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PIECEWISE EXPONENTIAL MODELS FOR SURVIVAL DATA
WITH COVARIATES'

BY MicHAEL FRIEDMAN

Rutgers University

A general class of models for analysis of censored survival data with
covariates is considered. If n individuals are observed over a time period
divided into I(n) intervals, it is assumed that A;(£), the hazard rate function of
the time to failure of the individual j, is constant and equal to A,; > 0 on the
ith interval, and that the vector ¢= {logAij:j=1,---,n;i=1, ..., I(n)} lies
in a linear subspace. The maximum likelihood estimate fof ¢ provides a
simultaneous estimate of the underlying hazard rate function, and of the
effects of the covariates. Maximum likelihood equations and conditions for
existence of ¢are given. : R

The asymptotic properties of linear functionals of ¢ are studied in the
general case where the true hazard rate function Ao(¢) is not a step function,
and I(n) increases without bound as the maximum interval length decreases.
In comparison with recent work on regression analysis of survival data, the
asymptotic results are obtained under more relaxed conditions on the regres-
sion variables.

1. Introduction. In recent years, much attention has been devoted to medical
survival studies in which the data on the jth individual include the observed survival time
t;, which may be terminated either by a failure or by censoring, and a vector of covariates
X;.

For a study with one covariate, Feigl and Zelen (1965) proposed an exponential survival
model in which the time to failure of the jth individual has the density

(1.1) f;(8) = Ajexp(—A,t), At = a exp(Bx;),

where a and B are unknown parameters.
In a groundbreaking paper, Cox (1972) offered a survival model in which the hazard
function of the time to failure of the jth individual is expressed as

(1.2) Aj(8) = Ao(t)exp {(B, x;)},

where Ao(2) is an underlying hazard rate function not restricted by any assumptions. The
partial likelihood function proposed for the analysis of the model (1.2), see Cox (1972) and
Cox (1975), does not involve the function A(¢), and allows maximum likelihood estimation
of the regression coefficients 8. The model (1.2) has been further elaborated by Breslow
(1974) and Kalbfleisch and Prentice (1973). An extensive discussion and bibliography
appear in Kalbfleisch and Prentice (1979) and Prentice and Kalbfleisch (1979).

In (1.2), a log-linear model is in effect used to describe the effects of the covariates upon
the individual hazard rates. In the piecewise exponential approach, a log-linear model is
used to model both the effects of the covariates and the underlying hazard rate function,
which is approximated by a step function. Maximum likelihood estimates of the underlying
hazard rate function are then obtained simultaneously with the estimates of the regression
parameters expressing the effect of the covariates. This approach was first studied by
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102 MICHAEL FRIEDMAN

Holford (1976), and is also the subject of work by Holford (1980) and Laird and Olivier
(1981).

The class of piecewise exponential models is defined in Section 2, and conditions for the
existence of maximum likelihood estimates (MLE’s) are explored. As pointed out by
Friedman (1978), there is a similarity between the likelihood function for the piecewise
exponential model and the likelihood function for a log-linear model for frequency data.
As a result of this similarity, known results concerning the existence of MLE’s for log-
linear models in contingency table analysis can be applied to the present problem. This
similarity has also been the focus of recent work by Holford (1980) and Laird and Olivier
(1981), who have shown that in certain cases Iterative Proportional Fitting may be used to
obtain the MLE’s of the piecewise exponential model, thus further bringing the analysis of
survival data within the scope of the familiar techniques used to analyze frequency data.

Section 3 presents results on the asymptotic convergence and normality of maximum
likelihood estimates. These results are obtained under very general conditions, namely,
when the number of unknown parameters in the piecewise exponential model increases
without bound as n goes to infinity, as a result of the shrinking of the intervals on which
the step function approximating Ao(¢) is defined. The fixed-point methods developed by
Haberman (1977) in his study of exponential response models are adopted to obtain these
results. There are basically three kinds of conditions that need to be imposed in order to
prove the desired asymptotic results: conditions on the distribution of the covariates,
conditions on the size and number of the intervals, and conditions on the shape of the
underlying hazard function. In contrast to other recent work on the asymptotic behavior
of regression parameter estimators in survival studies (for a summary see Kalbfleisch and
Prentice, 1979), the conditions imposed on the covariates are relaxed; it is not required
that the values of the covariates be bounded.

