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QUALITATIVE ROBUSTNESS OF RANK TESTS

By HELMUT RIEDER

University of Bayreuth'

An asymptotic notion of robust tests is studied which is based on the
requirement of equicontinuous error probabilities. If the test statistics are
consistent, their robustness in Hampel’s sense and robustness of the associated
tests turn out to be equivalent. Uniform extensions are considered. Moreover,
test breakdown points are defined. The main applications are on rank statis-
tics: they are generally robust, under a slight condition even uniformly so;
their points of final breakdown coincide with the breakdown points of the
corresponding R — estimators.

1. Introduction. When one compares e.g. the one-sample normal scores rank test
with its local parametric competitor, based on the mean, the following aspects would
suggest superior robustness behavior of the rank test:

(a) the scores that incoming outliers successively occupy in the worst case are strictly
decreasing-as opposed to constant maximum influence of each outlier on the mean;

(b) the absolute value of observations can be increased without the rank statistic
changing its value; i.e. outliers are automatically brought in.

As has been pointed out in Rieder (1981a), cf. Remark (2) following Proposition 2.2, the
effect of (b) will disappear if the fraction of gross errors tends to zero. As for the effect of
(a), apparently, one has to be afraid of a similar disappearance. For, if the percentage of
outliers in the sample becomes less and less, as the sample size increases, the minimum of
the scores they occupy in the worst case will still tend to infinity. (Only if outliers are very
scarce will it matter that the maximum score at each sample size is finite even though it
tends to infinity.) Actually, this is how the corresponding theoretical results of Rieder
(1981a) must finally be interpreted. Therefore, the exclusive use of infinitesimal neighbor-
hoods cannot be said to do full justice to the intuitive robustness properties of rank tests.

In this paper, robustness of test sequences is defined by the requirement of equicontin-
uous error probabilities (with respect to Prokhorov or Kolmogorov metrics). Thus the
notion is still asymptotic, however fixed-size neighborhoods are employed; the idea behind
equicontinuity is the same as in Hampel’s (1971) qualitative definition of robust estimators.
For tests which are of one-sided form and are based on consistent statistics, an equivalence
is established between robustness of the statistics in Hampel’s sense and robustness of the
tests (Theorem 2.2). Thus continuous sequences of statistics define robust and consistent
tests (Corollary 2.4). Uniform extensions, which seem relevant in case of composite
hypotheses, are pointed out.

Section 3 introduces asymptotic breakdown points of sequences of tests and test
statistics; e.g. the “point of final breakdown” of a sequence of statistics denotes the critical
amount §* of contamination that renders the statistics unable to asymptotically distinguish
any two §*-contaminated probabilities.
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Section 4 gives the applications on rank test. By Theorem 4.4, they now turn out to be
generally robust (even if the scores may be unbounded) due to the continuity of an
associated functional (Lemma 4.1) and an approximation result (Lemma 4.2), which also
yields a law of large numbers (Proposition 4.3). Under a slight condition, covering e.g. the
sign-Wilcoxon-, and normal scores rank tests, even uniform robustness and consistency
can be established. The “points of final breakdown” of rank statistics coincide with the
breakdown points (Hampel, 1971) of the corresponding rank estimators.

Only the one-sample case is considered in this paper; the complete two-sample analogue
and relevant proofs can be found in the author’s research reports (Rieder, 1979, 1981c). As
for the correlation case, see Rieder (1981b).

2. Qualitatively robust sequences of tests and test statistics. Let (2, %) be a
measurable space, ./ the set of probability measures (pm’s) on 4, for every positive integer
nlet (27, #") denote the n-fold product space of (2, %), ®%; G the product measure of the
pm’s Gy, +++, G(G"if Gy = ... = G, = G), for a subset ZC ./ let P = {(®L: Gi|G:i €
#,i=1, ..., n}. Sequences of tests (¢,) and test statistics (7%) are understood to be
sequences of measurable mappings ¢,: 2" — [0, 1], T7,,:Q" — R (the reals), with the possible
exception of some initial segments n < no. The law of T, under W, € 2” is denoted by
W.oT,". We imagine a sequence of test statistics (T,) to be accompanied by a collection
of associated test sequences (y,,2,(Th)), where ¥, 1 (Ty) = (1 — yo) (T, > k) + v I(T, =
k»), and (y») C [0, 1] ranges over all sequences of randomization constants, (k,) C R over
all sequences of critical values.

First, Q is assumed to be complete, separable, metric with & its Borel o-field and .#
being metrized by Prokhorov distance dp; the Prokhorov ball of radius § € [0, 1] and
center F' € ./ is denoted by Z»(F, §).

DEFINITION 2.1. (a) A test sequence (¢,) is gp-robust at a pm F iff

Ve>0 38>0 3n, Vn>n0:W,,Eg’p(F,8)(”’=>U¢,,de—]¢"an <e.

(b) A sequence of test statistics (77,) is gp-robust at a pm F' iff
Ve>0 38>0 3no VYn>ne:W, € Pp(F, )™ = dp(W,oT7', F*T;") <e.

REMARK (1). Obviously, (¢.) is gp-robust at F iff (1 — ¢,) is gp-robust at F, and (T})
is gp-robust at F iff (—T),) is gp-robust at F. Therefore, we need not distinguish between
null hypothesis and alternative, and, as Yy, 6, (—Tn) =1 — Y1y (T), we may restrict
attention to tests which reject for large values of 7.

REMARK (2). The definition essentially restates Hampel’s (1971) definition of quali-
tatively robust sequences of estimators. This is apparent in case (b). As for (a) note that,
after randomization, the ¢,’s take their values in the discrete space {0, 1}, where the
Prokhorov distance between any two pm’s F, G coincides with their total variation distance
|G({1}) — F({1})].

Qualitative robustness of sequences of log-transformed p-values has been studied by
Lambert (1977). O

Under the assumption of consistency, the following basic equivalence holds.

THEOREM 2.2. Assume that T, > T.(F) in F"-probability as n — , for some Tw(F)
ER.
(a) If (Ty) is gp-robust at F and k # Tw(F) then (Y, +(T,)) is gp-robust at F.
(b) If for every € > 0 there are k' € (Tw(F) — &, To(F)) and k" € (To(F), To(F) + ¢)
such that (Yo,#(T»)) and (Yo,1(Tw)) are gp-robust at F, then (T,) is gr-robust at F.
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Qualitative robustness of (7},) is usually verified by means of Hampel’s (1971) continuity
criterion. It presumes statistics 7', that do not depend on the order of the observations and
hence can be written as functions of the empirical distribution function ,. We denote the
set of all possible values of F,, i.e. the set of all pm’s whose atoms carry probabilities mn™,
m=1, ..., n, by #,. Only statistics of the previously mentioned kind shall be considered
in the context of this continuity criterion.

DEFINITION 2.3. (Hampel, 1971) A sequence of test statistics (T}) is dp-continuous at
a pm F iff

Ve>0 36>0 3Iny VYmn>ny VF,E M, NF,E M,:
dp(Fr, F)\/ dp(Fn, F) <8 = | Tn(Fy) — Tu(F,)| <e.

If (T,) is dp-continuous at F, then (T},) is (strongly) consistent under F for some Tw(F) €
R (Hampel, 1971, Lemma 2); and, moreover, (T}) is gp-robust at F, which is essentially
Hampel’s (1971) Theorem 1.

Thus, on one hand, essential portions of Hampel’s theory can equivalently be cast in
testing form. On the other hand, results about gp-robust and consistent tests, like the
following, can be deduced.

COROLLARY 2.4. If (T,) is dp-continuous at F and k > Tw(F), then

Ve>0 38>0 3Iny VYn>ne:W,€E P(F, 6" = j Yy (Tn) AW, <.

In case of composite hypotheses 2 C ., it is natural to consider uniform gp-robustness of
(¢r), (T,) on Z, in the sense that the equicontinuity conditions of Definition 2.1 are required
to hold uniformly in F € 2.

If one now wants to infer uniform robustness on 2 of (T, from a uniform version of the
continuity condition (Definition 2.3), along the proof of Hampel’s (1971) Theorem 1, one
encounters the obstacle that dp-convergence of the empirical F, towards F, in F"-proba-
bility, does in general not hold uniformly in F € £ (see an example by R. M. Dudley in
Rieder, 1979). In case 2 = [—, ], however, this convergence does hold uniformly, even
a.s. F*, F € /, if it is measured by Kolmogorov distance dx. So, in the context of uniform
qualitative robustness, we assume that € = [—o, ©] and measure uniform continuity of
(T,) by dx (or Lévy-metric dr).

Another ingredient of the proof would be the implication that, if two pm’s G, F are close
to each other, so are the empiricals G, F, with high probability. Hampel’s proof of this
(Hampel, 1971, Lemma 1), which employs Prokhorov distance and uses a result due to V.
Strassen, carries over to the present situation (non i.i.d., uniform), if (T}) is uniformly d_-
continuous on 2. If, as in later examples, (T},) is only uniformly dk-continuous, the proof
still remains applicable provided Prokhorov balls Z»(F, §)™ are replaced by the smaller
total variation balls 2y (F, 8)™. Actually, by virtue of L. LeCam’s generalization of the
Kiefer and Wolfowitz (1958) result to independent, not necessarily identically distributed
observations, even Kolmogorov balls Zx(F, )™ can be used.

Thus, if @ = [—, «] and if (7},) is uniformly dk-continuous on 2 C .#, we obtain:

(T%) is uniformly (strongly) consistent on &, (T,) is uniformly gx-robust on £ i.e.,

Ve>0 30>0 3ny Vn>ny, VFE P: W, € F(F, 8)" = dp(W,o T, F*T:') <g

hence, for example, if £ > sup{T=.(F)|F € 2}, the test sequence ({,,.(T)) satisfies the
conclusion of Corollary 2.4 uniformly in F € 2.

ExaMPLE. Let IC: @ (polish) — R be measurable, and consider the sequence of
statistics T, = [ IC dF,.
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(a) If IC is unbounded, then (7%,) is not gv-robust at any F € ./, J|IC| dF < o.

(b) If IC is bounded and continuous a.e. F, then (7,) is dp-continuous at F.

(c) If & = [—, o], and if IC is of bounded variation, then (T,) is uniformly dx-
continuous on ./Z.

(d) If @ = [—oo, ], and if IC is of bounded variation, absolutely continuous, and lim,_.o
f |fC(t +¢€) — IC(t)| dt = 0, then (T,) is uniformly d;-continuous on .Z (e.g., IC(t)
=c'VtAce", teQ forc’,c” ER, ¢’ <c”).

Statistics of this special kind are considered here for reasons of simplicity only. If the setup
were local, many other statistics would suitably be approximated by such statistics, and IC
could then be interpreted as influence curve of the sequence of statistics; cf. Hampel
(1974), Rousseeuw and Ronchetti (1979). However, in view of nonshrinking balls, local
approximations are in general not valid in the present framework. 0O

3. Test breakdown points. The breakdown point of a test sequence shall denote the
maximum distance from the ideal pm F, up to which the tests still decide for either zero
or one with positive probability, if they have done so at F. Analogously, the breakdown
point of a sequence of test statistics shall denote the critical radius, or fraction of gross
errors, beyond which the associated tests are absolutely unable to asymptotically distin-
guish any two pm’s out of the underlying set of ideal pm’s, when these are blown up to
balls.

To demonstrate (in subsequent examples) the independence of breakdown points of the
type of balls, we define them with respect to contamination balls (Zc(F, §) = {(1 — §)F +
O0E|E € #}), total variation (V), Prokhorov (P), Lévy (L) and Kolmogorov (K) balls.
Accordingly, (£2, #) may be general measurable, or polish, or £ = [—o, ]

Let FE M, PC Mand H=C,V,P, L, K.

DEFINITION 3.1.  (a) The H-breakdown point §* of a test sequence (¢,,) at F is defined
as follows,

8 = 88((¢n), F)

= sup{6 e[0,1] I liminf, f ¢n dF™ > 0 = liminf, a,(8) > 0,
limsup, j ¢n dF" < 1 = limsup, 8.(8) < 1},

where a,(d) is the infimum and B.(8) is the supremum of [ ¢, dW, when W, ranges
through Z4(F, §)™.

(b) The H-breakdown point §* of a sequence of test statistics (7,) on 2 is defined as
follows, .

8" = 8H((T%), 2)

= sup{8 € [0, 1] l':'l(y,,) C [0, 1]3(k,) C R3F,, F1 € 2:
limsup, J ¢ dF'§ \/J (I = ¢n) dF'T <1, 85((¢n), Fo) N 8t((¢n), F1) >3},

where ¢, =, » (T%).

REMARK (1). Obviously,
81((¢n), F) = 85((1 — ¢n), F), 85 ((T>), 2) = 85((—T>), 2).
The breakdown points equal 1 if the ¢,, T, each are identically constant.
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REMARK (2). The definitions are certainly in the same spirit as Hampel’s (1971)
definition of estimator breakdown, although formal relations seems to be tedious. A finite
sample size version of test breakdown point, named test resistance, has been defined by
Ylvisaker (1977), who also points out connections with Hampel’s notion.

REMARK (3). The breakdown points usually do not depend on, the type of balls. If £
= [—oo, ], this is clear for H = V, P, L, K if the ¢,, T, are monotone with respect to
stochastic ordering, since the stochastically extreme elements of 2y (F, 8) and %k (F, §) are
the same, as well as those of Z»(F, §) and 2. (F, §). Moreover, those of Z»(F, §) coincide
with those of #,(F, §), where F denotes F shifted by 8 or —4, respectively. O

ExamMpPLE. Let IC:Q2 — R be measurable, and consider the sequence of test statistics
T, = [ IC dF,.

(a) If IC is unbounded, then 8%((T), #) = 0 for = {F € M| [|IC| dF < »} and all
H.

(b) If IC is bounded, nonconstant, then 8%((7), #) = 1/2 for H = C, V. In case £ =
[—o0, ], and if IC is also monotone, the same is true for H = P, L, K, by the
argument given in the preceding remark.

(c) Let the pm’s Fj, § > 0, approach a pm Fj in such a way that Fy << F, and, for some
function A € L'(Fy), [ | dFy — dF, — 6-A dFy| — 0 as § — 0. Then, if IC is bounded,
nonconstant, if follows that

fIC-A dFy

83((Tn)) {FO, Fg}) =SupIC'——inm -0+ 0(0) as 60— 0.
Thus, the locally evaluated breakdown point is related to the local asymptotic
unbiasedness criterion of Rieder (1978), Theorem 5.1. Incidentally, §&((7T), {Fo,
Fy}) has maximum slope 1/2 when A ranges over the set {A € L'(Fo)| [ A dF, =
0, [ |A| dFy = 1} (neglecting the difference between pointwise and Fo-essential
extrema of IC). 0O

4. Implications for rank statistics. The foregoing theory shall be applied in this
section to one-sample rank statistics and thus, implicitly, also to one-sample rank tests.
For every sample size n let scores a,(1), - - -, a,(n) € R be given. Let & = [—, «]. The
absolute ranks ri, .- -, r,; of the observations xi, - - -, x, € @ are given byr; = Y1, I{|x;|
=< |x:|}, i = 1, .-+, n. Rank statistics R, of the following form (simple, linear) are
considered,
1) R, =n"' YL sign(xdan(ri),
where it has been assumed that the observations fulfill the condition
2) x; # 0, |x| # |xx| forall i, j,k=1,.--,n,  j#k

For such observations, R, can indeed be written as a function of the empirical F., namely

Rn = Rn(ﬁ'n)

=2 J an((F(8) — Fo(—t — 0))Fo(dt) — 7' Y21 aald).
(0,00)

The subset of .#, that corresponds to observations which fulfill condition (2) shall be
denoted by .# ;. If, furthermore, the set of all pm’s F' with the property F({¢}) =0, t € ,
is denoted by .#. then F*({Vn, F, € #}}) = 1, F € ..

In general, however, ties occur, which have to be treated by extra methods; cf. Rieder
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(1981a). We only notice the following property of the generally defined R,: If the scores
are nonnegative, increasing, i.e.

(3) 0=<a,(1)=< ... = an(n

then the stochastically extreme laws of R, under 2, = 2,(F,8), FE 4., H=C, V, P,
L, K, can already be computed under the assumption of continuously and identically
distributed observations (Rieder, 1981a, Propositions 2.1, 2.2).

The scores are connected over different sample sizes by the requirement that there
exist a function a@ € L'(A), with A Lebesgue measure on (0, 1), such that

4) lim, 3%y l f (an(@) — a(s)) Alds) | = 0.
(6= 1)/n,i/n)

For every a € L'(\) let the functional R,:.#. — R be deﬁned‘ by

R.(F)=2 f a(F(t) — F(—t))F(dt) —f a dA.

(0,00)

The steps towards qualitative robustness and “point of final breakdown” of such sequences
of rank statistics are now as follows.

LEMMA 4.1. For a € L*(\) the functional R, is dp-continuous on M.

LEMMA 4.2. Let R, be of form (1), with scores a,(i) € R, and let a € L'(\). Then, for
everyF, € /3,

inf{| Ro(F) — R.(F,)| |F € M., dx(F, F,) < n™'} = 3Y%,

f (@x (i) — a(s)A(ds)| .
[G=1)/ni/n]

Thus, under assumption (4), the continuity of R, carries over to (R,) and, as a first result,
yields consistency under weaker assumptions than e.g. Theorem 1 of Sen (1970).

ProposITION 4.3. Let R, be of form (1), with the scores satisfying (4) for some a €
L'(\). Then, for every F € .,
R.F,) > R,F) as n—», as F~

Secondly, general qualitative robustness is obtained:

THEOREM 4.4. Let R, be of form (1), with the scores satisfying conditions (3) and (4).
Then (R,) is qp-robust at every F € ..

By means of the consistency result, the “point of final breakdown,” 8% ((R,), .#.), can be
computed as follows.

THEOREM 4.5. Let R, be of form (1), with the scores satisfying conditions (3), and (4)
for some monotone increasing, nonnegative a € L*(\). Then 8% ((R,), #,), H=C, V, P, L,
K, coincides with the maximum solution §* € [0, 1] of the equation

f ad\ = j a dA.
©0,1-8%) (1-8%1)

ExaMPLE. For a = 1 (sign-test) one gets 8* = 0.5, for a = id; (Wilcoxon) §* =1 —
2712 = 0.293, and for a(s) = ®7(1/2 + s/2), 0 < s < 1 (normal scores), §* = 2®(—(2 log
2)/%) = 0.239. O
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Uniform extensions of the consistency and robustness results are based on the requirement
that R, be uniformly dx-continuous on .#,. This holds if

(5) a is of bounded variation on each compact inside (0, 1);

as e.g. in the case of the sign-, Wilcoxon- and the normal scores rank tests.
Thus, the following uniform consistency and robustness results are finally obtained.

PROPOSITION 4.6. Let R, be of form (1), with the scores satisfying (4) for some a €
L'()\) such that (5) holds. Then, for every e > 0,

lim,inf{F*({V¥m > n:| Ru(F») — Ro(F)| <e&})|FE€ M.} = 1.

THEOREM 4.7. Let R, be of form (1), with the scores satisfying (3), and (4) for some
a € L'(A) such that (5) holds. Then (R,) is uniformly qx-robust on M.
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