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ASYMPTOTIC LOGNORMALITY OF P-VALUES!

By DIANE LAMBERT AND W. J. HALL

Carnegie-Mellon University and University of Rochester

Sufficient conditions for asymptotic lognormality of exact and approxi-
mate, unconditional and conditional P-values are established. It is pointed out
that the mean, which is half the Bahadur slope, and the standard deviation of
the asymptotic distribution of the log transformed P-value together, but not
the mean alone, permit approximation of both the level and power of the test.
This provides a method of discriminating between tests that have Bahadur
efficiency one. The asymptotic distributions of the log transformed P-values
of the common one- and two-sample tests for location are derived and
compared. .

1. Introduction. A P-value or observed significance level is used to assess the
strength of the evidence against a null hypothesis H; hence its size under alternative
models is important. An appropriate P-value, exact or approximate, is stochastically at
least as large as a uniform [0, 1] random variable U under H (Bahadur and Raghavachari,
1970; Kempthorne and Folks, 1971) and stochastically smaller than U under alternative
models. Precisely how much smaller depends on the finite sampling distribution G, of the
P-value. Unfortunately, G. (or equivalently, the power function) is often intractable.
Various summaries of G., such as its mean (Dempster and Schatzoff, 1965) and median
(Joiner, 1969), have been proposed to describe and compare P-values, but these too are
difficult to compute.

Bahadur (1960a) has overcome these complications for the sample mean, sign and ¢ P-
values under normal alternatives by approximating G, by a lognormal df. The present
paper extends his results to more general exact and approximate, unconditional and
conditional P-values under more general alternative distributions. Sufficient conditions for
asymptotic lognormality are given in Section 4. The main theorems for P-values based on
sums, including rank and permutation sums, are in Section 5. Applications to one and two
sample tests for location appear in Section 6.

The parameters of the asymptotic distribution are interpreted in Section 3. The

asymptotic mean is the slope (our “slope” is half of Bahadur’s slope) or the almost sure
exponential rate at which the P-value approaches zero as the sample size increases. The
relationship between the slope and asymptotic level of a test has been discussed previously
(Bahadur, 1960b, 1967, 1971). Here we argue that the slope and asymptotic standard
deviation together better approximate the level and power of the test than does the slope
alone. .
Power, possibly asymptotic, of tests of a given size is the usual basis for evaluating the
performance of a test in the Neyman-Pearson framework. In practice, however, a P-value
approach to testing without a fixed significance level « is as common and more versatile.
With this approach, the mean and standard deviation of the asymptotic distribution of the
log P-value are of interest in their own right as summary measures of test performance.

At present, the quality of the lognormal approximation to the finite sample distribution
of a P-value P, is uncertain. The proofs of asymptotic lognormality suggest that a modified
P-value vnP, may be more stable with increasing n than P, itself, and hence more
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appropriate for comparing P-values based on different sample sizes. Other calculations
(e.g., Lambert, 1978) suggest that an additional square root transformation applied to the
log P-value may improve the approximation or that —®'(P,) may be closer to normality.
We intend to study such approximations in a later paper.

2. Definition of P-values. Let % be a set of points s, © a set of parameters 8, and
suppose that the distribution of s is determined by . There is given 6, C 6, and the null
hypothesis H under test is # € ©,. Let n be an index restricted to certain positive integral
values, and for each n let T,.(s) be a test statistic, large values being significant. The index
n may be thought of as the cost of observing T,. A possible advantage to the present
locution is that one- and two-sample cases can be treated simultaneously. In the latter
case, assume that each admissible n has an associated partition into positive integers, say
n = n, + ny, such that n,/n - A, 0 <X < 1, as n — o and assume T, is really a statistic
U, n, for each admissible 7.

For each § € O, denote the left continuous distribution function (df) of T, by
F,(-; 9) and let F, = 1 — F,. Then the P-value P, is defined to be P, = supgeeoﬁ’n( T.; 0);
P, may be called exact to distinguish it from an approximate P-value for which F, is
replaced by an approximation. An approximate P-value is of particular interest when F,
is unknown or untabulated. A P-value is called conditional if the null distribution is
conditional on a statistic V,(s), e.g. as with a permutation test P-value.

