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ESTIMATED SAMPLING DISTRIBUTIONS: THE BOOTSTRAP
AND COMPETITORS'

By RuUDOLF BERAN

University of California, Berkeley

Let X1, X3, - -+, X, be i.i.d random variables with d.f. F. Suppose the {Tn
= T,,(Xl, Xz, -+, Xy,); n= 1} are real-valued statistics and the {7, (F); n= 1}
are centering functionals such that the asymptotic distribution of n'/?(T, —
T,(F)} is normal with mean zero. Let H,(x, F) be the exact d.f. of n'2{T, —
T.(F)}. The problem is to estimate H,(x, F') or functionals of H,(x, F). Under
regularity assumptions, it is shown that the bootstrap estimate H,(x, £,
where F, is the sample d.f,, is asymptotically minimax; the loss function is any
bounded monotone increasing furction of a certain norm on the scaled
difference n'?{H,(x, F,,) — H,(x, F)}. The estimated first-order Edgeworth
expansion of H,(x, F) is also asymptotically minimax and is equivalent to
H,(x, F,) up to terms of order /2. On the other hand, the straightforward
normal approximation with estimated variance is usually not asymptotically
minimax, because of bias. The results for estimating functionals of H,(x, F)
are similar, with one notable difference: the analysis for functionals with skew-
symmetric influence curve, such as the mean of H,(x, F), involves second-

order Edgeworth expansions and rate of convergence n™".

1. Introduction. Let X;, X5, .-, X, be independent identically distributed random
variables with unknown distribution function F. Suppose the (1. = To(X1, Xa, -+, Xn);
n = 1} are real-valued statistics and the {7, (F); n = 1} are real-valued functionals such
that the asymptotic distribution of n/2(T, — T,(F)} is normal with mean zero. Let H,(x,
F) be the exact distribution function of n'/2{T, — T,(F)}. A basic problem in statistics is
the estimation of H,(x, F) or functionals of H,(x, F) from the sample. Indeed, the mean
and variance of H,(x, F) are, respectively, the bias and variance of T, when T, is regarded
as an estimate of T, (F'). Moreover, confidence intervals for T, (F') can be constructed from
a knowledge of H,(x, F).

Possible estimates of H,(x, F) include Edgeworth expansions of various orders with
coefficients estimated from the data; and the bootstrap estimate H,(x, F’,,), where F, is the
sample d.f. Since exact calculation of H,(x, F,) may be difficult, Monte Carlo approxi-
mations are often used (Efron, 1979). A functional of H,(x, F) may be estimated directly
from an estimate of H,(x, F); or by other methods, such as the jackknife, suggested by
expansions for n'2{ T, — T, (F)}; c.f. Brillinger (1977) for a discussion of variance estimates.

If H,(x, F) depends smoothly upon F, it is plausible that the bootstrap estimate H,(x,
F,) will be consistent in the following sense: H.,(x, F,) converges weakly, in probability, to
the same normal distribution as does H,(x, F'). Consistency of the bootstrap estimate has
been proved under various assumptions by Efron (1979) and by Bickel and Freedman
(1981). The latter paper shows that the convergence is typically almost sure.

Less apparent to the intuition are the asymptotic distributions of bootstrap estimates
and answers to the following questions:

(a) How well can H,(x, F') or a functional of H,(x, F') be estimated?
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(b) What are (asymptotically) optimal estimates for H,(x, F') and for functionals of
H,(x, F)?

These matters are the subject of this paper.

Section 2 of the paper contains results which characterize asymptotlcally minimax
estimates of H,(x, F). Under certain assumptions on the statistics {Tw; n = 1), the
bootstrap estimate H,(x, F, ) and the first-order Edgeworth expansion estimate are both
asymptotically minimax. The empirical processes n'/2{H,(x, F.) — H.(x, F)} converge
weakly to a degenerate Gaussian process. The same limit process occurs for the first-order
Edgeworth expansion estimate. The results for estimating functionals of H,(x, F') are
similar, with one notable difference: the analysis for functionals with skew-symmetric
influence curve, such as the mean of H, (x, F'), involves second-order Edgeworth expansions
and rate of convergence n".

The principal assumption underlying the results described above is, roughly, that the
Edgeworth expansion for H,(x, G) hold umformly over all distributions G in certain
shrinking balls about F; the radius of each ball is of order n~'/% Potential technical
difficulties with lattice distributions are avoided by slightly smoothing H,(x, G) in the loss
functions considered. The existence of locally uniform Edgeworth expansions for smoothed
H,(x, Q) is discussed in Section 3.

