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SIMULTANEOUS ESTIMATION OF SEVERAL POISSON
PARAMETERS UNDER K-NORMALIZED SQUARED ERROR LOSS
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In this study, we consider the simultaneous estimation of the parameters
of the distributions of p independent Poisson random variables using the loss
function Lx(A, X) = Y (A — A)?/Af for a given positive integer k. New
estimators are derived, which include the minimax estimators proposed by
Clevenson and Zidek (1975), as special cases. The case when more than one
observation is taken from some of the variables is considered.

1. Introduction. Let Xi, - - -, X, be p independent Poisson random variables, where
X; has mean A;, i = 1, .., p. Recently, considerable research has been devoted to the
problem of finding better estimators of the A; than the Maximum Likelihood Estimator
(MLE). Clevenson and Zidek (1975) obtain a class of minimax estimators under normalized
squared error loss Li(A, X) = $2-; (A; — A;)?)/A; when p = 2. Their estimators shrink the
MLE towards the origin. A considerable amount of savings in risk as compared to the
MLE is expected when the parameters A; are relatively small, especially when the A/’s are
close to zero.

In this paper, a more general loss function is considered, namely, k-normalized squared
error loss Lx(A, A) = Y21 (A; — A;)®)/Ak, where £ is a positive integer. New estimators are
derived under this loss function. A rationale for these loss functions is given in Section 4.

DEeFINITIONS. In order to simplify our expressions, we need the following definitions.

(1) y® =y(y—1) -+ (y — k + 1), where £ is a positive integer and y is a real number;

(2) e; = the p-vector whose ith coordinate is one, and whose other coordinates are zero;

3) X= (X1, -+, X,), x = (x1, - -+, Xp) an observation of X, and A = (A, + -+, Ap);

@) Z=Y1 X, z=Y01 2, S=30, (Xi + k)®, s = Yoy (2 + E)®,S;=S— (X;+ k)®,
si=s— (xi+ k)®.

Hudson (1974) defines the risk improvement of an estimator X over the MLE, I =
R\, X) — R(A, N, and derives an identity for the unbiased risk improvement estimate U
under squared error loss: I = E,U(X), where U is a function of X only. By means of this
identity, Peng (1975) shows that the MLE is inadmissible under squared error loss when
p = 3. In Section 2, we derive a similar identity for the case of loss function L. In Section
3, we shall use the identity in the special case when & = 1 to show that the estimator A =
X — ¢(2)X/(Z + a) dominates the MLE when p = 2, where ¢ (2) is nondecreasing in z,
0 < ¢(2) = min{2(p — 1), 2a}, with e an arbitrary positive real number. This result
includes that of Clevenson and Zidek (1975). Their estimators require a =p — 1 and 0 <
¢(z) =2(p—1).

In Section 4, we use thg identity derived in Section 2 to show that under loss L;, the
estimator A® = (AP, ..., \®), given by

$(2)(X)®

N(B) — Y. L
A =X S+ (X)®°

i=]_’...’p’
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dominates the MLE when p = 2. We require that ¢(z) be increasing in z and 0 < ¢(2) =<
2k(p — 1). Some modified versions of A* are also proposed.

In order that the performance of some of our estimators might be compared, we report
the results of a computer simulation in Section 5. Finally, in Section 6, we extend our
results to the case where more than one observation per Poisson random variable is
available.

2. Unbiased risk deterioration estimate. Let J be the set of all integers. The
following lemma provides an identity which proves to be useful.

LEMMA 1. Suppose Y ~ Poisson (u) and g: J — R is a real-valued function such that
E,|g(Y)| <~ andg(j)=0ifj=<0. Then E,{g(Y)/u} = E.{g(Y + 1)/(Y + 1)}

PROOF. .
E{g(Y)/p} = Y50 {g(y)/nye ™ w’/¥! = g(0)e™/p + Tiu1 &(y)e ™ w” ™" /y!
=0+ Y50g(y+ De™/(y+ 1= E {g(Y+1)/(Y +1)}. O

The next lemma is an immediate consequence of Lemma 1.

