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NONPARAMETRIC INTERVAL AND POINT PREDICTION USING
DATA TRIMMED BY A GRUBBS-TYPE OUTLIER RULE

By RoNnaLD W. BUTLER

The University of Texas

For a fixed probability 0 < y < 1, the “most outlying” 100(1 — y)% subset
of the data from a location model may be located with a Grubbs outlier subset
test statistic. This subset is essentially located in terms of its complement,
which is the connected 100Y% span of the data which supports the smallest
sample variance. We show that this range of the data may be characterized
approximately as the 100y% span such that its midpoint is equal to the
trimmed mean averaged over the span. Such a range forms a tolerance interval
for predicting a future observation from the location mqdel, and the asymp-
totic laws for its location, coverage, and center are presented.

1. Introduction and summary. A randomly-located tolerance interval is proposed
for predicting a future observation from a location model. The tolerance interval is chosen
to span a fixed proportion 0 < y < 1 of the data and represents the connected 100y% span
which supports the smallest sample variance. Such a span remains following the arbitrary
removal of the 100(1 — v)% “most outlying” subset of data as determined by a smoothed
version of a Grubbs (1950) multiple outlier test statistic. The asymptotic properties of this
interval and the trimmed mean that it supports are studied.

On the basis of a random sample X, - - -, X, from an absolutely continuous population
distribution F, we wish to predict the next independent observation X,.; from the same
population using a 100y% tolerance interval. If F'is strictly increasing over interval support
and g = F! denotes the quantile function, then the class of 100y% tolerance intervals is

(L.1) (1(8) =[q(8), g6 +7)]:0=8=1—y}.

We consider predicting X,,.; with the interval in (1.1) which supports the smallest trimmed
variance; i.e., we use I(8*) where §* = §*(y) is the value of § which minimizes

q(8+7y) q(6+y) 2
o%(8) =y7! J x2dF(x) — {y’lJ’ x dF(x)}
q q

(€] (&)

(1.2) .
=y J q*(t) dt — p*(8),
8
where
5+
(1.3) 1(3) =Y_1J q(t) dt.
8

An estimator of 8*, 8* say, is obtained when ¢ in (1.2) is replaced by g, a piecewise
linear variant of the empirical quantile process. (Sample analogues of population function-
als will be denoted with a “” throughout.)

The sample quantile function assumed here has been recommended by Parzen (1979)
because of its accuracy in small samples. Let g. be piecewise linear between the order
statistics {X():i=1, -+, n} such that
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@ {i-%/n}=Xy i=1_.-,n
qn(t) = Xo 0<t=<(2n)"!
qn(t) = Xny 1-2n)'=st=<1

With this notational conventlon then, §* locates the minimum of 42(-). The con31stency
and asymptotlc normality of &* are shown in Section 2. The random interval [(§*) =
[q,,(8 ) qn(8 * + y)] may be viewed as an estimator of I(8*). In Section 3, its coverage, P,
say, is shown to satisfy Jn (P, —y)— DN (0, y(1 — y)) as n — . Using this result, an
approximate coverage assurance for 1(8*) is easily set. With fi(-) based on (1.3), u(8*)
provides an estimator of u(8*) which is con51dered in Section 4.

Of pract1ca1 importance for the interval I(6*)isits correspondence with the span of the
remaining data after the arbltrary trimming of the “most outlying” 100(1 — y)% data
subset as determined by 6%(-). Since 6%(.) is a smoothed version of the Grubbs (1950)
multiple outlier test statistic, the two trimming procedures should be approximately the
same and asymptotically equivalent. Allowing §* to assume a continuous range of values,
however, lends greater flexibility in the location of the tolerance interval.

A similar but asymptotically less successful approach to tolerance interval selection is
based on the 100(1 — y)/2% shown in Andrews et. al. (1972). This method estunates the
shortest member of (1.1) indexed by 8°. Since §° — 8° = O,(n™"/%), the properties of 1(8%
have the same slow convergence rate with the main asymptotic variation due to 5°.

Our proposal to fix y and adaptively determine the trimming location 6*(y) is the
opposite of Jaeckel’s (1971) idea, which assumes symmetrical trimming * = (1 — y)/2 and
adaptively determines the amount of trimming y.

