Up A and M, = avo(A:) + (1 — a)ui(A7).

Since (P, Q) is least informative, we also have T, (P, @) = M, for all « € [0, 1]. This in turn
implies that the function g defined by ¢(x) = inf{¢:x & A,} satisfies, for all « € [0, 1], the
equality

To(P,Q)=aP(g>t) + (1 —a)Q(g=1?)
and, consequently, ¢ is a version of dQ/dP.

On the other hand, if a pair (P, @) is least favourable in the sense of Huber, by (2.2) we
then have

T (P, @) = avo(A;) + (1 — a)v1 (A7) = M,
and by (2.1), (P, Q) forms the least informative binary experiment in % X 2.0

Let ¥ = {G1, G, - -} be a base of open sets in ©. Assume that ¢ is closed under the
formation of finite unions and that for every ¢ > 0 there exists a compact set K such that
K°e %and v;(K¢) <¢fori=0, 1. Let <, be the field generated by {Gi, - - -, G»} and let
(P., @.) be a least informative experiment in%| o, X 2| o, . The final part of the proof
of the theorem gives the following.

COROLLARY 3.2. The experiments (P,, @,) defined on <, converge in A to the least
informative binary experiment (P, @) in %, X .0

The corollary says that every least informative experiment (P, @.) on «, has “ap-
proximately” the same properties, in the sense of risk, as any least informative experiment
(P, Q) in % X Z. The next theorem shows that also the significance level and minimum
power of the minimax test for testing % | o/, against 2, | o/, approximates the significance
level and minimum power of the minimax test in % against #,. In this sense, (Py, @-)
forms an approximate solution of the general minimax problem % against &,.

For every n = 1, let ¢, = dQ,/dP, be a version such that P,(g. > t) = vo(g. > t) and
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Q.(gr = t) = vi(gr = t). Let go = d@®/dP be defined in the same way. We shall consider a
sequence of tests ¢, given by

1 if g.>t
P =9y If gu=t

0 if g.<t fort=0andn=0,1,2,....

THEOREM 3.3. Let o and B be the significance level and the minimum power of the
test @0 for the test problem %, against #.. Then, for every continuity point t of the
distributions of q under P and @, we have lim,_.oEp ¢.» = a and lim,_. Eq (1 — ¢;.)

=8

Proor. The convergence of the experiments (P, @.) to the experiment (P, @) implies
the weak convergence of the canonical measures for the experiments (Le Cam, 1972). This
and formula (2.1) easily imply that the distributions of g, under P, and @, converge
weakly to the distributions of ¢ under P and @ respectively. O

4. Necessity of 2-alternating capacities. As before, we shall begin with the finite
case. Let @ = {wi1, w2, w3} be a three-element set and let .# stand for the set of all
probability measures on Q. The following lemma easily implies the remaining results of
this section.

LEMMA 4.1. Let ? C . be convex and closed. Assume that, for every @ € M, there
exists Pg € P such that the experiment (Pg, Q) is least informative in ? X {Q}. Then 2
is generated by a 2-alternating capacity.

Proor. The sequence of sets B; = {w;}, B2 = {w1, w2}, Bz = Q defines a probability
measure @ by Q(B;) =sup{P(B;): P € 2), for i =1, 2, 3. We shall prove that @ € # The
arbitrariness of the sequence B; C B; C B; and Lemma 2.2 will imply that £ is generated
by the 2-alternating capacity v(-) = sup{P(-): P € £}.

Let (Pg, @) form a least informative experiment in 2 X {@}. Suppose by contradiction
that Pg # @. (If 2is generated by a 2-alternating capacity, then obviously P, = @.) This
implies that there exists a number a € (0, 1) such that the set A, = {w:aPq(w) <
(1 — a)@(w)} has the following two properties: (i) Pg(4,) < Q@(A.), and (ii) [Pe + @]-
({w:aPg(w) = (1 — a)@(w)}) = 0. If A, is a singleton, say A, = {wo}, then we take P € 2
such that P(wo) = @(wo). It is not difficult to see that the definition of @ and assumptions
about 2 ensure that for every w € @ there exists P € £ so that P(w) = @(w). Since 2 is
convex, BPg + (1 — B)P € 2 for every B € [0, 1] and thus for 8 sufficiently close to 1 we
have A, = {w:a[ BPg + (1 — B)P](w) < (1 — @) @(w)}. This in turn implies that T, (Pg, Q)
< T,(BPq + (1 — B)P, @), which by (2.1) contradicts the assumption that (Pg, @) is least
informative.

If A¢ is a singleton, then the same argument as before with P(A5) = @(ASL), PE 2
gives the contradiction. Hence P = Q and @ € £ 0

Assume now that @ = {wi, ---, w,} is a finite set. The symbols %, .# have the usual
meaning. As a consequence of the last lemma we have the following.

COROLLARY 4.1. Let 2 C M be convex and closed. If for every @ € M/ and every
three-atom subfield of of & there exists Pg € P such that the experiment (Pq, Q) | & is
least informative in 2| o X {Q} | «, then the set function defined as v(-) = sup{P(-): P
€ 2} is a 2-alternating capacity. 0

THEOREM 4.1. Let 2 C M be closed and convex. Assume that for every @ € /# and
every three-atom field o/ C %, there exist least informative experiments in 2|« X {@} | &
and in 2 X {@}. Then 2 is generated by a 2-alternating capacity.
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ProoF. By Corollary 4.1 the set function v(-) = sup{P(-) : P € 2} is a 2-alternating
capacity. In order to prove that 2is generated by v, it is, by Lemma 2.2, sufficient to show
that for every monotone sequence of sets B; C B; C - -+ C B, there is a measure P € &
such that P(B;) = v(B;). Thus let B; = {wi1, +++, w} for i = 1, .-+, n. As before, the
measure @ is defined by the conditions @ (B;) = v(B;) fori =1, -+, n. Let (Pg, @) form
a least informative binary experiment in 2 X {@Q}. Arguing as in Lemma 4.1, we assume by
contradiction that Py # @. This implies that there exists a € (0, 1) such that the set A,
= {w:aPg(w) < (1 — a)Q(w)} satisfies conditions (i) and (ii). Since v is a 2-alternating
capacity, Lemma 2.1 implies @(A.) < v(A.). Moreover, since v is the upper probability of
2 there is P € ?such that P(A,) > Pq(A.). For B € (0, 1) and B sufficiently close to 1 we
obtain T.[8Pg + (1 — B)P, Q] > T.(Pq, Q). Thus (Pg, Q) cannot be least informative in
2 X {Q}. This completes the argument. 0

Let © be a Polish space, 4 its Borel o-field, and let .# stand for the set of all probability
measures on 4. The main result of this section, stated below, is a consequence of Lemma
2.3 and Theorem 4.1.

THEOREM 4.2. Let 2 C M be convex and weakly compact. If for every @ € ./ and
finite subfield s/ C & there exists a least informative binary experiment in Pl X
{Q} | o then P is generated by a 2-alternating capacity. Ul
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