LEMMA 2. Suppose Y ~ Poisson (u), k is a positive integer and g:J — R is a real-
valued function such that

E.|lg(Y+))|<oo, j=0,.---,k—1, and g(j)=0 ifj<k.

Then

E{g(Y)/p"} = E.{g(Y + k)/(Y + k)®}.

Proor. Induction on % and application of Lemma 1.

Lemma 3 below is a generalization of Lemma 2 to the vector case.

LeEmMMA 3. Suppose X, ~ Poisson (\;),i=1, ---,p, p = 2 and the X/s are mutually
independent. Let k be a positive integer. Suppose f;:J* — R,i =1, - -+, p, are functions
defined on the p-fold Cartesian product of J, such that E\|f,(X + je.)| < »,j=1, ---,
k— 1, and fi(x) =0, if x;, < k. Then

Ex{fi(X)/N\} = EA{fi(X + ke))/(Xi + )™}
Proor. Condition on {X;:j # i} and apply Lemma 2.
Let X(X) = X + f(X) be an estimator of A, where f(X) = (fi(X), 2(X), -+, f,(X)) and

the f/’s satisfy the conditions in Lemma 3. The next lemma gives an unbiased estimate of
D,., the deterioration in risk of A as compared to the MLE, X. The proof is straightforward.

LEMMA 4. Under loss Ly, the deterioration in risk of Ais
Di = Ex(Le(\ N) — L\, X)} = E\A, = RO A) — RO\, X),
where

Ap = Y21 fAX + ke)) /(Xi + B)® + 2 T5a(X; + R {f.(X + ke.)
- X+ (k= De)}/(Xi + B)®.

ProoF. Apply Lemma 3.



ESTIMATION OF POISSON PARAMETERS 95

From Lemma 4, we see that in order to show that an estimator A =X + f(X) dominates
X, it is sufficient to show that A, (x) < 0 for all x € J”. Application of this technique yields
Theorems 1 through 4.

3. Minimax estimators. The usual estimator, X, of }\ is minimax under normalized
squared error loss L;. Hence, to show that an estimator A of A is minimax, it suffices to
show that the risk of A under L, is uniformly less than or equal to that of X, i.e. R(A, X)
< R(\, X), for all \. Lemma 4 of the previous section gives us a sufficient condition for
such an inequality to hold if the estimator A is of the form X + f(X). The condition is

(3.1) Ay =38 filx+e)/(xi+1) + 23 {filx+ &) - filx)} =0
for all x € JP. Using this fact, we proceed to derive a class of minimax estimators of A

which contains the estimators obtained by Clevenson and Zidek (1975, Theorem 2.1).

THEOREM 1. Suppose X; ~ Poisson (\;),i =1, ---, p, p = 2, and that the X;’s are
mutually independent. Then estimators A of the following form dominate the MLE, X,
under Li:

A=X-6(2)X/(Z + a),
where Z = Zx;, a > 0, ¢(z) is a real-valued function nondecreasing in z such that 0 <
¢(z) = min{2(p — 1), 2a} and ¢(z) #O.
ProoF. Define
filx) = —¢(2)x:/(z +a), fx=0
=0, if x; <O,

i=1,-.-,p. We see that the f’s satisfy Lemma 3 of Section 2. From (3.1) we have, using
the stated properties of ¢(-),

(82 A =¢iz+1)-(z tl-p)/(z +a+1)2
+2{—¢(z+ 1)z +p)/(z+a+ 1)+ ¢(2)-2/(z+ a)}

SM[W +1)-(z+p)/(z+a+1) —2{(p—1z+pa}/(z+ a)]
z+a+1
oz +1) 3 _ ~ _
=S Grar e -2~ 1) +plek+ 1) - 2] =0 O

Note that the constant a given in the theorem is an arbitrary positive real number,
while the class of estimators given in Theorem 2.1 of Clevenson and Zidek (1975) requires
a=(p—1)and 0 < ¢(z) =< 2(p — 1). Hence their class of estimators is a subclass of ours.