A brief numerical example is discussed in Section 4.

2. The piecewise exponential model: basic properties and maximum likelihood
estimation. Suppose that the survival times {¢:j € i}, where 7 is the set of integers
from 1 to n, are observed. The observed survival times may be terminated either by failure
or by censoring (withdrawal). It is assumed that conditionally on x the times to failure are
independent of the times to withdrawal. Let the time scale be divided into I(n) intervals
0, Tv1, (T, T2], +++, (Ttw-1, Trw].- In many applications, the last interval may be
considered infinite in length. However, in proving the asymptotic results of Section 3, a
fixed finite value independent of » is assigned to T',).

2.1. Basic properties. Under the piecewise exponential model, the times to failure
satisfy the following two assumptions:

(1) The hazard rate function of each individual is constant over any given interval. The
hazard rate of the jth individual in the ith interval is denoted by A;;, and it is assumed
that A;; > 0 for each (i, j).

(2) If ¢is the vector with components ¢; = log(A;;), then ¢ € Q(n) for a given linear
subspace £(n) of R™™,

The likelihood function can be expressed in terms of the statistics {¢;, I;:j € n,
i € I(n)} defined as follows:

(2.1) Ij=1 if the jth individual fails during the i th interval
=0 otherwise,
and

(2-2) tij= maX{O, min(T,- - T'_l, tj - Ti—l)} .
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The log likelihood function is then
(2.3) COL(¢) = X Ly — S tyexp(£y).

ExampLE 2.1. Consider a survival study in which each individual is associated with a
K-dimensional covariate vector

x; = (x}, -+, x5),

and 2(n) =span{un,:m =1, --., I*(n) + K}, where I'*(n) < I(n), and
(2.4) Umij = Umi, m < I*(n),

Unmij = X%, m=1I*(n) + k.
Each vector ¢ in Q(n) then has coordinates
(2.5) b = Y Qmltmi + Yh=1 Brxf s
The situation I*(n) < I(n) arises when the values of the underlying hazard rate function
on different intervals are constrained to satisfy certain relationships. For instance, when
I*(n) =1, and uy;, = 1, then
(2.6) liy = o+ Y Brxf.

Except for differences in notation, this model is equivalent to the exponential model (1.1),
generalized to multiple covariates.

ExaMpPLE 2.2. When I*(n) = I(n), the first I(n) basis vectors of 2(n) may be defined
by
2.7) Umij=1 if i=m,

=0 otherwise.

In this case, for every ¢ in Q(n),
(2.8) Cy=o,+ Yp kaf-
This very important piecewise exponential model was first discussed by Holford (1976).

2.2. Existence of Maximum Likelihood Estimates. If a unique vector ¢ which maxi-
mizes the function L exists, it can be readily found by an iterative procedure. If all the
summands in (2.3) were positive, the existence of a unique maximum likelihood estimate
would be easy to prove. A similar problem has been studied for Poisson models in
contingency table analysis (Haberman, 1973), where a log likelihood function of the form

L) = ¢ + ¥ wini — Yiexp(p:)

appears, with n;’s the observed frequencies and ¢ a term not involving the parameters ;.

Let the set of indices (i, ) be partitioned into A = {(i, j) : t;; >0} and B = {(i, j) : t;; =
0}. Clearly, the value of L(¢) is not changed when the summation is only over A. We will
henceforth assume the following condition, which insures that if the likelihood function
has a maximum, then a unique MLE exists.

ConprTioN 1. For any pair of vectors X, y € Q(n), if x;; = y;; for every (i, j) in A, then

x=y.
Let L’ and L” be the first and second differential, respectively, of L at £ Then for any

x and y in Q(n),
L} (x) = Zx;I;; — Zaiitjexp(fyy),
and

LIAx, y) = Zxijyitiiexp(£i).
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Given Condition 1, it is then easy to see that L(¢) is a strictly concave function. Let I be
the vector in R™™ whose components are I;,, and t*(¢) the vector whose components are
t;jexp(4,). Then we have

. THEOREM 2.1. Assume that Condition 1is satisfied. If a maximum likelihood estimate
£ exists, it is unique, and satisfies the equation

(2.9) Pyl = Pomt*(£),

where Pq is the orthogonal projection onto Q(n). Conversely, a solution ¢ of (2.9) is the
MLE.