It should not be imagined, however, that bootstrap estimates behave reasonably for
every sequence of statistics {Tn} whose asymptotic distribution is normal. Suppose that
F(x) = ®(x — #), ® being the standard normal distribution function, and that 7, is the
following estimate (proposed by J. L. Hodges in a different context; cf. LeCam, 1953):

~ _[bX, i |X.|=n""4
(L1) Tn= {X,, otherwise,
where X, is the sample average and b is any positive constant. Let 7, (F) be the mean of
F. Then {H,(x, F)} converges uniformly to ®(b 'x) if § = 0 and to ®(x) if  # 0. On the
other hand, the bootstrap estimates { H,(x, Fn)} converge uniformly to ®(x) w.p.1 if § #
0; but

(1.2) sup, | Hu(x, F,) — ®(b™{x — n?X,(b—1)})| >0 wpl

if 8 = 0. The bootstrap estimates are not consistent if b differs from 1.
The asymptotic behavior of H,(x, F.) in this example can be derived as follows. Let

X& X5, -0, X bei ii.d. random variables whose conditional distribution, given X;, X,,
«+v, X, is F,. Let T# denote the Hodges estimate calculated from the {X}}. Then
(1.3) Ho(x, F,) = P[nV*{T} — T.(F)) < x| X, X, -+, X, ]

If0=0,

P(|X,"{|Sn_l/4|X1, X2) "')Xn)

(1.4) _ _ _ _
=P{-n"* - n"?X, =n"*X}; - X.) =n"* - n"’X,| X1, X, -+, Xu}.

With probability one, the conditional distribution of n/*(X} — X,,), given X1, Xz, « -+, X,
converges weakly to the standard normal distribution. Also n'* — n'/2X, converges with
probability one to +o because n'/2X, has a N(0, 1) distribution. (For instance, if A, =
{n'* — n'2X, < n"/®}, then P(A,) < Cn? for all sufficiently large n, C being a constant.
Hence, by the Borel-Cantelli lemma, P(A, occurs infinitely often) = 0.) These last two
facts imply that

(1.5) liln,,_,wP(|X,’f | = n1/4|X1,X2, ooy Xn) =1 W.p.]..

Equivalently, using the definition of the Hodges estimate and the fact that T, is the mean
functional,
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limuo P[n2( T — To(F,)}
(1.6) o _
=bn2 X} - X,) +n2X,(b—-1)|X1, .-+, X.]=1 wp.l

Equation (1.6) implies (1.2) because the conditional distribution function of n'/*(X} — X,.)
converges uniformly to ®(x) w.p.1. If 8 # 0, the analysis is similar, the key fact in this case
being

1.7) lim, o P(T} = X¥| X1, Xs, -+, Xx) =1  wp.L

The main point of the example is this: the bootstrap is not foolproof, even for statistics
{T,,} whose asymptotic distribution is normal. Asymptotic optimality, or even consistency,
of the bootstrap estimate H, (x, Fn) is not to be expected unless H,(x, F') depends smoothly
upon F. For examples of bootstrap failure in cases where the limit law is not normal, see
Bickel and Freedman (1981).

The estimation theory for sampling distributions other than H,(x, F') is also of interest.
For instance:

(a) Let L.(x, F) be the distribution function of nV*(T, — T\,(F)}/sn(F), where s,(F)
is a scaling functional chosen so that L,(x, F) converges weakly to the standard normal
distribution. The asymptotic estimation theory for L,(x, F) parallels that for H,(x, F),
though the rate of convergence becomes n ! rather than n~"/2 if the centering functionals
T,.(F), s,(F) are chosen carefully (i.e. as in Assumption 1’ of Section 2.3). The approach
used in Section 2.1 still works, with Assumption 1’ in place of Assumption 1 and other
fairly obvious modifications; the bootstrap estimate L, (x, F,) is asymptotically mlmmax
for L,(x, F'). Despite the better rate of convergence, statistical applications for L,(x, F,)
seem few. Typically, the value of s,(F) is not known at the unknown true F.

(b) Let K,(x, F) be the distribution function of nV*(T,, — T.(F)}/$,, where §, is a
consistent estimate of s, (F'). Like H,(x, F, ), K. (x, F) may be used to construct confidence
intervals for T, (F). For the simplest example, namely the ¢-statistic, the method of Section
3.2 yields a first order asymptotic expansion for K,(x, F) which satisfies Assumption 1.
This implies that the rate of convergence of K, (x, F,,) to K, (x, F) is better than 2", in
the norm || - ||, defined in Section 2.1. Details of the argument will be given elsewhere. We
conjecture that the rate of convergence is n " and that K., (x, F.)is asymptotlcally minimax
for K, (x, F). Checking this conjecture would require a second order expansion for K,(x,
F).

2. Asymptotically optimal estimates.

2.1 Estimating the sampling distribution H,(x, F)). Let u be a sigma-finite measure
on the real line. If  is a bounded function and %2 € L'(p), let (k, h) = [ kh dp and let || 2|
= sup.| A(x)|. Let # denote the set of distribution functions F considered possible for the
data. For every F'in %, define the ball B, (F, c) as the set of distribution functions G such
that || G — F|| < n~"%c. Roughly speaking, we will assume that H,(x, G), the d.f. of n/*{ T,
— T.(G)} under G, has a first-order Edgeworth expansion which holds uniformly over all
distributions G in B, (F, c); the coefficients of the expansion are to be smooth functionals
of G; both assertions are to hold for every positive ¢ and every d.f. F in &#. The latter
requirement ensures that the optimality results of this section hold for the unknown true
F responsible for the data.