3. Uses of asymptotic lognormality. Typically (regularity conditions are given
later), if P, is any P-value, exact or approximate, unconditional or conditional, based on a
test statistic T, that is asymptotically normal (AN) under Py, then P, is asymptotically
lognormal (—nc(8), nt%(f)) under P,. The parameter c is the a.s. limit of —n~! log P,
termed the half-slope by Bahadur and the slope in this paper. If P, is an approximate
P-value, then c is the (Bahadur) approximate (half-) slope. The approximate slope need
not approximate the exact slope (e.g., see Gleser, 1964) but it is the parameter of interest
for an approximate P-value.

The joint distribution of P-values P, and P;, calculated from the same sample is often
also asymptotically bivariate lognormal. As Bahadur (1960a) suggested, this permits the
P-value of one test to be predicted from the P-value of a second, perhaps more easily
implemented, test. It also permits study of the interrelationship of two tests, but this is not
pursued further here.

The parameters c and 7 provide an asymptotic description of test behavior. The slope
¢, which is the exponential rate at which the P-value approaches zero, has been extensively
studied (e.g., Bahadur, 1971). The slope alone is commonly used to compare tests. Yet
recommending a test because the standardized form of its P-value —n " log P, has a large
asymptotic mean without regard to its variance r?/n seems as unwise as favoring an
unbiased estimator without knowing its variance. Also, 7 often varies in 6, and hence the
slope itself cannot adequately summarize the distribution of P,.

The parameters ¢ and 7 together provide a means of relating sample size to both the
level a and asymptotic power 8 € (0, 1) as a — 0 with 8 fixed. Consider the test that rejects
the null hypothesis when P, < a. If P,, is an exact P-value, this test is of size <a; it is of size
a if, in addition, P, is exactly uniformly distributed. (If P, is an approximate P-value, the
test is only of nominal size a.) In any case, the power of the test is Ps(P, < a) = Py(Z, =
v(a)) where y(a) = «/;(n_l log a + ¢)/7 and Z,, = y(P,). Since Z, is AN(0, 1), it follows that
the power approaches 8 if and only if y(«) approaches b = ®'(). Assuming ¢ > 0, and
writing A = —log a, it is easily seen that the condition for asymptotic power B is equivalent
to

_A T 1y
(1) n="= {1 + T+ oA )}.
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It follows from (1) that n ~ A/c as @« — 0. This asymptotic relation is well-known (see,
e.g., Bahadur, 1967) and does not require convergence in distribution of the standardized
P-value or specification of B. It is clear from (1) that the choice of 8 affects only b, not A
or ¢, and hence represents a second order effect. (That 8 is strictly between 0 and 1 implies
b is finite and conversely.) In particular, for two exact P-values P;, and Ps, (with uniform
null distributions and asymptotically lognormal nonnull distributions) it is possible to
choose sample sizes n; and n; so that the corresponding tests are both of size a, n;/n, —
co/c1 as a — 0, but the power of test i converges to 8; for i = 1, 2, where 8; and B, are
arbitrary values in (0, 1).

From another perspective, if one uses the formula A = nc to choose a sample size n to
achieve a small test size a, the resulting log P-value is approximately normally distributed
around —nc and the power is approximately % since

Py(P, < a) = Py(Z, < Vn(c — n7'A)/7) > %.
By contrast, the formula A = nc — Vnbr for choosing n yields, as n — o or a — 0,
Py(P, = a) = Py(Z, < b) > B.

(The formula should not be relied on for B near one, since an accurate approximation in
the tails of the lognormal distribution would be required.) In summary, the slope and
standard deviation 7 together, but not the slope alone, relate sample size to both the
asymptotic level and asymptotic power of a test.

If Py, P;, have the same slope ¢, then the parameter 7 can be used to distinguish them.
As shown in equation (1) above, the P-value with the smaller 7 asymptotically requires the
smaller sample size to attain level a and power 8 > %. Similarly, the P-value with the
smaller 7 will be small with higher probability, confining attention to powers exceeding %.

In view of the present lack of information about how relevant slopes are to finite sample
P-values, the parameter T might also be useful for comparing P-values with unequal slopes.
If, for a given nonnull 6, 7, < 72 and ¢; is smaller, but not much smaller, than c;, then P;,
may be preferable to P,,. For example, suppose c2 > ¢; > 10/n so that a “highly significant”
P-value is expected in either case (e7° < 107%). If

(172 — ¢om1) /(12 — 1) > —n " log(Vna)

then, based on the lognormal approximations to vaP;,, P, is more likely to be less than
a than is Py,

The lemmas in Section 5 that assert asymptotic lognormality are perhaps as useful as
the lognormality result itself. These lemmas show that in several cases under modest
regularity conditions n ! log P, behaves like an average of i.i.d r.v.’s in large samples. That
is,

—n"'log P, =c+n7' Yt u(X:) + 0,(n"?),

where c is the slope at an alternative Py, § € 6,; Xj, - - -, X,, is a random sample from Py;
and u(X;) has mean zero and variance 72 under Py. The rate of convergence can often be
improved; see Section 5 below and Lambert (1978). The quantity u(X;) measures the
extent to which the observation X; changes the P-value. In other words, —n " log P, is
approximately equal to its “model” value, which is the slope ¢, modified by a factor
determined by the average influences of the data. Such an expansion is useful in robustness
studies of P-values and tests (Lambert, 1981).