ProoOF. The proof is based on the observation that if L’(x) = 0 for every x in £(n),
then I — t*(£) is orthogonal to (). We omit the details.

THEOREM 2.2. Assume that Condition 1 holds. In order that the maximum likelihood
estimate exists, it is necessary and sufficient that there exists a vector d in R™"™ such
that

(a) d € Q(n)*, the orthogonal complement of Q(n);
(2.10) (b) dy+I1;>0 foreach (i,j)€E A, and
(c) dj=0 foreach (i, j)€E B.

PROOF. When ¢ exists, then the vector d = t*(¢) — I satisfies (2.10). On the other
hand, if a vector satisfying (2.10) exists, then

L(¢) = Y a 4T + dij) — Y a tijexp(4)).

Since all the quantities (I;; + d;;) and ¢; in the last expression are positive, the rest of the
proof follows as in Haberman (1973).

Let S be any set of ordered pairs (i, j) and let M be any subspace of R™™. Define the
function ps from R™™ to R!S|, where | S| denotes the number of elements in a subset S of
the index set, by ps(x) = {x;;: (i, j) €S}, and let ps(M) = { ps(x) : x € M}. Then we have
the following corollary.

COROLLARY 2.1. Let I = ps(I). The MLE exists if and only if there exists a vector d
such that if &’ = pa(d), then

(2.11) (a) d' = [pa@@n))]*; and (b) dj +Ij; >0 forevery (,}j).

Because of the similarities between (2.11) and the condition in Theorem 3.2 of Haberman
(1973), corollaries such as 3.3 and 3.4 of the latter paper also apply in the present situation.

3. Asymptotic properties. When the true underlying hazard rate function is not a
step function and I(n) is constant, the maximum likelihood estimates ﬁ of the regression
parameters, which can be expressed as linear functionals of Z are, as expected, not
consistent. This fact was first pointed out by Holford (1976).

The focus of this section will be on the asymptotic properties of the MLEs in the
situation where the true underlying hazard rate is not a step function, the interval lengths
decrease, and the dimension of £(n) increases without bound as n increases, but T, is
fixed. The proofs of the asymptotic properties will be obtained by adapting the fixed-point
methods first used by Haberman (1977) in a study of exponential response models.

3.1. Fixed-point theorems. The asymptotic methods used in this section rely on the
fixed point theorems of Kantorovich and Akilov (1964). (A fixed point of a function f(x)
satisfies the equation x = f(x).) Consider the equation x = S(x), where S has a continuous
differential on the closed sphere {x:|x — X¢| =< f} of a complete normed vector space V.
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Let there also be a real equation ¢ = g(¢), with g defined and differentiable on an interval
[to, '], where t' =ty + f.

THEOREM 3.1. Let the functions S and g, and the points xo and t,, be defined as
above, and suppose that they satisfy

(3.1) (@) [S(o) — Xo| = g(to) — to;
(b) |Sx|l < gi, whenever |x—Xo|=<t—t,.

Define the two sequences {t,} and {x,},n =20, 1, -+, by tor1 = g(t,) and Xp+1 = S(X,).
Then if the equation t = g(t) has a root in [to, t'], the sequence {X,} converges to a fixed
point x* of S(x). Moreover, X* satisfies the inequality

| X* — Xn | S t* — £, n=0,1,...

.

where t* is the smallest root of t = g(t) in [to, t'].
Proor. See Kantorovich and Akilov (1964, pages 697-700).

The following theorem is implicitly used in Haberman (1977). It provides sufficient
conditions for the convergence of a sequence {x,} defined as in Theorem 3.1 without any
explicit reference to a real function g(t).

THEOREM 3.2. Let S, {x,}, and f be defined as above. If b is a real number, and the
following three conditions are satisfied
(@) fo=1%,
(3.2) (b) |x1 —Xo| = f/2
(c) ISkl =b&|x—Xo]| whenever |x —Xo| =< f,
then the sequence {x,} converges to a fixed point.
PrROOF. The theorem can be proven by working with the function g(¢) = | %1 — %o +

1%bt?, and a sequence {t,}, with £, = 0, which converges to a fixed point ¢*. It can also be
shown that

(3.3) |[x* — x| t*—ti<b|x1— X0 |%

3.2 Preliminaries. Three different inner products need to be defined on the vector
spaces £(n). Let {., -} denote, for every x, y € R"™, the function

X, v} = Xij x5 Py,
where P;; = E(I;;). If the unique maximum likelihood estimate ¢, exists, let
(X, ¥) = 3% Yt eXp(nis)-

Note that there may be x # 0 such that {x, x} =0 or (x, x) = 0. But under the conditions
imposed below, the probability goes to 1 that both {., -} and (., -) define inner products
on §(n). Let the set of all n’s where this happens be denoted by .#. The corresponding
norms will then be defined by || x || > = {x, x} and |x|? = (x, x). Finally, for every n €
N let

P,
Abj=—=—
Y E(ty)

= exp(£h;) if E(t;) =0,
where ¢7; is defined below. Further, let ¢} be the vector with coordinates ¢%; = log(A%;)

if E(t;) >0,
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and define #J to be the vector minimizing =;;(¢%; — x;;)?P;; over all x in Q(n). If C =
{(G, j): P;j > 0}, then pc(¢7) = Pp mypc(£)), where P’ is the orthogonal projection from
Ppc(R™™) onto pc(Q(n)) with respect to the inner product {-, -}. Note that the uniqueness
of ¢% is implied by n € .

A third inner product [ -, - ]is defined by [x, y] = Zx;; y,;t;;exp(£5; ), and its corresponding
norm is || - ||. For any x in Q(n), let f.(x) be the vector defined by requiring that for any
y in Q(n),

[y, f(x)] = Y yi {1 — tijexp(xi;)}.

Further, let g,(x) = x + f,(x), and Z, = f,(¢£2). If £, is the solution of the equation g,(x)
= X, then by the definition of g,, £, satisfies equation (2.9). If a unique MLE exists, it is
therefore equal to the fixed point of g,.

It will be assumed in the remainder of this paper that n € .#; this involves no loss of

generality.

.

3.3 Existence of Maximum Likelihood Estimates. Despite the large number of
technical details involved in the proof of the asymptotic results, the main line of develop-
ment is simple. It is to be expected that the MLE will converge in some sense to £5, the
projection on Q(n) of the vector of logarithms of the average interval hazard rates A%,
The approach taken to proving that the difference between ¢ and £, is small consists in
investigating the consequences of letting £ be the first approximation to the fixed point
of g.. In other words, we will study a sequence of vectors {£,},i=0, 1, - -+ with £,, = £5,
and £,.+1 = gr(¢4.). It is important to note that ¢£,; = ¢5 + Z,. To prove the existence of a
MLE with probability 1 as n — o, it suffices to show that {¢.;} converges. To study the
asymptotic behavior of the MLE, it is necessary to show that 4, is sufficiently well
approximated by ¢,;, and then to investigate the behavior of Z,. Four conditions are
needed:

ConpiTioN A. This condition concerns the distribution of the covariate values. Note
that it relaxes the customary requirement that the values of the covariate be bounded. Let
v(a) be the vector with components v,(a) = a’x;, and let m;(a) and d;(a) be, respectively,
the weighted mean and variance of {v,(a)}, with {P;;} as weights. Define

P.,=Y%, P, P,j=%P; andP,,=Y;Y,Pi,.
Then max, m,(a) and max, d;(a) are both bounded as n — «,
Yi Pirdi(@) /3, Pir — c(a),
and
(3.4) max, max, vi(a)/c(a) = OI'(n)),

where I’(n) is the dimension of §(n), assumed to be of the same order of magnitude as
I(n). Also, the second moment of {exp | (8, x;) |}, either unweighted or with weights {P;;}
or {P.,}, is bounded.

ConpitioN B. (i) 1/P++ = O(n—1), (i) max;; Pi/Py+ = O(1). (iii) If w; is the length of
the ith interval, then max; w, = 0(1), and max, , w; exp(8, x;) = O(1).
This condition puts another constraint on the distribution of the covariates, one which in
most situations is stronger than the one expressed by (3.4). It is also specified that the
intervals all go to zero in length, and all be of the same order of magnitude when measured
in terms of the expected number of deaths in each. The next condition limits the rate of
increase of the number of intervals.

ConpiTioN C.

’ 3
T,
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ConprTioN. D. This condition basically specifies that the distance between ¢7 and its
projection on £(n) be small.

(i) Let guiy = 4uj — ¢%i;. Then the quantities max; ;| gnij|, Y, Pijqhis, and n™'I'(n)?
Y. Pijq%:; are all of order o(1).

(ii) The function Ao (¢) is bounded on (0, T'].
It can be shown (Friedman, 1981) that Condition D is satisfied in a general class of
situations involving basically the smoothness of A ().

The development now leads to Lemmas 3.3, 3.4, and 3.5, which directly allow us to
apply Theorem 3.2 to the present situation.

LeEMMA 3.1. Given Conditions A-D,

maXxzeq(n)

)
Mz~ b =

ProOF. The proof is given in Friedman (1981). For general comments, see Section 5.
LEMMA 3.2. Define a sequence of random variables {b,} by

| i)
b, = ¢ max,eqr Max, ; ——

Izl
where ¢ > 1. Then given Conditions A-D,
bi:= 0,(I'(n)/n).

ProoF. Because Lemma 3.1 implies that max.ecom ||| z]||/||Zz|| = O,(1), it suffices to
demonstrate that

maX,eqm max,, 25/|||z|||> = OI’'(n)/n).

The remainder of the proof is presented in Section 5.

LEMMA 3.3 Given A-D, there exists a sequence {f,} of real numbers greater than 1
such that I'(n) /f: = o(1) and b.f% = 0, (1).

Proor. Letf,={nl'(n)}1/8. Then by Lemma3.2,b,f%=0,(I'(n)3/4/n1/4),andI’(n)/
f2={I'(n)}3/4/n1/4.

LEMMA 3.4. Given Conditions A-D, Pr(||Z, | < f./2) — 1, where {f.} is defined as in
Lemma 3.3.

ProoF. It is shown in Friedman (1981) that E (|| Z.||?) = I'(n) + o(I’(n)). The lemma
then follows from Chebyshev’s inequality.

LeEmMMaA 3.5. If Conditions A-D are satisfied, {f,} is defined as in Lemma 3.3, and G,
={x E€Qn):||x— % =< f.}, then

Pr(supxec, || gnx |l = ballx — £2]) — L.

ProOOF. See Section 5.

The existence and some of the basic properties of the maximum likelihood estimates
can now be proven.

THEOREM 3.3. Let Conditions A-D be satisfied, and let ¢%, be the first approximation
to the fixed point of g,. Then as n goes to infinity, the probability approaches 1 that the
sequence of approximations converges to a fixed point ¢,.
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Proor. It is sufficient to demonstrate that the probability goes to 1 for the conditions
specified in Theorem 3.2 to be satisfied. By Lemma 3.3, the probability goes to 1 that f,b,
=< %. Lemma 3.4 places the necessary bound on the distance between the first two
approximations to the fixed point, and Lemma 3.5 guarantees that the probability goes to
1 that the bound on || g/« || is satisfied.

THEOREM 3.4. Under the conditions of Theorem 3.3, the probability goes to 1 that the
MLE ¢,, if it exists, is unique.

PrROOF. See Section 5.

It can be concluded, moreover, from the proof of Theorem 3.2 that the probability goes
tolthat || u — én||<fu,i=1,2, -+, and in particular that

(3.5) 4. = €20 < fu.
While f, goes to infinity, the components of 4, — ¢% become small.

COROLLARY 3.1. If 4, exists, then max,, | fy;, — £% i|—pO.
Proor. The corollary follows from (3.5) and Lemma 3.3.

3.4 Asymptotic normality of linear functionals of the Maximum Likelihood
Estimate. The estimates of the regression parameters of a piecewise exponential model
for survival data may be expressed as linear functionals of #,. In this subsection, general
properties of linear functionals of 4, will be examined. Let 4, be a linear functional defined
on £(n), so that for every x in Q(n), h,(x) = Y, cux:; Define the quantity

| 2n(x) |
6 (h,) = supxeary ———-
TR
For each h,, there exists a vector d, in £(n) such that for all x in Q(n), A.(x) = {d,, x}.
Then by the Schwartz inequality, o (A.) = ||| d.. |||. One additional lemma is required before
the theorem on asymptotic normality can be presented.

LeEmMMA 3.6. Given Conditions A-D, if {a,} is any sequence of vectors in Q(n) such
that ||| a.||| # 0, then as n goes to infinity,
{an, Zx}  [an, Zx]
— —p
la-lll lllaxlll

0.

Proor. See Friedman (1981).

THEOREM 3.5. If Conditions A-D are satisfied, and if the sequence {h,} is such that
o(h,) >0, then
< Palln) = ha(£0)

o) —p N(0, 1).

Proor. See Section 5.
Since ¢(h,) is unknown, it must be estimated by s(h.) = sup.eew | 2. (x) |/ |x|. The
estimate s(A,) is equivalent to the estimate of the variance obtained in the usual way from

the matrix of the second partial derivatives of L evaluated at 4,.

THEOREM 3.6. Let {h,} be any sequence of linear functionals on Q(n) such that
s(hn) > 0 for each n. Then under the conditions of Theorem 3.3, ¢ (h,)/s(h.) —p 1.
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PrOOF. See Section 5.

ExampPLE 3.1. Consider the model (2.8) with K = 1, and for each n for which £, exists,
let its coordinates be written as 4.; = @..(€,) + b.(£,)x;, where a,; and b, are linear
functionals b, (¢) = (fu11 — u12) /(%1 — %x2) and @ni(€) = (€n12X1 — Cuuix2) /(X1 — X2).

COROLLARY 3.2. If the conditions of Theorem 3.3 are satisfied, then
bu(fn) — ba(£) —p 0.

PrOOF. It can be shown that A,.(4,) — hn(£%) —p O if 2| cuij|/fu = 0. It is easy to
check that the functionals b, satisfy this condition.

It is also desirable to prove that vn (b.(£%) — B) — 0. Under the conditions alluded to
above and described in Friedman (1981) which lead to Condition D being satisfied, it is
necessary to impose the requirement that n/I'(n*) = o(1).

4. A Numerical Example. The MLE can be found in practice by the usual iterative
methods; see Holford (1976), Friedman (1978). A data set, from Merrell and Shulman
(1955), consisting of the survival times of 98 lupus erythematosus patients, was analyzed
using model (2.8). The covariates are (1) sex; (2) race (white/non-white); (3) age at time of
diagnosis; (4) time elapsed between estimated onset and diagnosis (< 2 years/> 2 years);
and (5) recency of diagnosis (before/after July 1951). The age of patient 49 is unknown,
and she was therefore not used in the analysis.

The models I-VI in Table 1 were fitted mainly to illustrate the variability of the
regression parameters in the piecewise exponential model as the number of intervals and
the intervals themselves change. Inspection of the table reveals that while the goodness of
fit of the models may vary substantially, the estimates of the regression parameters do not
change greatly relative to the magnitude of their estimated standard errors. This is
comforting in view of the fact that despite the asymptotic results about the allowable rate
of increase in I(n), precise practical guidelines for choosing the number of intervals have
not been formulated. In general, monotonically increasing or decreasing functions A(t)
will lead to greatest bias. Calculations in Friedman (1978) show, however, that forA a
balanced two-sample study with Az(¢)/A1(¢) = 2 and A¢(¢) proportional to ¢, the bias in 8 is
only about 4% for a certain choice of intervals when I = 5, and decreases further as the
number of intervals is increased.

It is recommended that an analysis start with a moderate I (5-7), followed by an
examination of the &’s and their estimated standard error to identify sharp changes in the
underlying hazard rate function, and especially to identify any monotone trend in Ao(t).
When a monotone trend is found, a transformation of the time scale should be considered.

TABLE 1
Analysis of lupus erythematosus data

Interval o1 s
Model  Boundaries b: b2 bs bs bs log likelihood
. at ¢
(in years)
I 581117, —484  —.663 0013 497 1125 —67.84
2.5, 3.1 (.54) (39)  (015) (.38) (49)

I 38102030  —457  —653 0008 488 1191 —61.94
M 4,9 1525 483  —.658 0009 513 1117 —68.53
IV .3,10,20 30 —450  —.623 0019 464 1244 —66.39

vV o4 —473 —648 0011 494 1151 —70.41
Vi 3 —459  —.635 0011 489 1192 —67.78

VII Cox Model —.459 —.615 0002 .503 1.151

Numbers in parentheses are estimated standard errors for Model I.
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For example, the estimates {a,} for Model IV, and their corresponding estimated
standard errors in parentheses, are given below.

-1.170 -2322 -—-3.285 —2.879 —2.284
(.29) (.37) (.59) (.60) (.60)

The hazard rate during the first three months after diagnosis is higher than at other times,
but there is no evidence of a monotone trend.

Model VII is the Cox model, fitted using Procedure PHGLM of the Statistical Analysis
System. This procedure uses the Breslow (1974) modification for tied data. It is encouraging
that the estimates of the regression parameters in Models I-VI do not differ greatly from
the Cox estimate. As a rough measure of this difference, the differences between the Cox
estimates and the piecewise exponential estimates were divided by estimated standard
errors given in Table 1, the ratios squared and summed over the five regression parameters.
The results are .026, .019, .022, .060, .012, and .015. )

Further discussions of and examples of the piecewise exponential methodology can be
found in Holford (1976), Holford (1980) and Laird and Olivier (1981).

5. Further Proofs. This section contains proofs of several lemmas and theorems of
Section 3, as well as an example showing that Condition D is satisfied in a general class of
situations.

Proor oF LEMMAS 3.1 AND 3.6. These lemmas are proven for the general model (2.4)
with K = 1 in Friedman (1981). The proof involves defining P, and @, to be diagonal
matrices whose non-zero elements are respectively P;; and ¢, exp(¢%;), defining D, to be
the n X {I(n) + 1} matrix whose first I(n) columns are the vectors defined by (2.7) and
whose last column consists of the values of x, and showing that ||| Z, ||| Am. = 0,(1), where
A%, is the maximum of the squared eigenvalues of the matrix I — (D, PD)™* (D,Q.D,).

Proor oF LEMMA 3.2. Let the coordinates of each z be written as

2y = Zm QmUm + Zk kaf = ul(z) + Ll)j(z),
and Q(n) be partitioned into
Q'(n) = {z:| w ) (2) | = max;| u;(z) | > 2 max,|w;(z) | = 2| wj+«) (@) |}
and Qn) = (z:|wrw | = 2| wpw (@) |}
Then
2{ui(2)}* + 2{w;* » (2)}°
Y {Uirw(2) + w;(2)}Pimj
2.5{ui+ ) (2))*

1
(Z) Y (@ (2)} Piej

max,eq(m max 2o /||| z|||* = max.eqim

=< MaX,eq!(n) =< 10 min; 1/Y, Py,

so that as a consequence of condition B,
max,eq'm max,, zy/|||z||| = OI'(n)/n).

On the other hand,

IO{IL i (Z)}2

2 J* (z)

max. 2(n) MAX,; ; 255 Z ||| = max 2(n) MAax =

zEQ(n) i,j U/l” ||| zEQ"(n) el Zl,j { j( ) i( )}ZPlj

= O0(I'(n)/n)

where w,(z) = Y ;w,Py/Y ,P;.
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Proor oF LEMMA 3.5. The proof of this lemma uses the easily verified fact that for
every real number x,

| exp(x) — 1| = |x|exp(|x]).
From the definition of b, and Lemma 3.3 it follows that for any ¢ > 0,
(3.6) Pr(supxec, max; ;| x; — €oy| <e) — 1.

Note that for a self-adjoint linear transformation from Vto V, | T|| = supxev| (x, TX) |/
|x|% sée, e.g., Kantorovich and Akilov (1964). As a consequence of the fact that
[y, gnx(M] = X yitslexp(£ni/xi)], we have

3. Yty {exp(£hy) — explxy))

lg7.x |l = max

yeQ(n) Ziuytgj tij exp(/ﬂ,-j)
= maxyeanm Yi, Yoty exp(£ cn'zjg{l - e;(p(xi,‘— %))
i Y5 exp(ny)

<max;,|1 — exp(x; — £oy) | = max, ;| x; — £oilexp(| xy — £oyl).
Therefore,

Pr(sup xeq, || gnxll = ballx — 42 )

inax,;,-| Xy — /9,,,' - bn )

= Pr|{ Vx € G,, =
( Ix— ¢zl max;, ; exp(| Xy — ni|)

The lemma then follows by (3.6) and the definition of b,.