Since the ball B, (F, ¢) contains lattice distributions, the Edgeworth expansion assump-
tion needs to be formulated more carefully. Let v(x) be a symmetric probability density on
the real line which approximates the delta function; for instance

(2.1) v(ix) =a (1 —a'|x|) if |[x|=a.
Let H, ,(x, G) be the convolution of H,(x, G) with v(x),

2.2) H,.(x,G) = j H,(x —y, G)v(y) dy.
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Similarly, let ®, and ¢, denote the convolution of v with the standard normal d.f. and
density, respectively. The subscript v will be used routinely to indicate the convolution of
the subscripted function with v.

Let the notation sup, r,. designate the supremum over all distribution functions G in
B, (F, c). The precise statement of the Edgeworth expansion assumption is as follows.

AssuMPTION 1. Let J,(x, G) be the distribution function of n'2{T, — m,(G)}/s.(G)
under G, where m,(G) and s,(G) are appropriately chosen centering functionals. The
following assertions hold for every positive ¢ and every F in %

(@) oJu,u(x, G) has a first order Edgeworth expansion
(2.3) linln—»oosupn,F,c "nl/z{Jn,v(x; G) - q)v(x)} + k(G)t,(x) " =0,

where £(G) is a functional of G and ¢(x) = 6" (x> — 1)p(x). The subscript v
indicates convolution with v.
(b) There exists a functional (G) such that

(2.4) lim,,,wSUp, F,ct | Ma(G) — To(G) — n7'B(G)| = 0.
(c) The functionals {s,(G)} are differentiable at F: there exists s&in L'(u) such that
(2.5) lim,,,wSUP . 7| 28 (G) — $.(F)} — nV*(sf, G— F)| = 0.

Moreover, s(F) = lim,_,.s,(F) exists.
(d) The functionals b(G) and k(G) are || - || continuous at F.

To clarify this assumption, consider the following example. Let T, be the sample mean
and let & be the set of all distribution functions supported on a fixed compact interval. A
weaker form of Assumption 1, in which B, (F, c) is replaced by B, (F, ¢) N %, holds in this
case. Indeed, assertion (a) is true provided m,(G), s.(G), k(G) are respectively the mean
of G, the standard deviation of G, and the standardized third cumulant of G. (This follows
by examination of the classical Edgeworth expansion argument for the sample mean in the
nonlattice case.) Assertion (b) is trivial for the natural choice 7, (G) = mean of G = m,(G).
Assertions (c) and (d) hold because G lies in & (integrate by parts). This weaker variant
of Assumption 1 suffices for the results of this section because # is large enough to contain
F,, with probability one. Section 3 gives examples of statistics {7} which satisfy Assump-
tion 1 unmodified.

The relationship between H,, ,(x, G) and /.. ,(x, G) is
(2.6) H, (%, G) = (52 (G)[x — n*{m,(G) — T.(G)}], G).

It follows from Assumption 1 that for every positive ¢
( ) liI'Iln_,ooSupn,F,c " nl/z{Hn,v(x, G) - q’v(x/sn(G))}
2.7
+ R(@)t(x/5,(G)) + 5.1 (G)b(G)pu(x/5.(G))| = O.

Consequently,

(2.8)  liMuwsupnrclln*(Hao(x, G) = Huo(x, F)} — n'(hp, G — F)uwr(x)| =0,
where

(2.9 hr(x) = —sk(x)/s*(F), wr(x) = x@u(x/s(F)).

The relationship || |l = || /-] for all functions f on the real line defines a semi-norm
| - ||o- If the characteristic function of v is strictly positive almost everywhere, then || - |, is

a norm.
Let fIn(x) be any estimate of H,(x, G). The risk of H, will be defined as

R.(H,, G) = Ecu(n*?|| A,(x) — Hu(x, G)|.)

2.10
®10 = Equ(n'?||H,,(x) — H,.(x, G)|),
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where H,, is the convolution of H, with v and u: R* — R* is monotone increasing. The
smoothing by convolution with v in measuring the distance between H,(x) and H,(x, G)
is a technical device; without smoothing Assumption 1 fails to hold because B,.(F, ¢)
contains lattice distributions. Whether optimality results resembling those obtained in this
paper can be established without smoothing is an open question.

Let
(2.11) hro(x) = j he(y) dp(y) — J j hr(y) du(y) dF (x).
THEOREM 1. Suppose Assumption 1 is satisfied. Then, for every F in %,
(2.12) lim,_, . lim infneminfﬁnSupn,F,cRn(ﬁn, G) = R()(F),
where
(2.13) Ry(F) = J u(a|z|)e(z) dz
and
1/2
(2.14) a=|wr|- {f hFo(x) dF(x)} .

ProoF. Let er(x) = {[ h%o dF} ?hro(x). For every real t, let {G,.; n = 1} be a
sequence of d.f.’s such that

(2.15) dGn,/dF =1+ n™*ter

for all sufficiently large n (er is bounded). Since wr is continuous, vanishing at oo, there
exist a probability A and functions {d;; i = 1} of unit length in L'(A) such that ||wr| =
sup{| (di, wr)o|; L = 1}; here (-, - )¢ is the inner product with respect to A.

This last claim can be justified as follows. Let A be any probability on R whose d.f. M
is continuous and strictly monotone. Observe that || wr || = sup{|(d, wr o | : d of unit length
in L'(A)} and that (d, wr)o equals the inner product in L'[0, 1] of d-M " and wr- M. Let
{d}:i =1} be a countable dense subset of the unit ball in L'[0, 1]. Define d;(x) = d}-
M (x) for every value of i.