4. Sufficient conditions for asymptotic lognormality of P-values. Bahadur
(1960b, 1967) has formulated certain conditions for the existence of slopes. Such formula-
tions are often trivial - Bahadur himself calls them “prescriptions” - but they do exhibit
the various components of the problem. A similar formulation can be given for the
existence of the parameters ¢ and 7 of the asymptotic lognormal distribution.
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Choose and fix a nonnull 4, § € 6 — ©,. Assume that there exist constants 5(f) and
0(f), — o < b < o and 0 < 0 < x, such that

() JR(T, - b(@)) is AN(Q,6))

under @ as n — . This condition is satisfied by suitable versions of all statistics under
consideration, plus uncountably many others, and the associated b and ¢ are known, at
least in principle. Let .# be an open interval containing b(6).

For each n, let G, be a nondecreasing function defined on the real line, 0 =< G, < 1; G,
is to be thought of as the exact left-continuous null df of T or as an approximation to the
exact null df. Let G, = 1 — G, and define the P-value P,(s) = G.(Tx(s)).

Assume that associated with the given sequence {G,} of functions there is a real valued
function f defined on .# such that the following holds: if

(i) b€ . and {b,) is a sequence of numbers such that b, = b + O(n~"?)

then
(iii) log Gau(bn) = —nf(b,) + o(¥n) as n— oo
Assume also

(iv) f is continuously differentiable on £ ;let f' = h.

LEMMA 4.1. The implication (ii) = (iii) and the conditions (i) and (iv) together imply
that n="% {log P, + nc(8)} is AN(0, 7%(8)) where c(6) = f(b(0)) and (8) = (8)h(b(8)).

ProofF. For any real x let D,(x) = n"?|log G.(x) + nf(x) | if x € 4 and let D,(x) =
o otherwise. For any positive constant k, let E,(k) = sup{Da(x):|x — b| <k/ Jn }. Then,
for each k, E.(k) — 0 as n — o, for otherwise the implication (ii) = (iii) is contradicted.

Choose ¢; > 0 and &; > 0. It follows from (i) that va(T, — b) is bounded in probability.
Hence, there exists 2 > 0 such that P(~/Z| T, — b| > k) < & for all n. Since there exists m
such that E,(k) < & for n = m, it follows that D,(T,) > &, implies Jn |Tn —b| >k for n
= m. Hence, P{D,(T,) > &2} < & for all n = m. Since ¢, and &; are arbitrary, D.(T») — 0
in probability. Since D,(T,) < o implies D(T.) = n~"?|log P, + nf(T»)| it follows that,
for any sequence {c,}, n~*(log P, + nc,) has an asymptotic distribution iff n"/*{c, —
f(T,)} does, and the asymptotic distributions are then the same.

Since T, — b in probability, since (i) holds, and since f is sufficiently smooth,
\/I—l{f(b) — f(T,)} is AN(0, 7%). Hence, n™"/* {log P, + nf(b)} is also AN(0, 72). O

Verification of the implication (ii) = (iii) is usually the most difficult step in the proof
that a sequence of P-values is asymptotically lognormal. For a simple illustration of
Lemma 4.1, suppose the exact null df of the test statistic T is approximated by a normal
0,n7") df.

THEOREM 4.1. If Vn{T, — b(8)} is AN(0, 1) under 8 € © — O, for some positive b(6)
then n=2 log (Vn®(VnT.)} — Ynb*(8)/2 is AN(0, b*(9)) under 6.