The estimator A shrinks the MLE toward the origin by the amount #(2)x/(z + a). For
every a, the maximum shrinkage allowable if A is to dominate the MLE is min{2(p — 1),
2a}x/(z + a), which in an increasing function of a (coordinatewise) whenever 0 < a =
p — 1 and a decreasing function whenever a > p — 1. Therefore the maximum shrinkage
is obtained when a = p — 1.

Observe that while A gives nonnegative estimates if ¢(z) < z + a for all z, it may produce
negatlve estimates if the inequality does not hold for some z. In that case, a “plus-rule”
version, A , which guarantees nonnegative estimates, should do better. Such a rule is
obtained by replacing ¢(z) with ¢ *(z) = min{¢(z), 2 + a}. That At always improves upon
A is immediate from (3.2).

An application of Theorem 1 above gives us some interesting estimators of A. The result
is stated in Corollary 1 below.

COROLLARY 1. Suppose the X/’s are as given in Theorem 1. Then the estimator A=
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{1 — a/(Z + ¢)}‘X of A\ dominates X under the loss function L., provided that t =1, ¢ >
0, and 0 < a =min {2(p — 1)/¢, c, 2¢/t).

PrOOF. Rewrite A as A = [1 — {6(Z)/(Z + ¢)}]X, where 8(z) = {(z + ¢)' — (z + ¢ —
a)'}/(z + ¢)*%, and check that the conditions of Theorem 1 hold. The estimator A(X) =
{1 - (p — 1)/(Z + p — 1)}2X, which is an estimator described in the previous corollary
with £ = 2 and @ = ¢ = p — 1, shrinks more towards the origin than does the estimator

={1-(p—-1)/(Z+p — 1)}X. Thus, A should give a better estimate of A than A* if
the parameters A;, i = 1, - .-, p are close enough to zero. The following argument gives
us an interesting insight as to why we might arrive at estimators of the form A = (1 —
c/(Z + a)) *X.

Let X; ~ Poisson (\;), i = 1, --., p, be mutually independent and let Y; =2\/)?,~ , 0=
2«/};, =1, ..., p. It is approximately true that Y; ~ N(#;,1),i=1, ---, p, and that the
Y/’s are mutually independent. That is, approximabely, = (Y, ---, Y,) ~N,(6, I, ),
where I, is the p X p identity matrix and § = (01, v+, 8,). The James Stein estimator §

(01, .. 0 ) of 8 under squared error loss is 6, = (1 -r/Y'Y)Y;,i=1,...,p. Or, in
terms ofXand A VA = 1- c/Z)«/_,, i=1-.--,p,where Z=Y2,X;,c= r/4 and A =
(}\1, cee, >\,,) is an estimator of A. We thus have the estimator A = (1 — ¢/Z)2X of A. Since
Z has a positive probability of being zero, we are prompted to replace Z by Z + a, where
a is a positive real number. We thus arrive at the estimator A= 1-c/(Z+a))2XofX. A
more detailed heuristic argument to explain a similar estimator is suggested by Brown
(1979).

4. Better estimators under k-nsel. The squared error loss function is probably the
most extensively studied loss function used in estimation problems. Nevertheless, there
are situations in which other loss functions may be more appropriate. In simultaneous
estimation of the means of several independent normal random variables X; ~ N (,u,, o?),
i=1,-.-,p, anatural loss function is Y41 (; — fi;)>/c?. On the other hand, if the ¢7 are to
be estimated,

1{1 - (612/0 )}2 =1 (oz - 012)2/01

is an appropriate loss function. Since the Poisson parameter A, is both the mean and the
variance of the distribution, the corresponding loss functions would be Y2;(\; — A )2/
and Y2-,(\; — A;)%/A%, i.e., L; and L. in our notation.

Theorem 2 gives us a class of estimators A® = (A\®, ... | A%®) uniformly dominating the
MLE under the loss function L,. These estimators have the following properties:

(1) If the observation from the ith population is small (less than %), then the estimator
AP of ), is the same as the MLE.

(2) If the observation is large (greater than or equal to %), then the estimator A® of A;
shrinks the MLE: towards zero.

Using the definitions given in Section 1, the theorem and its proof are stated as follows:

THEOREM 2. Suppose thatA X; are independently Poisson (\)),i=1, .-+ ,p, p=2,and
that the loss function is L, (A, A). Then the estimator \*® given below dominates the MLE
X uniformly in A = (A1, + -+, \p):
¢2)Xi(Xi—1) --- Xi—k+1)
S+XX-1)-.- Xs—Fk+ ].),

4.1) AP = ith coordinate of \® = X; —
where ¢(z) is a real-valued function increasing in z such that 0 < ¢(z) < 2k(p — 1) and
() #0.

Proor. Application of Lemma 4, in the manner of the proof of Theorem 1, yields the
bound

Av=¢(z+Ek){9p(z+ k) —2k(p—1)}/S=0. ]
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Observe that the estimator given by (4.1) does not alwayé give nonnegative estimates.
Thus, the plus-rule A* with coordinates A7 = max{A, 0} i = 1, ..., p, is expected to
dominate (4.1). In fact, the estimator A = X + f(X) can always be improved upon by A
=X + f*(X), where f¥(X) = —X, or f;(X) according as —f;(X) > X; or not. This can be seen
by examining the unbiased estimate A, of the risk given in Lemma 4.

The estimator given by (4.1) can also be improved by using a modified ¢(z), defined to
be z + (p — Dk if ¢(z) > z + (p — 1)k, and ¢(z) otherwise. However, this modified
estimator is not necessarily a plus-rule type of improvement (i.e., it can give negative
estimates). Similar remarks apply to Theorem 3 stated below and Theorem 4 in Section 6.

REMARKS.

(1) When £ = 1, Theorem 2 is the same as Theorem 2.1 of Clevenson and Zidek (1975).

(2) If x; < k — 1, then A is equal to the MLE, i.e., no shrinkage takes place. We see
from this that as £ — oo, there is decreasing likelihood that shrinkage will be indicated.

(3) Theorem 3.1 of Clevenson and Zidek (1975) suggests that estimators A = {1 — ¢(Z)/
(Z + p — 1)}X of A still dominate the MLE under a general loss function L £(A, N

2 K(\)(\: — A) /A where K > 0 is some non-increasing function. When K (y) = 1/y*7,

L% is the loss L. However, our estimators do not shrink observations that are less than &;
only those observations greater than or equal to 2 are moved. Therefore, if \; = &, our
estimators guard against unnecessary shrinkage when the observation happens to be small
(i.e. less than k). Since the Clevenson-Zidek estimator shrinks all non-zero observations,
we are led to conjecture that our estimators are better than theirs in terms of the
percentage in savings compared to the MLE when the A/s are relatively large (i.e. when
min A\; = k& = 2). Some simulation results which support this conjecture are reported in
Section 7.

The next theorem is a generalization of Theorem 1 to the case when loss L, is used,
where % is any positive integer.

THEOREM 3. Suppose X = (X;, +--, X,) is as given in Theorem 2 and \® = AP,
«oo, A®) is an estimator of \. Let
4.2) AW x,—_S@X0
Si+XP +b

where k is a positive integer, ¢ is nondecreasing and is not identically zero, 0 < ¢(z) <
— DA .

min{2 %)—ki, 2k(p — 1)} and b > — (p — 1)(k!). Then for all \, \® dominates X

under the loss function L.

PRrROOF. Again, by Lemma 4,
Ak < pkl[p(z + k) — 2{b+ (p — V)RI}/(k — D]p(z + k) /(S + b)*=< 0. O

5. Computer simulation. The results of the computer simulation reported in this
section are mainly comparisons of the estimators A® and A" with the MLE, where A® is
as described in Theorem 2 with ¢(z) = 2(p — 1), and AD = {1 - p/(Z + p)}X. The
estimator A is of considerable appeal because this is the case where a natural loss function
Lo\ A) = T2.(1 — A/A;) % is used in estimating scale parameters.

The computations reported here were performed both on the IBM 370/168 computer
at the University of British Columbia and the Data General NOVA 840 computer at the
University of California, Riverside. A FORTRAN program was used in the IBM computer
and a BASIC program was used in the NOV A computer. First, the number p of independent
Poisson random variables is chosen. Second, p parameters A; are generated randomly
within a certain range (c, d). Third, one observation of each of the p distributions with the
parameters obtained in the second step is generated. Estimates of the parameters are then
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calculated according to the estimator A that we want to test. The third step is repeated
2000 times and the risks under the relevant loss functions for both the estimator and the
MLE are calculated. The percentage of the savings in using A as compared to the MLE,
R\, X) — RO\ A)

R\ X)
times and the average percentage of the savings is calculated.

We chose the range of the parameters A; in such a way that we might check the
performance of the estimators both when the parameters A; fall in a narrow range and
when they fall in a wide range. In calculating the percentage of improvement of the various
estimators over the MLE, the appropriate loss functions must be used. The loss functions
L, and L; are used for Tables 1 and 2, respectively.

In most of the cases, the improvement percentage is seen to be an increasing function
of p, the number of independent Poisson variates. We see that in general, the improvement
percentage decreases as the magnitude of the A/s increases.

In Table 2, we see that for the ranges considered, the percentage of improvement in risk
of A® over the MLE is considerable when the parameters fall into a narrow interval. For
each value of p, A® performs best when the parameters are in the intervals (0, 4) and
(4, 8). The improvement decreases gradually as the magnitude of the A/’s increases. In
contrast, the estimator A" performs very well only when the parameters are relatively
small, with the improvement percentage decreasing dramatically as the magnitude of the
A/’s increases (Table 1). This is as conjectured in Section 4. Although the improvement
percentages of A? over the MLE for the wider ranges of the A’s are by no means
substantial, they are nevertheless greater than those of A®). Of course, the different loss
functions employed for A® and A”’ might contribute to such a difference.

Simulations were performed to determine how much the corresponding plus-rules
improve on A and A® for the ranges in Tables 1 and 2. The results show that the plus-
rules produce the same improvement over the MLE as do A"’ and A® except when the

arameters are in the ranges (0, 4) and (0, 20), in which cases minimal improvements over
A® and A® are observed.

. 100%, is calculated. The whole process is then repeated a number of

TABLE 1
Improvement Percentage of A" over the MLE using loss L

Range of the Percentage of Improvement over the MLE

Parameters \;

p=2 p=3 p=4 p=5 p=8 p=10

0, 4) 24 25 27 28 29 30

(4, 8) 5 7 8 10 11 12

(8,12) 1 4 6 6 7 8

(12, 16) 0+ 2 3 4 5 5

(0, 20) 2 4 5 8 7 8

(10, 30) 0+ 2 2 4 4 4
TABLE 2

Improvement Percentage of \® over the MLE using loss L»

Range of the Percentage of Improvement over the MLE

Parameters A;

©, 4) 23 25 24 34 34 35
4, 8) 17 23 26 29 31 33
(8,12) 10 15 20 21 22 24
(12, 16) 7 11 13 15 18 18
(0, 20) 7 8 11 11 11 13

(10, 30) 4 8 9 12 12 12
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6. Multiple observations. The estimators derived in the previous sections are based
on the situation in which only one observation is taken from each of p independent Poisson
populations. Now we consider the case of multiple observation sampling from at least one
population.

Suppose X1, - - - , Xin, are independent Poisson (A;), where n;=1,i=1, .-, p. Letting
X =" X;j,i=1 +-+,p,the MLE of A = (A1, ---, \p) is (Xi/n4, - -+, Xp/np). In this
section, we shall show that there are estimators of A dominating the MLE under loss L.
Since the distribution of X;/n; is not Poisson if n; > 1, we cannot apply our previous results
directly. However, if our interest is to estimate n;\;, i =1, - - - , p, then the foregoing theory
can be applied because X; ~ Poisson (n;);) in this case.

The risk function of the MLE under L, can be rewritten as

k=2
By Sialni — X)? - T
(n:y)

(ZAY]

Since X; has a Poisson distribution with parameter n;\;, it is then natural to consider the

following problem:

Suppose Xi, ---, X, are independent Poisson random variables with parameters Ai,
.+, Ap, Tespectively. Suppose one observation is taken from each random variable. We
would like to know if there are estimators of A better than the MLE under the loss function

LiAA) = T8 el — X)?/AY, with ;> 0.
We shall show below that such estimators do exist. As a result, we obtain estimators better

than the MLE in the situation where more than one observation is available from some of

the Poisson variables.
The following lemma is similar to Lemma 4.

LEMMA 5. Let X; be independent Poisson (\;), i = 1..,p andletf;:J?P > R, i =1,
-, p satisfy the conditions given in Lemma 3. Define A = X + f(X). Then, under the loss
function L5\, ) = 2 ¢;(\; — N)2/N\E the deterioration in risk of A as compared to X is

R\ A) — R\, X) = EA,

where

fiX + ke;) . X+ ke) — (X + (k= De)
. + 238, X + k) Xt 0" .

A= Tb e T m

The next theorem supplies estimators that dominate the MLE under the loss function
L;.
THEOREM 4. Let X; be independent Poisson (\;), i =1, - - - , p and let the loss function
be L. Define
filx) = —k(p — D(cy/c)*xP /(s + 2F),  if x:=0,
=0, if x; <0,
i=1, ..., p, where ¢, = min(ci, +++, ¢), and s; = Y2.(x; + k)*. Let f(X) =
(fi(X), -+-, [,(X)) and A = X + f(X). Then the estimator A of A dominates the MLE X
uniformly in A under the loss function Lj.
ProoF. It can be shown that A§ given in Lemma 5 above satisfies
e, k(p—1)*

ANf=s—————>=<0.
PN+ B)® O

The following corollaries provide estimators better than the MLE when there is more than
one observation available from some of the Poisson random variables.
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COROLLARY 2. Let X;; be lndependent Pozsson \),i=1,---,p,j=1,---,n;. Let X;
=Y Xiji=1-.-,p. Deflne)\ Ay, -ee )\)by

A= ——n— (ni/n*) 1. XP /(S + XP),

i=1,..-,p, where n* = max(n,, oo, Np). Then A dominates the MLE Xi/n1, -, Xp/
n,) under loss function L (A, A) = Y2 10\ —A)¥/Afwith 2= 1or 2.

ProoF. Use Theorem 4 with ¢; = n}~2 and note that ¢, = (n*)**if k=1 or 2.

COROLLARY 3. Let X, ; be mdependent Pozsson n),i=1,.--,p,j=1,+-.,n; Let
X;=Ypi Xij,i=1,--,p. DefineA= (A, -+, &) by

s _Xi k(p-

A= ( /) X /(S +X("’),

n; n;
i=1,...,p, wheren, =min(n,;, ---,n,). Then A dominates the MLE (Xi/ny, -+ - , Xp/np)
under loss Ly, with k = 3.

Proor. Observe that ¢; = (n:)*?and ¢, = (n,)* ?if k= 3.

There are, of course, other estimators dominating the MLE under the loss function
L\, A) =3 ¢;(\: — \)2/A%. The results will be similar to those derived in Section 4, and we
shall therefore not set down the details here. As a final remark, we note that in the squared
loss case, there are estimators that dominate the MLE but are different than those
described in Theorems 2, 3 and 4. The results in that case can be found in Peng (1975),
Hudson (1978) and T'sui (1978).
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