PrOOF OF THEOREM 3.4. By Theorem 2.1, it needs to be shown that Condition 1 is
satisfied for large n. Condition 1 is satisfied if and only if dim p4[Q(n)] = dim £(n). Note
that if @ C Q*, then dim p,Q* = dim Q* implies dim p.Q = dim Q. Let Q*(n) = {x:x; =
a; + (B8, x;)}. It can be verified that dim p4Q*(n) = I(n) + K if (a) ¥, I, > 0, and if (b)
there is no vector a such that a’x; = 1 for all j, since (1, j) € A for all j. But Condition B
implies that the probability goes to 1 that (a) is true, while Condition A implies the same
for (b).

PRrOOF OF THEOREM 3.5. If A, (x) = {d,, x} for each x in £(n), then the theorem can
be shown to be true if

_[d,Z.] _ i duilli — ty exp(£hy)}
I e [] (Il d=ll

This can be accomplished by examining the logarithm of the moment generating function,
log E {exp(¢X..)}, which can be shown to converge to t2/2; see Curtiss (1942). In Friedman
(1981) it is shown that if we write X,, = ¥ Y,,,, where

Yy=Y:duw{ly—ty eXp((/%j)}/III d.|ll,
and if Conditions A-D are satisfied, then

X —p N(0, 1).

(a) there is a sequence {K,} such that K, = o(1) and
Pr(max;| Y, | <K.) =1
(b) E(X,) =Y, E(Yy) = o(1);
(c) ¥, EX(Yy) = o(1/I'(n);
(d) Var(X,,) = Y, Var(Y,) =1 + o(1).
The function log E {exp(tX,)} is then expanded in a Taylor series.
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THEOREM 3.6. Let s*(h,) = supxeam|ha(X)|/]| x]|. It follows from Lemma 3.1 that
a(hn)/s*(h,) —p 1. If it can also be shown that s*(h.)/s(h,) —p 1, the conclusion will
follow. But since the probability goes to 1 that (3.5) holds, Lemma 3.5 implies that

Y X5 ty)exp(by) _

p 1
Yo x5ty exp(¢ny)

sbnufn—fﬁu}

Pr{ MaXxeqn)

Ix]|®

= 1= nllin—zﬁn}—)l,
Ix]® ’

= Pr{maxxemm

and the conclusion follows.

The following lemmas indicate that Condition D is satisfied in a :general class of
situations.

LEMMA 4.1. Let H;(t) be the probability that the jth individual is not censored before
time t. Assume that \o(t) is bounded on (0, T'], and that both Ao (t) and the functions H;(t)
are continuous and have continuous first and second derivatives which are uniformly
bounded for all j. Then for each n there are constants \,;, i =1, - - ., I(n) and a constant
B, such that for large enough n,

I /’T'J - lOg(Am') - (B9 xj) | = Bw% eXp(B, Xj).

Proor. The proof relies on a simple Taylor series expansion of A} as a function of w;,
and is given in Friedman (1978).

LeEMMA 4.2. If R,(t) is the probability of being observed at time t, assume that for
large enough n Y,; A\;(t)R;(t)/n = z(t), where z(t) is a continuous function taking only
positive values on [0, T']. Then max, w; = O(1/1(n)).

Proor. See Friedman (1981).

With A,; as in Lemma 4.1, let ¢, have coordinates ¢»; = log(A.) + (B, X;). As a
consequence of Condition A, Lemma 4.1, and the definition of £9,

I*(n) » _I'n)
Yii Pigny = Yii Pyl lmy— Chi)*
n n

2I?(n)P. Py 2 i
<BTWP (:) " max, w}‘[zj ac e};f{ B, X’)}] = I*(n)max; w{O(1).
++

Further, since ||| £ — €5 |||> =< X, P&y — )’
max,,,|q,,,~,~| = max,,,-| fﬁu - f;,'jl + max,,,| f;,y— f?,,jl
I/(n)1/2

=< B(max; w;){max;, w; exp(B, x,)} + {n—m— €5 = 2]l

= (max, w,)o(1) + {I'(n)}""*(max; w}) O(1),
and

Y. Pyqry < max,; qny Y Pyqhy= n(max; w?)(max,, q%,).

Thus if max, w; = O(1/I(n)), Condition D is satisfied for the model specified by (2.8) as

long as n/I%(n) — 0.
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