PrOOF. Let {b,} be a sequence of positive numbers satisfying b, = b(6) + O(n™"?).
By Mills’ ratio (Feller, 1968, page 175)

1 1 1 = 1
— (1 -— ) = — exp(%nd2)®(Vnb,) < )
«/an( nb‘i) Vo Vb,
It follows that the implication (ii) = (iii) of Lemma 4.1 holds for G.(t) = (f)(s/;t) with f(b)
= b%/2. In the statement of the theorem, ® is multiplied by Vn to improve the lognormal
approximation to the finite sample distribution of the P-value. ul
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The implication (ii) = (iii) is verified for other unconditional P-values in Section 5.
Because G, of (ii) is nonrandom, Lemma 4.1 does not apply to conditional P-values for
which the exact null df G, depends on the sample path. However, it is straightforward to
generalize Lemma 4.1 to obtain the following Lemma 4.2.

LEMMA 4.2. Assume that the test statistic T, satisfies (i) and, for each n, G, is a
random function with values in [0, 1], i.e., G.: # X & — [0, 1]. Let G.=1- G, and
define the conditional P-value P,(s) = Gn(Tx(s), s). Suppose that associated with {G.}
and given nonnull  there is a real valued function f defined on an open interval S
containing b(0) such that the following holds: if (ii) b € # and {b,} is a sequence of
numbers that satisfies b, = b + O(n~'?) then (iii’) log G.(b,) = —nf(b.) +o0,(¥n) asn
— . Also assume f satisfies (iv). Then n™"2 {log P, + nc(8)} is AN(0, 7(8)) where c()
= f(b(0)) and 7(0) = o(8)h(9).

The implication (ii) = (iii’) is often difficult to prove. It is verified for the two-sample
Fisher-Pitman permutation test in Section 5.

5. Proofs of asymptotic lognormality. Four theorems are given. The implication
(ii) = (iii) of Lemma 4.1 is proved first for P-values that are based on sums of i.i.d. r.v.’s
and then for one and two sample rank P-values. Finally, the implication (ii) = (11i’) of
Lemma 4.2 is proved for two sample conditional permutation P-values.

In each case a large deviation probability of the type P(2X;, = nb.), b, a constant, is
approximated by applying a variant of Cramér’s device (Feller, 1971). Since the right tail
behavior of the df of =X, F, say, is of interest, and the central behavior is not, F.(dx) is
first multiplied by exp (8.x) for a positive 8, and then renormalized by division by ¢»(8x),
the moment generating function of F, at 8.. For each n, 8, is chosen so that the mean of

e’*F(dx)/$n(Br) = Fy,(dx),

say, is nb,, i.e. B. is chosen so that the given tail probability of F, may be expressed in
terms of the central behavior of F,, . Next F; , which is the df of a sum, is approximated by
a normal df by an application of the Liapunov-Berry-Esseen Theorem.

Other authors have used similar techniques to obtain implications like (ii) = (iii). For
example, Petrov (1965) proves a stronger version of the implication (i) = (iii) for iid.
r.v.’s with a finite moment generating function on an interval [0, B], B > 0. Klotz (1965)
and Stone (1967, 1969) consider the case b, = b for one- and two-sample rank sums
respectively and obtain pointwise convergence at rate o(n). The proof in Klotz (1965) is
deficient, however, because it does not allow for the possibility of a ne ative error in the
normal approximation of F,, . Here we obtain convergence at rateo(vn) with b, = b +
o(1) for one- and two-sample rank sums and two-sample permutation sums under modest
regularity conditions. Uniform convergence at a rate faster thano(& ) was considered in
Lambert (1978).

The following Lemma 5.1 shows that the validity of (i) = (iii) depends on the rates of
convergence of B8, ¢.(B.) and ¢ (Br)/Pn(Br).

LEMMA 5.1. Let Xin, -+, Xun be independent rv.’s, n =1, 2, ---, X, having a
nondegenerate df Fi, and a finite moment generating function (mgf) ¢:» on an interval
[0, B], B > 0. Suppose for each term of a convergent sequence of constants {b.} there is
a unique B, which maximizes e"**/$,(B) where ¢, = I, is the mgf of ZXin. For each A
n construct a r.v. Z;, with df F;,_ defined by

Fi (dx) = e Fin(dx)/$in(Br).