Without loss of generality, assume that the loss function u is bounded and continuous
as well as monotone, hence is uniformly continuous on R*. Note that lim,n"?|| G, — F||
=27'A7"|¢|, where A™! = 2| er|. For every positive c,

lim inf,_..inf4,sup, r..Rn(H,, G)
(216) = lim inf,_.infg,sup{Eq, u(|n"* (A, — Huo(-, F)} — taowr|); || < Ac}
= lim inf, .infy, sup{Eq, u(|| Y. — taowr|); | t| = Ac},

where ao = {[ h%o dF}"? and Y, = nV*(H,, — H,.(-, F)}. The second-to-last step
depends on (2.15), (2.8) and the definition of er.
Moreover, for every & =1,

lim.,»lim inf, ..infy,supj,<.Eq, u(|| Y. — taowr|)
(2.17) = lim._.lim inf,,_)minfy"supl,|ScEan’lu(maxisk [{(dis Yn)o — tao{d;, wr)o|)

qu(a()lZlmaxiskl(di, wr)o|)p(z) dz.

The final inequality in (2.17) is a well-known variant of Hajek’s (1972) asymptotic minimax
theorem,; its justification rests upon the fact that

2.18)  Pp(| X% log{dGn. (x:)/dF (x:)} — n 2t Sy ep(x) + 2742 >¢€) — 0
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as n goes to infinity, for every positive ¢, and upon Anderson’s (1955) lemma. For an
elementary argument, see Beran (1980).

Combining (2.16) with (2.17) and letting & increase to infinity yields Theorem 1. This
method of proof is related to Levit and Samarov (1978). Alternate proofs may be based on
Millar (1979); the loss function need only be subconvex with respect to the sup-norm.

The lower bound (2.12) is attained asymptotically by estimates { H,(x);n= 1} which
have the property described in the next theorem. See (2.9) for the definitions of wr and Ar.

THEOREM 2. Suppose that Assumption 1 is satisfied and u is bounded. Let { H,(x);
n = 1} be any sequence of estimates such that
(2.19)  lim,.wsupsrPo(n'?||H,y — Hyo(-, F) — (e, B — Fywr|| >¢) =0
for every positive ¢, every positive c, and every F in &#. Then
(2.20) lim,, . SUp,, £, Ro(Hy, G) = Ro(F)
for every positive ¢ and every F in .

Proor. Because of (2.8), (2.19) is equivalent to the requirement
(221)  lim,_wsupnr.Pe(n'?| By — Hoo(+, G) = (he, B, — GYwr| >¢) = 0.

Hence, under every sequence of product measures {Gr; G. in B,(F, c¢)}, the processes
n' 2{I?,,,v(x) — H, .(x, G»)} converge weakly in sup-norm to the degenerate Gaussian
process aoZwr(x), where Z is a standard normal random variable. (Alternatively, we can
say that the processes n'/2{H,(x) — H.(x, G.)} converge weakly in the norm || - ||, to the
Gaussian process aoZxp(x/s(F)).) This implies Theorem 2.

Two constructions of estimates which satisfy (2.19) or (2.21), and are therefore asymp-
totically minimax, are as follows.

Bootstrap estimate:

(2.22) A, 5(x) = Hy(x, F,).

This estimate can sometimes be calculated analytically, but is more usually approximated
by Monte Carlo methods (Efron, 1979).
First-order Edgeworth expansion estimate:

(2.23)  H,p(x) = ®(x/5,(F,)) — n k(B t(x/s.(F)) — n™ 2571 (F) b(Eo ) (/5 (F)).

This estimate requires knowledge of the functionals s,, &, b and it need not be a distribution

function.
To verify the asymptotic behavior of { H, 5}, observe that for every positive c,

(2.24) : limg o lim Sup,_.eSup,, r,c Po{F, & B.(F, d)} = 0.
Indeed, for every n, every G in B, (F, c), and every d > c,
Po(F. & B(F, d)} = Po(n*| B — F|| > d)
(2.25) < Ps(n'?|F.- G| >d—c¢)
=< Cexp{—(d — ¢)?},

the constant C not depending on G or d (Dvoretzky, Kiefer, and Wolfowitz, 1956). Equation
(2.24) is weaker than (2.25) but suffices here; (2.24) and (2.8) imply that {H, g} satisfies

(2.19).
On the other hand, it follows from (2.7), (2.23), and (2.24) that
(2.26) lim o SUpPs, 7,c Pe(n 2| Hnp — Ho||o >€) =0

for every positive ¢ and every positive c. Thus, {ﬁn,E} also satisfies (2.19) and is asymp-
totically equivalent to the bootstrap estimates.
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REMARKS.

(a) Theorems 1 and 2 show that, under Assumption 1, both the bootstrap estimate
ﬁn,g and the first-order Edgeworth expansion estimate ﬁ,,,E are at least as good as any
other estimate of H,(x, F'), in an asymptotically minimax sense.

(b) This asymptotic minimax property may also be interpreted as quantitative robust-
ness over the contamination neighborhood B, (F, c) (cf. Beran, 1981).

(c) Let F¥ be an estimate of F' other than empirical d.f. When is the resampling
estimate H,(x, F;) asymptotically minimax? Answer: whenever F} satisfies (2.24), and
the limiting distribution of {n'?(hr, F¥ — G.)} under every sequence {GZ; G, in B, (F,
¢)} is N(0, ad); for then the risk of H,(x, F'}) satisfies (2.20). A simple sufficient condition
is that

(2.27) lim,,_.sup, 7. Pc(n"?|Ft — F,|| > ¢) =

for every positive ¢, every positive ¢, and every F in .

(d) The most commonly used estimate of H,(x, F), the normal approximation
®(x/s,(F,)), is not, in general, asymptotically minimax. Indeed, Assumption 1 and equa-
tions (2.7), (2.8) imply

lim,wSUP., £ | R 2@ (%/5.(G)) — H,,o(x, F)}

(2.28)

— n'*(hr, G — FYwr(x) — dr(x)| =0,
where
(2.29) dp(x) = R(F)t,(x/s(F)) + 7 (F)b(F)gu (x/s(F)).

It follows from (2.28), (2.8), and (2.24) that
lim o SUP,, 7, P (72| @y (- /50 ()

(2.30)
- n,v(') G)_<hF;Fn_G>WF—dF">£)=O

for every positive ¢, every positive ¢, and every F in #. Thus, under every sequence of
product measures {G?; G, in B.(F, ¢)}, the processes nV*(®,(x/s,(F)) — Hyo(x, G»)}
converge weakly in sup-norm to the degenerate Gaussian process aoZwr(x) + dr(x), where
Z is a standard normal random variable. In other words, the processes n"{®(x/s,(F))
— H,(x, G»)} converge weakly in the norm || - ||, to the Gaussian process a,Zxg(x/s(F))
+ d#(x); the function d# is defined by dropping the subscript v in (2.29).

From these calculations it follows that

(2.31) 1im,SUPn, 7,c Ra (® (- /5,(F)), G) = Eu(|| aoZwr + dr ).

By Theorem 1, the right side of (2.31) is not less than Ry(F). Equality occurs when dr(x)
vanishes; that is, when F'is such that 2(F') = 0 and the centering functional T, (F') matches
m,,(F') up to terms of order n~’, so that b(F) =

(e) As an estimate of H,(x, F), the normal approximation ®(x/s,(F,)) has the right
rate of convergence and even the right asymptotic covariance function, but is biased. The
asymptotically minimax estimate ﬁn, £ is simply ®(x/ $n(F,)) minus the natural estimate
of the bias.

2.2 Estimating functionals of the sampling distribution H,(x, F'). Also of interest are
certain functionals of H,(x, F), particularly location and scale functionals such as the
mean and standard deviation or their more robust competitors. The mean of H, (x F)is
the bias of T, as an estimate of T’ (F); the variance of H,(x, F) is the variance of T,.

Let {U,; n = 1} be a sequence of real-valued functionals of distribution functions on
the real line. The problem is to estimate V,.(F) = U,(H,(-, F')), which can be regarded
either as a functional of H,(x, F') or as a functional of F. Both points of view prove useful
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in what follows. As competing estimates of V,(F'), we will consider all functions of the
sample which can be represented in the form V. = U.(H,), where H, is any function
mapping the sample into a distribution function on the real line. The technical reasons for
working with this particular large class of estimates will become clearer in the next

paragraph. . .
The risk of V, = U,(H,) as an estimate of V,(G) = U,(H,(-, G)) is defined to be
(2.32) ra(fn, G) = Equ(n'?| Viy — Vao(G)|)

where u: Rt — R" is monotone increasing and
(2.33) Voo=Un(Hpp),  VaulG) = Un(Hyol+, G)
for ﬁn,u, H, .(-, G) defined as in Section 2.1. This risk, a perturbation of the more familiar
Egu(n'?|V, — Va.(@)]), is introduced to avoid difficulties with the lattice distributions G
in B, (F, ¢). .

Let » be a sigma-finite measure on the real line and let ( -, - }; denote the inner product
with respect to ».

AssuMPTION 2. The functionals {U,} are differentiable at {®,(x/s.(F))} in the
following sense: there exists ur in L'(») such that

(2.34)  limpowsupan'?| Up(H) — Un(@u(-/8.(F))) = (ur, H — @(-/32(F)))1| =0

for every positive d and every F in #. The supremum is taken over all distribution
functions H in B,(®,(-/s.(F)), d).

The clipped mean and variance
B

B
(2.35) U.(H) =j x dH(x), U:(H) =J x* dH(x) — U(H)

-B -B
both satisfy Assumption 2. Taking » to be Lebesgue measure on the interval (—B, B) plus
unit masses at B and —B, the derivatives are
u1,r(x) = =1 + Bl(_p 5y (x),
us p(x) = =2{x — Uy(H)} + {B? + 2BU(H)}I (-5, (x)

respectively. A variety of other M and L functionals satisfy Assumption 2 (cf. Boos, 1979;
Boos and Serfling, 1980).

Equation (2.7) and Assumption 1 imply the following: if G lies in B,(F, c), there exists
positive d which does not depend on G such that H,, ,(x, G) lies in Bn(®,(-/s.(F)), d) for
all n = ny(F). Hence, by Assumption 2,

liInnquUPn,F,cn 1/2 | Vn,u(G) - Un(q)u( ‘/sn(F)))

(2.36)

(2.37)
— (ur, Hyo(+, G) — @u(+/52(F)))1 = 0.

Combining (2.37) with (2.8) yeilds

(2.38) hm,,wsupn, £, 2| Vo olG) — Vool F) — (vr, G — F) | =0,
where
(2.39) vr(x) = (ur, wr)1hr(x)

for hr and wr defined in (2.9).
The following theorem is a consequence of (2.38) and Hajek (1972), analogous to
Theorem 1. See Koshevnik and Levit (1975) for a proof.
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THEOREM 3. Suppose Assumptions 1 and 2 are satisfied. Then, for every F in %,

(2.40) lime_olim inf, ..infg sups, £ F2(Hy, G) = ro(F),
where
(2.41) ro(F) = f ub| z|)p(2) dz
and
1/2
(2.42) b= { f v¥o(x) dF(x)} .

The function vr, is obtained by replacing hr in (2.11) with vr.

The asymptotic minimax bound ro(F') in (2.40) is attained by the natural bootstrap
estimate of V,(F) = U,(H,(-, F)):

(2.43) Vs = Un(Ha(+, F2)).
To verify this assertion, observe that in the notation of (2.33),
(2~44) VnB,u = Un(Hn,v('y Fn)) = Vn,v(ﬁn)-

It follows from (2.24) and (2.38) that for every positive ¢, every positive c, and every F in
Z :

(2.45) limyw8Ups, F.c Pa(n'?| Vg — VaolF) = (vp, B = F) | >¢) = 0.
Equivalently, using (2.38) again,

(2.46) imy,oSUps, rc Po(n?| Vigo = VaolG) = (vp, B = G) | > €) = 0.

Equation (2.46) implies that

(2.47) lim,, 8Py, e 7ol Hy 5, G) = ro(F).

Indeed, under every sequence of product measures {Gr; G. in B,(F, c)}, the centered
estimates n/2{V, 5, — Vo(Gr)} converge weakly to bZ, where Z is a standard normal
random variable.

Theorem 3 and (2.47) show that the bootstrap estimate V,,,B for V.(F') = U,(H(-, F))
cannot be beaten, in an asymptotically minimax sense, by any other estimate of the form
U.(H,).

2.3 Estimating center-of-symmetry functionals of H,(x, F'). 'The discussion in Section
2.2 becomes trivial if vr, defined in (2.39), vanishes. Since wr is an odd function, vr will
vanish whenever the derivative ur of {U,} is even and the measure » is symmetric about
the origin. The clipped mean defined in (2.35) is an example of such a functional. Indeed,
the vanishing of vr is to be expected for any differentiable location functional whose value
at every symmetric distribution is the center-of-symmetry. More interesting optimality
results for this case can be obtained by replacing the '/ rate of convergence in Section
2.2 with an n™" rate and by modifying Assumptions 1 and 2 accordingly.

AssUMPTION 1. Let J,(x, G) be the distribution function of n2(T\, — ma(G))/s(G)
under G. The following assertions hold for every positive ¢ and every F in #:

(a) Jnu(x, G) has a second order Edgeworth expansion
lim,,e8UPy pc | R{Tnu(X, G) — (%)} + BV ?k3(G)t1,0(x)
(2.48) 9
+ ka(G)ta,o(x) + k3(G)ts0(x) | =0,

where
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(2.49) bH(x) = 671x% — Do(x), t(x) =247'(x® — 3x)p(x),
) ts(x) = 7271 (x° — 10x® + 15x)q ()

and %3(G), k«(@) are functionals of G. The subscript v indicates convolution with v.
(b) There exist functionals b:(G), b2(G) such that

(2.50) limywSUpPs £, n 2 | Ma(G) — Tu(G) — n7'01(G) — n™?b:(G) | = 0.

(c) The functionals {s.(G)}, b1(G), and k3(G) are differentiable at F in the sense 2.5),
with respective derivatives s#, b1 r, k3 r in L'(p). Moreover, s(F) = lim, .« s.(F)
exists.

(d) The functionals b2(G) and k4(G) are || - || continuous at F.

Suppose T', is the sample mean and . is the set of all distribution functions supported
on a fixed compact interval. A weaker form of Assumption 1, in which B.(F, c) is replaced
by B.(F, ¢) N & holds for T'.. Refer to the discussion following Assumption 1 in Section
2.1, noting that in this instance £.(G) is the rth cumulant of G divided by the rth power
of the standard deviation of G. Circumstances under which U-statistics satisfy Assumption
1’ unmodified are described in Section 3.

Calculations using (2.6) and Assumption 1’ yield

i, soSUPs Fe || B{Hr,o(x, G) — @u(x/5:(G))}
+ n"?{c1n(G)pu(x/5:(G)) + k3(G)t1,(x/5x(G))}
(2.51) + (@) Pu(x/5:(G)) — 27 e (G)oi(x/5:(G))
— k(@) cin(G) o (2/5.(B)) + k(G ru(x/5:.(G))
+ k3(G)s,0(x/5:(G)) || = O,
where cin(G) = 57" (G)b:(G). Also, by Taylor expansion,
lim,—.«SUps e 1 || Pu(x/5(G)) — Pu(x/5:(F))
+ $:22(F) (5n(G) — 5u(F))xpo(x/5.(F))
— 27Ysa(G) — su(F)}?
(7 (F)x%p(x/52(F)) + 257 (F)xpu(x/sn(F))} || = 0.

The essential behavior of twice differentiable center-of-symmetry functionals is cap-
tured in the following assumption.

(2.52)

AssumPTION 2". The functionals {U,} are twice differentiable at {®.(x/s.(F ))} in the
following sense: there exist ur in L'(») and gr in L'(») X L'(») such that, for every positive
d and every F in %

lim,esupy 1| Un(H) — Un(@o(- /$u(F))) — (ur, H — ®y( /s2(F)) )1
- (qF(H_ (I)v('/sn(F)))’ H- q)v('/sn(F))>l| =0,

where grh(x) = [ qr(x, y)h(y) dv( ). The supremum is taken over all distribution functions
H in B.(®.(-/s.(F)), d). Moreover, (ur, h)1 = (qrh, h)1 = 0 for every bounded odd
function A.

(2.53)

The clipped mean satisfies Assumption 2’ with » and ur as described in (2.36) and with
gr identically zero. Other M and L functionals for center-of-symmetry yield nontrivial gr.

As in Section 2.2, let V,(G) = U,(H.(-, G)) denote the functional to be estimated.
Calculations based upon (2.51), (2.52) and Assumptions 1’ and 2’ eventually yield

(2.54) lim,,,SUps, F,c | n{V,(G) — Voo F)} — nl/2<v’Fk" G-F) I =0,
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where
(2.55) vE = (up, @u(x/s(F)))1cir + (ur, to(x/s(F))) 1 ks r
— (up, co(F)xgi(x/s(F)) + ks(F)atho(x/s(F)) )1 hr
and
(2.56) c(F) = sUF)bu(F), cir=s2F)o{s(F)bir— bi(F)s¥}.

Let V, be any estimate for V,(G) of the form U,,(ﬁn), where H, is an estimate of
H,(x, G). It is clear, comparing (2.54) with (2.38), that an analog of Theorem 3 holds for
the functionals considered in this section. If n'/2 is changed to n in the risk (2.32), then vr
in Theorem 3 is replaced by v#. Moreover, the bootstrap estimate V,, 5 = U,(H, 5) is still
an asymptotically minimax estimate of V,.(G); and the asymptotic distribution of (V5o
— Vu(Gr)} is normal with mean zero under every sequence of product measures {Gr; G»
in B,(F, ¢)}. )

3. Edgeworth expansions. It is not immediately obvious that the locally uniform
Edgeworth expansions postulated in Assumptions 1 and 1’ actually exist. The purpose of
this section is to identify a useful group of statistics to which the theory of this paper is
applicable. When 7', is the sample mean or a function of the sample mean, Singh (1981)
and Bickel and Freedman (1980) have obtained Edgeworth expansions for J,(x, F»). Their
results are related to the discussion here since equation (2.24) and part (a) of Assumptions
1 or 1’ imply Edgeworth expansions for the smoothed /., .(x, F).

3.1 U-statistics. Consider the second degree U-statistic
(3.1) T,=2n"'n - 17" T, t(X;, X;)

where t(x, y) is symmetric in its arguments. Assume that ¢ is absolutely continuous,
vanishes outside a large square [—B, BT, and has essentially bounded derivative. The
assumption that ¢ ultimately vanishes is harmless, practically speaking, provided the
square is chosen large enough to contain the domain of computation.

Define m(G) = Egt(X1, Xz). Then

(3.2) n{T, — m(G)} = 2n""*(n — )" Tug; he(Xi, X;)
for he(X;, X;) = t(Xi, X;) — m(G). Put
(33) gelX)) = Ec{h(X;, X)) | X}, de(Xi, X)) = he(Xi, X)) — 8c(Xi) — &6(X;)
and define

s2(G) = 4s% + 2(n — 1)'E d%(X1, X»)
(3.4) ky(G) = s5°[Ecg5(X1) + 3Ec{8e(X1)86(Xz) do (X1, X3)}]

ki(G) = sG'[Ecgh(Xy) — 3s& + 12E¢{ g% (X1)gc (Xz) da(X1, X2)}

+ 12E¢{8c(X2)gc(Xs) do(X1, X3) da(X1, X3)}],

where sé = Ecgé(Xy). ,

If u is the restriction of Lebesgue measure to the interval [—-B, B], the functionals m(G),
{5.(G)}, k3s(G), and k4(G) are each differentiable in the sense (2.5). Indeed, let #i:(x, y) be
the derivative of #(x, y), so that

(3.5) t(x, y) = J J’ ti(u, v) du dv

for every x, y. Let
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(3.6) ‘ to(x, V) = J tu(u, v) du.

The assumptions on #(x, y) imply that #;:(u, v) vanishes a.e. outside [—B, BT and that
to,1(x, v) = 0 for almost every v whenever x is outside [—B, B]. Integration by parts yields

3.7 m(G) = j G(x)G(Ntu(x, y) dx dy
and
(3.8) 8gal(x) = —j G(y)to,1(x, ¥) dy — m(G).

The sup-norm differentiability of m(G) is immediate. Using (3.8), the decomposition
(3.9) s%;—s%=fg%;d(G—F)+J’ (8¢ — gr)(gc + gr) dF,

and integration by parts in the first term on the right side of (3.9) establishes the
differentiability of s&. By continuing in this fashion, we verify the differentiability of SYF)
(and hence of s,(F)), k3(G), and k4(G).

Let

(3.10) Tn(x, G) = ®(x) — n7%k3(G)t1(x) — n 7' ka(G)ta(x) — nTR3(G)ts(x).

To establish the locally uniform second order Edgeworth expansion (2.48), it suffices to
show that for every sequence {G, in B,(F, c)},

(3.11) limn—»oosupn,F,c n " Jn,u(x, G) — jn,v(x: G,) “ =0,

whatever the choice of positive ¢ and F in &
Let v be the smoothing density (2.1). The characteristic function of v is

(3.12) U(t) = 2(at) ™% {1 — cos(at)}.

Let jn(2), Jn(¢) be the characteristic functions of J,(x, G»), I (x, G,,) respectively. Similarly,
let jn, = j.y and j,, = j.¥ denote the characteristic functions of the smoothed o, .(x, G»)
and jn,u(x, G,). By Esséen’s lemma (see Feller, 1966, page 512 and Callaert et al., 1980,
page 301),

nlogn

(3-13) " Jn,v(x’ Gn) - jn,v(x’ Gn) “ = 277—1 f t_l Ijn,v(t) _,;;L,U(t)l dt + O(n_l )-

0

The integral on the right side of (3.13) can be subdivided into three integrals, whose ranges
of integration are 0 to n/*/log n, n'/*/log n to n**/log n, and n**/log n to n log n. Label
these integrals I, II, III respectively. Since | y(¢) | < 4(at)”?, integral IIL is o(n™").

That integrals I and II are also o(n™") - a fact which would imply (3.11) - can be
checked by examining the reasoning in Sections 3 and 4 of Callaert et al. (1980). Their
fixed F argument works here for every sequence {G, in B.(F, c)} for the following reasons.

(a) Moments calculated under G, of polynomials in g¢(X;) and de(X;, Xz) converge to
the corresponding moments calculated under F. This follows from our strong assumptions
on #(x, y). The various bounds in their argument which involve such moments remain
asymptotically valid under {G.}.

(b) The fact jn, = jub and the rapid decay of |{(¢) | as | ¢| increases simplifies the
treatment of integral II in their Section 4.

Their conditions B and C are unnecessary in analyzing integrals I, II, III above because
of the smoothing.
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The sample mean and sample variance are U-statistics corresponding to t(x, y) =
27Y(x + y) and ¢(x, y) = 27'(x — y)* respectively. These functions #(x, ) do not satisfy the
assumptions stated at the beginning of this section. One practical resolution is to assume
that the distributions G are all supported on an interval [—C, C], where C < B. If so, t(x, ¥)
can be modified arbitrarily outside [—C, C]* without affecting either the estimate 7}, or the
associated functionals m(QG), s,.(G), k-(G).

3.2 Second order von Mises expansions. Let {’f‘n} be statistics and let {T,.(F')} be
centering functionals such that

(3.14) lim,Sups e n2EG{T, — To(F) — n 72 Y. te(Xi, X;)}2 = 0,

where tr(x, y) is symmetric in its arguments. This class of statistics contains M-estimates,
L-estimates, and certain maximum likelihood estimates (cf. Serfling, 1980, Chapters 6 to
8). Equation (3.14) is a locally uniform second order von Mises expansion of T,. Assume
that tr(x, y) is absolutely continuous, vanishes outside a large square [—B, B]?, and has
essentially bounded derivative. Rearrangement of (3.14) then yields

(315)  lim,usup, re n?Ec{T, — ma(G) — 207" (n — 1) Yo, he(X;, X;)}2 = 0,
for
he(Xi, Xj) = tr(Xi, Xj) — Ectr(X1, X3)

(3.16) Ma(G) = To(F) + Eote (X1, X) + n~ {Eete(X:, X1) — Egte(X,, X2)}.

Approximation (3.15) suggests that </, .(x, G) has the first order Edgeworth expansion
(2.3) with m,.(G) as above and with s%(G), k(G) = ks(G) as in (3.4). The measure p is again
Lebesgue measure restricted to the interval [—B, B]. To justify these claims, let J} .(x, G)
denote the smoothed sampling distribution of 2n™*(n — 1)™* Yic; ha(X;, X;) under G. Let
Jno(t) and j .(£) be the characteristic functions of ¢/, ,(x, G) and J} ,(x, G) respectively.
Set

(3.17) = n{T\ — m(G) — 207 (n — 1) Yoo halXs, X))
Evidently,
(3.18) [T %) — Juu(t) | < Eg|exp(itn™%Z,) — 1| - | ¢(2) |.

Taylor expansion of the exponential term, Esséen’s lemma, and (3.15) yield
(3.19) lim,wSupn,F,e 72 || Jro(s, G) — JE(+, G) || =0

In view of Section 3.1, this implies the desired first order Edgeworth expansion for
Jno(x, G).
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