2. Large sample properties of 5. Sufficient conditions for the uniqueness of 6*
are specified below. From this, the consistency of 5 may be shown.

First, however, we must define a function ¥ as follows. Let ys(-) denote the secant line
segment to g(-), as shown in Figure 1, which connects points (3, q(8)) and (6 + v, ¢(8 +
v)) for § € (0, 1 — y). Then let

5+
(2.1) ¥(d) =vy" f {ys(t) — q(8)} dt =% {q(8) + q(6 +v)} — pn(d),
s

so that y¥(8) is the signed area between the graphs of y; and g. Then it is clear from the
geometrical interpretation of ¥ that it admits a root in (0, 1 — y) when F has unbounded
support. Also, if ¥ has no root then it must be the result of F having bounded support.

LEMMA 2.1. Let F be continuous and strictly increasing on interval support with
differentiable density f that is unimodal. Then,

(i) ¢*(-) has a unique minimum at §*.
(ii) If (Case I)8*€ (0,1 — vy) then
W(8*) = %[q(8*) + q(6* + y)] — pu(8*) =0.
Otherwise (Case II), §* = 0(= 1 — y) and ¥(§) = 0(= 0)V é€[0, 1 — v].
(iii) In Case I, ¥'(8*) > 0.
(iv) I(8*) =[q(8*), q(8* + y)] contains a neighborhood of the mode.

Note that in case I, I(8*) is characterized as centered at the trimmed mean that it
supports. Roughly speaking then, 8* picks out the “most symmetric” 100y% of F by
centering the interval mean.

Proor. Since
36°(8)/88 = 2y {q(8 + v) — q(8)}¥(9),

then ¢2(-) is monotonic when ¥ has no roots and (ii) follows. Results (i) and (iii) follow if
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§ ‘ &y

FiG. 1. Geometrical interpretation of y¥(8) defined in equation (2.1).

it can be shown that for § * an arbitrary root of ¥, then

9%0%(8%)/86** = 277 {q(8* + y) — q(8*)}¥'(8*) > 0.
Firstly,
(2.2) ¥'(8*) = min{q'(6*), ¢'(6* + y)} —y ' {q(d* +y) — q(8%)}.
From Figure 1 it is also clear that
(2.3) Y H{g@E* +v) — q(6%)) = q'(8) = ¢'(8)

by the mean value theorem, where §* < §; < » < 8, < §* + y and » locates the inflection
point of g, i.e. ¢(») = mode of f. Now since §* < §; < » then

q'(6*) = {f(q(d*)}' > {f(gd:)} " = q' (&)
and since » < 8, < 8* + y then ¢’(6* + y) > ¢’ (82). From (2.2) and (2.3) then ¥’'(6*) > 0.
From Figure 1, 6* < » < §* + v so (iv) follows.

The next lemma is necessary for deriving the large sample properties of I (3* ).

LEMMA 2.2. Let F be as in Lemma 2.1 and define @ .(t) =&{qn(t) —q(t)} for0=
t < 1. Then there exists a probability space on which a Brownian bridge {B(t):0<t=
1} is defined such that an equivalently distributed version of @,(t) satisfies

Supese=d| @n(t) — ¢’ () B(¢)|—>p 0

asn— o for any [¢, d] C (0, 1).
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Proor. An immediate consequence of Skorokhod (1956) and Bickel (1967).

This lemma allows us to prove convergence in distribution of estimators based on g, in
terms of the stronger convergence of their equivalently-distributed versions based on the
specially constructed quantile function. Hereafter, no notational distinction will be made
between an estimator and its equivalent version based on the special process of Lemma
2.2.

LEMMA 2.3. Assume the conditions of Lemma 2.1 and let F have a finite mean. Then,
for Case I,
(2.4) limp P{¥ (%) =0} = 1.

Note. This states that with asymptotic certainty, I(8*) is centered at the sample
mean it supports. *

Proor. From (1.2),
(2.5) 362%(8)/38 = 2y {qn (8 + v) — qu(8)} ¥ (5).