Let
o2 = S var(Z;,), kn=0.8. and p,=Z2E|Zy— EZu|>.
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Assume k, — © and p,/o3 = 0(1) as n — . Then
—log P(ZX;, = nb,) = nb,.B, — Y log ¢in(B:) + o(ky,).
ProoF. First note that Z;, has mgf Yi.(£) = ¢in(Br + £)/din(B8-) Which is finite on an

interval around zero. Hence, all moments of Z; are finite and may be obtained by
differentiation of y;,(¢). In particular,

SEZy,=nb, and o2 = on(Bn) _ n’bl.
én(Br)
Let H, be the df of 6, (2Z;, — nb,). Then
P(ZX;, = nb,) = J' oo f I1F;.(dx;)
Ex,=nbn
= ¢n(Br) e J e FE5I1 R, (dx:)

Zx,=nbn

= ¢n(ﬂn )e_nb"B"In s

where I, = [§ e ™°H,(dz). As in the proof of Theorem 2.2 of Bahadur (1971), for any
e>0, '

I, = j e " H,(dz) = e " {H,.(¢) — H.(0O)}.
0

It follows by the Liapunov-Berry-Esseen Theorem that H,(z) — ®(z) for each z, since
pn/05 — 0. Hence, k;" log I, is asymptotically bounded from below by — &. Because ¢ is
arbitrary and 0 < I,, < 1, it follows that log I,, = o(k,). u]

The implication (ii) = (iii) for sums of i.i.d. r.v.’s follows easily from Lemma 5.1; the
proof is omitted.

THEOREM 5.1. Suppose {X,} is a sequence of i.i.d. r.v.’s with a common df F and mgf
¢ that is finite on an interval [0, B], B > 0. Let $g be the interval (EX;, lim; .. Y(t))
where Y(t) = ¢'(t)/o(t). Then for a sequence of constants {b,} in Fg satisfying b, = b +
o(1) for some b € S5, .

—log P(2X; = nb,) = nf.b, — n log $(B,) + o(v/n)
where B, is the solution to Y(B.) = b,.
The following Theorem 5.2 for one-sample signed rank P-values is also a consequence

of Lemma 5.1. First, it is convenient to relate the tail behavior of the quantile function G™
to the number of moments of G.

LEMMA 5.2. Let G be an absolutely continuous df with nonnegative support &, density
g and inverse Q. If [ x” dG(x) < o for some r > 1, then Q1 — 1/n) = o(n'"). If, in
addition, im,_... {G(x)/g(x)} is finite, then [1_1/, Q(x) dx = o(n"/"").

PROOF. Assume & is unbounded, since the lemma is trivial otherwise. Let @(1 — 1/n)
= x. Then

Q(n ; 1) =o(n'") iff x=o0(Gx)"),
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or
iff x"G(x) = o(1).
The last equality is true since [ " dG(x) < . Similarly,

1
Q) dx = e iff J ¥ dG(3) = o(G(x)™")

1-1/n y=x

or, by an integration by parts,
iff xGx)Y" + Gx)/! J G(y) dy = o(1).

y=x

An application of L‘Hopital’s rule to [,~. G(y) dy/G(x) completes the proof. 0

THEOREM 5.2. Given a sequence {Y;} of iid.r.v.’s that satisfy P(Y, < 0) = P(Y, =0)
= 1, let Ri, be the rank of | Y;| in | Y1|, - - -, | Y. | and define a signed rank sum statistic
S, = Ssgn(Y:)a.(R:.). Suppose the scores a.(i) are generated by an absolutely continuous
increasing df G with positive support, density g, inverse @ and finite third moment as
follows: either a,(i) = Q(i/(n + 1)) or a.(i) = EQ(Ui,) where Ui, denotes the ith largest
order statistic of a random sample of size n from a uniform (0, 1) distribution. Suppose
further that lim,_... G(x)/g(x) < . Finally, let {b,} be a sequence of positive constants
satisfying sup b, < sup; [ x tanh(tx) dG(x) and b, = b + o(1) for b > 0. Then if a.(i) =
Q(/(n + 1)),

—log P(S, = nb,) = nBab, — n J log cosh(B,x) dG(x) + o(vn)

where B, is the unique solution to [ x tanh(B,x) dG(x) = b,. The conclusion also holds
for a,(i) = EQ(U,,) if both g and G/g are nonincreasing.

PrRoOOF. Assume for now that a,(i) = EQ(U.); the modifications for a.(i) =
Q(i/(n + 1)) will be obvious.

As in Klotz (1965), let the r.v.’s X, - - -, Xn» be defined by X;, = sgn(Y;)E;», where E;,
= EQ(U:,). The mgf of X, is ¢in(t) = cosh(tE:.). For each i, n, construct a r.v. Zj,
corresponding to X;, as in Lemma 5.1. Note that Z;, assumes values +E;, with probabilities
% exp(£BnnEin)/cosh(B Ein) where B,, > 0 is uniquely defined by 2E;, tanh(B..Ein) =
nb,. