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DIAGNOSTIC TESTS FOR MULTIPLE TIME SERIES MODELS

By D. S. PoskITT AND A. R. TREMAYNE

University of York, England

This paper is concerned with the development and application of diag-
nostic checks for vector linear time series models. A hypothesis testing
procedure based upon the score, or Lagrangean multiplier, principle is advo-
cated and the distributions of the test statistic both under the null hypothesis
and under a Pitman sequence of alternatives are discussed. Consideration of
alternative models with singular sensitivity matrices when the null hypothesis
is true leads to an interpretation of the score test as a pure significance test
and to a notion of an equivalence class of local alternatives. Portmanteau tests
of model adequacy are also investigated and are seen to be equivalent to score
tests.

1. Introduction. The problems of estimation and diagnostic checking of scalar linear
time series models have received wide attention in the statistical literature. Parallel
developments for the multiple time series case have not been so readily forthcoming, which
may not be surprising in view of the inherently greater complexity of these models. The
estimation theory for vector linear time series models has been considered by a number of
authors, for example Dunsmuir and Hannan (1976), Kohn (1978) and Nicholls (1977), but
hypothesis testing procedures have been discussed in rather less detail. The purpose of
this paper is to investigate the general structure, interpretation and use of the score, or
Lagrangean multiplier, test principle of Rao (1948) and Silvey (1959) in multiple autore-
gressive-moving average, ARMA, models. Application of these tests to univariate time
series models has been considered by Godfrey (1979), Newbold (1980) and Poskitt and
Tremayne (1980).

The general v component ARMA (p, ¢g) model may be written as

(L.1) Y0 Aix(t — j) = X 7-0 Mje(t — j),

where Ag = My = I,. The innovation {e(¢)} is assumed to be a sequence of stationary
martingale differences so that, almost surely, E (¢(¢)| #-1) = 0 and E (e(¢)e’(t)| %)) = @,
a positive definite symmetric matrix, % being the Borel field generated by all past history
of &(t), t = 7. As pointed out in Hannan and Heyde (1972), this represents a natural
relaxation of the usual independent identically distributed assumption for {£(¢)}. Employ-
ing the notation and conventions of Neudecker (1969) we set a = vec(A;: - - - (AL, p =
vec(M;: --- :M,) and §' = («’:p’). The n = (p + q)v® elements of @ plus the v(v + 1)/2
parameters of @ are assumed to be such that the structure (1.1) lies within the equivalence
class considered by Dunsmuir and Hannan (1976) and Deistler, Dunsmuir and Hannan
(1978) and is “simply identified.” The permissible parameter space of the structural
parameter § will be denoted O.

In order to facilitate discussion, consider the general problem of testing null hypotheses
concerning the true parameter, %, that can be represented in the form h(#') = 0 where the
f < n vector-valued function h is twice continuously differentiable. No prior restrictions
will be placed on the parameters of ®, though the methods described here can be
generalised to do this without undue difficulty. The score test statistic of h(8!) = 0 is
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MULTIPLE TIME SERIES 115

structured in terms of the gradient vector of the criterion function
(1.2) £(0) =T/21Indet V,

V=T"! Z,T=1 e(t)e’(t), evaluated at the point 8 = é, the value that minimises #(#) subject
to the constraints. The residual e(¢) is obtained from the equation

(1.3) e(t) =Y Gx(t —J)
where
G(z) =370 G2/ = M (2)A(z), A(2) =Y80A,27, M(z) =YY% M,z2’.

That e(¢) and hence V are functions defined on © and % is understood, though the
arguments are not explicitly shown here and in what follows.

REMARK 1. If {e(t)} is Gaussian then, apart from asymptotically negligible terms,
exp{—¢(0)) is the likelihood maximised with respect to ®, and @ is, following Whittle
(1962), commonly referred to as the Gaussian estimator. For similar reasons the gradient
vector of the criterion function s(-) = £ (-)/d6 henceforth will be called the score vector.

The score vector s(@) is given by ZzT=1d’(t)V_1e(t), where the derivative process d’(¢)
= 9e’(t)/00. The Gaussian estimator # is obtained as a solution to the equations

s(8) + H(@)A =0, h@) =0

where H(-) = 6h’(-)/38 is a n X f matrix of fuli column rank and the vector A contains the
f Lagrangean multipliers; compare Aitchison and Silvey (1958). Set

Qr=T7"Y,d)V'd(@).

It is assumed that Q7 converges in probability to a fixed matrix € of rank n — g, 0 < g <
f, whose range space is virtually disjoint from that of H'. This ensures that the restricted
estimator # converges with probability one to a value 6° satisfying h(6°) = 0; see Kohn
(1978).

2. Testing model misspecification. The score test statistic for testing the null
hypothesis h(8") = 0 is given by

(2.1) S=7T"%03s=T"NVAQ HA

where the caret denotes evaluation of quantities at § = #. The generalized inverse £~
becomes a regular inverse if  is nonsingular. In order to determine the asymptotic null
and non-null distributions of S, it is necessary to consider a sequence of true parameter
points O, tending to the fixed limit §°. Writing x*(», k) for the noncentral Chi squared
distribution with degrees of freedom » and noncentrality parameter «, the statistic (2.1) is
asymptotically distributed x*(f — g, 0) when the restrictions are true, whilst under the
Pitman sequence of local alternatives V(@) — 8°) = £ for some £, £’¢£ < o, S converges in
distribution to x*(f — g, k.), ko = £ HH'Q H) H'¢ evaluated at § = §°.

Adopting arguments employed by Dunsmuir and Hannan (1976) and Kohn (1978, 1979)
to show the asymptotic normality of the score vector under both null and local alternatives,
the proof of these results, which extend those of Silvey (1959), is then effected by utilising
the theorems of Rao and Mitra (1971, Chapter 9). It also should be noted from Rao and
Mitra (1971, Lemma 2.2.4(ii)) that S is invariant with respect to the choice of generalized
inverse, a point which is seen to be of importance in the applications discussed below.

Consider the practical situation in which a multiple ARMA((p,, g,) has been fitted and
where the true order of the observed process is (p, q), p = p., and g = .. The restrictions
implied by the null hypothesis, that the values chosen for p, and g, are correct, are of the
simple exclusion type so that, using an obvious rearrangement and partitioning, H' may be
expressed as (0:I;), f= (r + s)v%, r=p — p, and s = q¢ — q,. In order to construct the
statistic (2.1), the derivative processes must be determined. Firstly, differentiating with
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respect to a’, we have

%) _ 15y 2AB) L) = (wt) @ M (By) LY ABY
da Ja da

It should be pointed out that the backward shift operator B applies to the preceding
component in the Kronecker product x’(¢) ® M~'(B). This convention also holds in
expressions (2.2) and (2.3) which follow and the same is true of dvec{A(B)}/da’. Writing

vec{A(z)} = {{p(z) ® L2}a + vecl,

where {,(2) = (z, 2%, - -+, 2”), we obtain

2.2) ‘ze—‘ff)= & (B) ® x'(t) ® M~ (B).
Similarly,
2.3) "’;Ii‘,) — _¢(B) ® e'(t) @ M(B).

Expressions (2.2) and (2.3) imply that the elements of the sensitivity matrix
Q Q
n — (:n ap
[ a7

are given by equations

Q.0 = (27)"" J 6 @ KVK* ® (MVM) ! dw
(2.4) Q. = —(2m)" J' 6 @KV ® (MVM) ! do

and Q.. = (27)" f LEE®V® (MVM) ! dw

where K(z) = G™'(2) and, for convenience, the argument z = ¢'“ is omitted; compare
Dunsmuir and Hannan (1976, Section 4) and see also Nicholls (1976). It is convenient to
introduce the notation I',,(2) for the cross-covariance generating function between any
two processes {n(¢)} and {v(¢)}. From (2.4) it is apparent that the elements of @ appear as
coefficients of powers of z in the convolutions of I'y.(z), I'(z) and I'..(z) with the
multivariate inverse autocovariances of the moving average process y(¢) = M(B)e(¢).

If the null hypothesis is true, then (1.1) implies that

(2.5) A(2) e (2) = M(2)T..(2),
where A(z) and M(z) are of degree p, and g, respectively. From (2.5)
I (2) ® L} vecA(z) = {T'..(z) ®I,} vec M(2)
and, therefore,
{($p.(2) OTu(2) O L} a + {IMii(2) ® L} vec L,
= {{3(2)OT . (2) ®L}p + {Ti:(2) ®L,}vec L.
Consequently, the vectors
ai= ((vecL) :a’: 0,2_y) and ab = ((vecL,) :p: 0l2(—1))

are such that aiQ.. = azQ;, whenever p > p, and ¢ > g,. In addition, the generating
equations A(z)I.(z) = M(z) ® may be similarly manipulated to show that aiQ., = a2Q,,
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and hence the vector a’ = (a1:a3) annihilates &. Proceeding as in Poskitt and Tremayne
(1981), it can be demonstrated that the rank of & is {(p + g¢) — min(r, s)}v? and thus g =
min(r, s)v®. Asin the univariate case, therefore, identifiability problems will be encountered
when simultaneous extensions on the polynomials A(z) and M(z) are entertained; see
Hannan (1970, Chapter 6).

In order to enumerate the test statistic, a choice of generalized inverse must be made.
Since there exist nonsingular submatrices £ of order (p, + g, + m)v?, m = max(r, s), of
&, obtained by omitting g rows and columns, a possible choice for £ is given by a matrix
with elements of £~ appropriately placed and zeros elsewhere; see Rao and Mitra (1971,
Section 11.2). Choosing X by selecting those rows and columns of & corresponding to
ARMA(p, + 1, q,) whenr =s or ARMA(p,, q, + s), s =r, alternatives, it follows from the
invariance of S with respect to &~ that, amongst others, the score tests for testing
ARMA (p., q,) against both ARMA(p, + m, ¢,) and ARMA(p,, qo + m), m =r = s, are
asymptotically identical. Some related discussion in the context of univariate models is
available in Poskitt and Tremayne (1980). A corollary of these results is that application
of the score test principle to vector linear time series models leads to a procedure which
may be viewed as a type of pure significance test (see Cox and Hinkley, 1974, Chapter 3),
and that (2.1) is to be employed as a diagnostic check of the adequacy of a fitted ARMA
(po, qo) specification.

As the value of the test statistic is not affected by the structure of the alternative model,
once the value of m has been determined, we investigate more closely the power of the
score test procedure using the distribution of S under a Pitman sequence of alternatives.
Given m, the power of S depends solely upon the noncentrality parameter k, =
§HH'Q H) H'’¢. The value «, resulting from a test of the null hypothesis against any
identifiable alternative implicit in the choice of X is, however, equal to that obtained when
testing against a nonidentifiable ARMA(p, + r, ¢o + s) alternative. This follows from
matrix manipulations which exploit the particular form of H and £~ in the present context.
Thus, values of § and of additional polynomial coefficients in the implied alternative can
be chosen in such a way that the noncentrality parameter is equal irrespective of which
Q7 is selected. In view of this and the comments of the last paragraph, an equivalence
class of local alternatives converging to the null is defined.

REMARK 2. As the asymptotic distribution of the likelihood ratio test statistic under
a sequence of local alternatives is the same as that of S, it follows that the asymptotic
power of the likelihood ratio procedure is also invariant with respect to members of the
equivalence class of alternatives. Hence, the nonspecificity of the score test does not result
in any loss of power, in that alternative specifications likely to be of interest to the
practitioner will be locally equivalent to each other.

The general results obtained above imply that the ARMA(p, + r, g, + s) alternative
can be written locally in terms of only (p, + g, + m)v? parameters, rather than (p, + ¢
+ r + s)v® An illustration of this is available by taking the null model as A(B)x(¢) =
M(B)e(t) and considering the particular member of the equivalence class of local alter-
natives

B(B)A(B)x(¢) = N(B)M(B)e(¢).

Note this parameterisation requires that a subset of the roots of the alternative model be
the same as those of the null. The matrix polynomials B(z)= Y-, B,z’ and N(z)=
50 N;2/ are such that B, = Ny = I, and the other coefficients are assumed to be at most
O(T'?). Inverting B(z) gives

A(B)x(t) = B"/(B)N(B)M(B)e(t)

where the coefficients of B7'(2) = Y %0 Bj2’ are obtained from the recurrence relations
YioB;BlL; =0, Bj = I,. Premultiplying N(z) by B™'(z) and neglecting terms of O(7™")
and smaller gives an extending polynomial of degree m = max(r, s), yielding an ARMA



118 D. S. POSKITT AND A. R. TREMAYNE

(Po, go + m) local representation of the alternative. Similarly, an autoregressive represen-
tation arises naturally by inverting N(z).

The behaviour of the test statistic depends only on the fitted null model together with
the value of m and not on the particular form of any alternative being envisaged. In
practice, a prior choice must be made for m in the absence of knowledge about its true
value, should it exist. If it is believed that the phenomena being modelled can, in reality,
be characterised by a finite parameterisation, so that there is a true value of m, and if the
identification stage of the model building process has been carefully conducted, it would
generally seem undesirable, on philosophical grounds, to entertain large values of m. On
the other hand, in the absence of a true value, the consistency of the test procedure would
necessitate m — o with m/T — 0 as T — o, although it should be emphasized that the
distributional results of this section do not require such an assumption.

3. Portmanteau procedures. In univariate time series modelling, it has been com-
mon practice to apply the portmanteau statistics of Box and Pierce (1970) and Pierce
(1972) or the subsequent modifications of Ljung and Box (1978) as tests of model adequacy.
Since the tests of this paper are also to be used as diagnostic checks, it would seem to be
of interest to develop a multivariate version of the portmanteau statistic and to compare
it with the score test. This can be achieved by considering the form of the score test
statistic when a fitted ARMA (p,, q,) specification is tested against the specific ARMA (p.,
qo + s) alternative. i

The statistic (2.1) in this case is a function of the last v2m, m = s, elements of the score
vector pertaining to the extending coefficients of the alternative model and their conditional
covariance matrix, denoted £,,,, which is the inverse of the lower right m X m submatrix
of the inverse of (2.4). Consider the transformation S applied to power series and defined
by the equation

(3.1) pq[Tn(2)] = 2m)7 f $p8g ® Ty dw

which generates a matrix with yy,,,(j — ¢) in row (i — 1)u + k and column (j — 1)v + 4
i=1...,p,j=1,...,q,k=1,...,uand ¢=1, ..., v, the argument z = " again being
understood. Let C, = T™' YL, e(t)e’(t — k) and V'/? be a lower triangular matrix such
that C, = VV4(V'/%y’, Employing (2.3) in conjunction with (3.1) and natural modifications
of Lemmas A1-A4 of Poskitt and Tremayne (1981), the subvector of scores needed, when
m is allowed to tend to infinity with T such that m/T — 0, can be shown to be equal to
TDr where r = vec(R{: --- :R%), R, = V2C,(V~V%)" and

D = Zpm[27VV2® M"Y (2)(VV2)].

It follows that T"/*# possesses an asymptotic Gaussian distribution with covariance matrix
D'Q,,. D"
The covariance matrix of 72 approaches the idempotent matrix Iz, — E'(EE’)"'E of
rank vZ(m — p, — q,), where
E = [E;:E}]

Ei = Zn[-K(z)V/? @ M '(2)(V /3]

and

E: = Zm[V2 @M ™' (2)(V?)].
Consequently
3.2) S = T¥ (L2 — B/(BE)E) ¢

is asymptotically distributed as a Chi squared variate with v*(m — p, — q,) degrees of
freedom for large m. A consequence of the idempotence of the covariance matrix is that a
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legitimate choice of generalized inverse in (3.2) is provided by the identity matrix. This
leads to a multivariate version of the Box-Pierce portmanteau statistic given, in an obvious
notation, by

(3.3) Q=T Y Yimi Xjmr {Fy(R))? = T Xhes Timt X1 iy (R)Fn(—k)

and extends the results of Chitturi (1974). An alternative derivation of the multivariate
portmanteau statistic is provided by Hosking (1980) and McLeod (1979) contains discussion
of related topics.

In addition, for any finite m = 1, a portmanteau type test based on residual auto- and
cross-correlations will be identical to a score test with the same degrees of freedom when
the moving average alternative is of a factored form as discussed in Section 2. In this case,
D =1, so that

(3.4) Q=S =Ti'Q; L 1.

This provides a direct generalisation of the results of McLeod (1978) and Newbold (1980).
Bearing in mind the invariances previously discussed, the above arguments amplify the
pure significance test characteristics of diagnostic checks based on the score principle.
A corollary of the equivalences between score and portmanteau procedures is that the
distribution of portmanteau statistics both under the null hypothesis of correct specifica-
tion of the fitted model and under a sequence of asymptotically equivalent local alternatives

is known.

4. Further considerations. The portmanteau statistic (3.3) is easily computed once
the appropriate residual auto- and cross-correlations have been evaluated, and it seems of
practical interest to consider whether the computation of the score test statistic can be
accomplished in a fairly simple manner. Appealing to the invariance properties of the score
test, it follows that, in addition to (2.1) and (3.4), S can also be expressed as

W (I ® VY22 (A @ V)2) 21 ® V)W

where the derivative processes of (2.2) and (2.3) that define the n X vT matrix Z’' = (d’(1):
...:d’(T)) are chosen so as to render the sensitivity matrix of full rank. The 1 X vT vector
w’ = (e’(1): - - -: €’(T)). This may be interpreted as the explained sum of squares from an
auxiliary generalized least squares regression of the fitted residuals on the estimated
derivatives.

Although consideration has only explicitly been given to the case of testing common
polynomial degrees, the score test procedure can be used for other situations of interest in
time series analysis. For example, the familiar ARMAX model can be obtained by writing
the v component vector ARMA model in partitioned form as

Au(B) Awu(B) || xi(¢)| _ | Mu(B) Muw(B) || &l(t)
Az (B) Axn(B) || xa2(2) M:i(B) Mx(B) || et) |

imposing the restrictions Asi(z) = Mui(z) = M{2(z) = 0 and concentrating attention on the
first block of equations whilst ignoring the second. Many phenomena of interest, however,
may not be sufficiently well understood to make such an assumption without subjecting it
to test. It should now be clear how tests concerning hypotheses of exogeneity and feedback
can be constructed using the score test statistic of (2.1). See Pierce and Haugh (1977) for
a review paper on causal interrelationships.

It will often be the case in practice that the researcher is seeking a parsimonious
parameterisation of the process and may not wish to consider fitting a wide range of
alternative models. In this vein, and by way of conclusion, the attractions of the score test
procedure in time series analysis lie not only in its desirable asymptotic properties but also
in its use as an aid to deciding whether or not a sufficiently liberal parametric representation
has been adopted.
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