Therefore if §* does not occur at a root of ¥, then it must be 0 or 1 — y. That P{§* =
0} — 0 is easily seen by first notAing that {8* = 0} C {¥(0) = 0}. Since ¥(0) >, ¥(0) <0,
the result follows. Similarly P{6* =1 — y} — 0.

_ LEMMA 2.4.  Assume the conditions of Lemma 2.1 and let F have a finite mean. Then
8* = p 8* as n — . Moreover, for Case II,
P(§*=0}>1 ifé*=0and ¥(8) >0V,
and P{(§*=1—-y}—>1 ifé*=1—yand ¥(§) <0VS.

ProoF. Casel. By Lemma 2.3, it suffices to show that an arbitrary sequence of roots
for ¥ is consistent for 8*. Let §* denote such a sequence.

We first find neighborhoods of 0 and 1 — v, [0, 1] and [1 — y — &3, 1 — y] say for €1, &
> 0, such that P{6*€[0, &]} — 0 and P{S*E [1 —y— &, 1—y]} — 0. This is possible by
choosing & < §* small enough so that

Y
IL=%{q(e) +qles +v)} =y~ J q(t) dt <0,
0
and & such that 8* <1 — y — e and

1
(2.6) IL=%{qg(l-y—e)+q(l-e))} —Y_lf q(t) dt>0.
1-y

Then

{0 = 8* < &) C {mino=s=e ¥(8) < 0 < maxo=s=, ¥(8)}

(2.7) ¥ 1
g {0 = maXosasn‘I'(s) < Hl}'

Since IT; — p IT; < 0, the event on the right hand side of (2.7) has asymptotic probability
zero. Also

(2.8) (1-y—-e=86*=<1-y)C (Il < ming=s=, ¥ () < 0}.

Since T, — p [T, > 0, theAevents in (2.8) have asymptotic probabilities zero.
Therefore, estimator 6* is asymptotically certain to appear in [e;, 1 — y — €] and we
restrict attention to this interval. If we can assume that

(2.9) MaX,=s=i—y—o| ¥ () — ¥(8)]| —>p0
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and show that for any £ > 0, there exists an n > 0 such that
(2.10) {(max,=s<1—,—o| ¥(8) — ¥(8)| <) C (|8§* — 6*| <&},
then consistency will have been shown.
Result (2.9) follows since
MaX,<ssiy—e| ¥ () — ¥(8)| = 2 max.,=s=1—y-=n|r(8) — q(8)| >p 0
by Lemma 2.2.
Suppose the event on the left of (2.10) is true for sufficiently small #. Then

(2.11) MaX<s=i—v-e | | ¥ )| — | ¥ | <.

Let I = (8 €E[e1, 1 — vy — &2]:|8 — 8* | = £} and suppose that 7 is chosen such that
(2.12) 0 <7 < %-minser | ¥(3)].
Then for any § € I,
[F@3)] = | F6%)| = | F)| — | TS| + | T(©®)] — | L(6*)] + | ¥(©E*)]| — | F(8%)]
> —n + minser | ¥(8)| — >0
by (2.11) and (2.12). Therefore, the left side of k2.10) is
C{I¥®)|>]¥(6")|V €L}
cdrer)={(8 -8 <4,

when 7 satisfies (2.12).

ProoF. Case II (8* = 0). We proceed as in Case L Let [0, ed], [e1, 1 — v — &2], and
[1— vy — &, 1 — y] partition the range of 6* so that

e +y
IIs = % {q(0) + q(y)} — Y_IJ’ q(t) dt>0
and IT; > O for I, as in (2.6). Then because
(2.13) {mino=s=1—, ¥ (8) > 0} C {§* =0},

it is sufficient to show that min ¥ assumes a positive value with asymptotic probability
one for each of the three intervals in the partition. For the first two,

miHOSaSel‘i'(@) = ﬁ3 —pIl3>0, and minl—y—ezsssl—y\i,(s) = ﬁz—>P II, > 0.
Hence, the events in (2.13) have asymptotic probability one if it can be shown that
(2.14) Min,, <5=i-y- ¥ (8) — pMiNyzsz1—y-0 ¥ (8) > 0.

To show this, let SH(S ) locate the minimum of ¥ (¥) over [e1, 1 — y — &2]. Then by (2.9),
¥(5,) — ¥(5,) = » 0. We would like to show that ¥ (8,) — p¥(8), and it suffices to show
8, — p 8. This follows from the argument used in Case I by replacing | ¥ | with ¥ in the
proof. An analogous proof holds when §* =1 — y and ¥(8) <0V 4.

The large sample distribution of §* is degenerate at 8* for Case II as shown in Lemma
2.4. The next theorem considers its asymptotic distribution for Case L.

THEOREM 2.1. Let F be continuous, strictly increasing on its interval support, and
with a finite mean and a differentiable density which is unimodal. Then for Case I,
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Jn (8% = 8%) —p (¥(8%)}
(2.15)

§*+y
[y f B(t)g'(t) dt — % {B®*)q'(6*) + BE* +7)q'(* + y)}]
5+

as n — « where {B(t):0 <t < 1} denotes a Brownian bridge.

Proor. Because of Lemma 2.3, Jn \TI(S*) —p 0. In terms of the quantile process @,
this states that

§’+y
0p— Vn V(%) =% {(@.6%) + @(6* + )} — " J' Q.(t) dt + Vn (¥ (§*) — ¥ (5%)}.
5

Using Lemma A.1 of the Appendix and the delta method, then

5 +y
% (B(8*)q'(6*) + B(* +y)q'(6* +v)} — v~ J’ B(t)q'(¢) dt
5+

+ (¥/(8*) + op(1)} VR (8* —8%) —p 0
and (2.15) follows. [

Example 1. Suppose f is the N (0, 1) density and y = .9. ThenvVn (§* — .05) -5 N(0,
.0584).

3. Tolerance Intervals. The 100y% span of untrimmed data I (3*) provides a
tolerance interval predictor of the next observation from the location sample. The following
result specifies the large sample distribution of its coverage P,, defined as the conditional
probability of covering X, . with 1(6*) given Xy, - -+ , X

THEOREM 3.1. Suppose the same assumptigr}s as in Theorem 2.1, and let P,(y) =
F{q.(6* + v)} — F{qx(8*)} be the coverage of I(3*). Then as n — ©
(3.1) Y {P.(y) = v} = N(O, y(1 = y)).

Proor. Case I.
(32) Vn (Po—7) = Vn[F{g.* +7)) — F{g®* +y)}]1 - Vn[F{g. (")} — F{g6")}).
Since
Jn (g (6%) — ¢(6*)) = Vn (g (6*) £ q(6*) — ¢(6*)
(3.3) = Q@) + Vn {q(6*) — q(6*)}
=g’ (") {B©®*) + Yn (6* = 8*)} + 0p(1)
by Lemma A.1 and the delta method, then (3.2) is
= f{g(* +v)}q'(* + ) {B@* +y) + Vn (6* — %)}
— f{g(8*)}q’(*)(B@®*) + Yn (§* —8*)} + op(1)
=B(@* +vy) — B(8*) + op(1) =»p N0, y(1 —v)).
PRrOOF. Case II.  Suppose 8* = 0. Then, by Lemma 2.4, it suffices to find the asymptotic

distribution of F{g.(y)} — F{g.(0)}. Since ¢g.(0) — ¢(0) = Op(n™), thenvn (P, — y) ~
Jn [F{g.(y)} — yY]—=p N(0, y(1 — y)). A similar argument holds when 6* =1—1y. O
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The simplicity of this result makes it an attractive method for setting the coverage
assurance of [(8*) in large samples. Suppose in a sample of size n, for example, a c-coverage
tolerance interval (¢ = %) is sought with g-guarantee of attaining the c-coverage. Then the
smallest y* is sought (y* = ¢) which satisfies
(3.4) P{P.(y*)zc} =g

For sufficiently large n, the probability (3.4) may be based on (3.1), the asymptotic
distribution of P,.

Example 2. For ¢ = .85, g = .95, and n = 93, then y* = .906 when the assurance
statement (3.4) is based on (3.1).

A reverse problem involves determining the sample size (rn) necessary for attaining
prespecified g-guarantee of c-coverage using an interval with y-span.

Example 3. For g = 95, ¢ = .85, and y = .9, then 7 must exceed 93 according to
Theorem 3.1. If [g,(.05), g. (.95)] were to be used, then n = 82 may be read from the charts
of Murphy (1948) in order to attain the specified coverage guarantee.

4. Point Prediction. The center of I(§*) is a point predictor of X,.; which arises in
a very natural way. In the situation of Case I, Lemma 2.3 states that this center is
asymptotically the mean of the data remaining after the elimination of the 100(1 — y)%
“most outlying” subset of data as determined with a Grubbs-type statistic. The next
theorem specifies the asymptotic distribution of this interval center.

THEOREM 4.1.  Suppose the conditions of Theorem 2.1 and let C,(y) denote the center
of 1(8*). Then in Case I,

(4.1) Vn {i(8%) — (6%} — Vn[Caly) — % {g(8*) + q(8* + v)}] > 0
as n — o with common asymptotic distribution given by

8*+y

42) % pE*){B(*)q'(6*) + BG* +7)¢'(8* + v)} + {1 - p@*) " J B(t)q'(t) dt,

5*

where p(8*) = {(y¥'(8*)} {q(8* + y) — q(8*)}. This as a N(0, 0%(8*)) distribution where
(1+y)/2

p*(6%) = (v =2 ¢{ (1L —v)/2}fla{ (1 = v)/2}])™* f g*(t) dt

(-y)/2
for symmetric f. In Case 11,
(4.3) Vn[Culy) — ¥%{g(0) + ¢(¥)}]=p N(O, %y (1 — v)/f*{g(¥)}).
Note that for large v, p®(8*) = y™'6%(8%).

ProoF. Case I. The equivalence of (4.1) follows since vn (¥ (8*) — ¥ (8*)} >p0. The
common distribution (4.2) may be derived from the latter term of (4.1), which may be
expressed as

1{Qn(8%) + @ (8% + )} + % Vn [{g(6*) — (3} + {gB* +v) —g@* +¥)}]
(4.4) = %{B(3*)q'(8*) + B(* + y)g'(6* + )}
+ %{q' (%) + ¢'(* +v)} Vn (6* — 8*) + op(1)

by Lemma A.1 and the delta method. The probability limit of Vn (6* — 8*) is specified in
(2.15) of Theorem 2.1; this proof really demonstrates the stronger convergence in proba-
bility that is required. Upon substitution of (2.15) into (4.4), then (4.2) follows.
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ProoF. Case II. Because of Lemma 2.3, I(§*) behaves asymptotically like [g.(0),
@n(y)]. Therefore C, (y) behaves like %{g, (0) + g.(y)}. Since g (0) — ¢ (0) = O, (n™"), (4.3)
has the asymptotic distribution of %2 vn {q.(y) — ¢(y)} and is given in (4.3). 0O

Example 4. For fa N(0, 1) density and y = .9, then p2(.05) = 1.77 and C,(.9) is 56%
efficient relative to X.
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APPENDIX .
LEMMA A.1. Under the conditions of Theorem 2.1,
(A1) Q.(8%*) »p B(*)q'(*),  Q.(6* +y) —>p BO* +y)qg'(6* +7),
and
§*+y §*+y

Q@ dtop f B(Hq'() dt
8* 8*
asn— oo,

PrOOF. It suffices to assume 8* € [e1, 1 — y — &] as in Lemma 24 since the
complementary event has been shown to have a limiting probability of zero. Since

| @:.(8%) — B(6*)q’'(8*)| = | @.(6*) — BE*)qg’(*)| + | B6*q'G*) — BE*g'¢*),

then (A.1) follows from Lemma 2.2 and the consistency of &§*.
By adding and subtracting [3+*" @.(¢) dt, then

g»+y 8*+y
@n(t) dt — f B(t)q'(t) dt
8+ 8*

(A2) 5 5*+y 8*+y
= J’* @ut)dt— |  Qu(t) dt +f {@.(¢) — B(t)g'(¢)} dt.
o 8

5y .

Then (A.2) —p 0 because of Lemma 2.2 and the consistency of §*. [
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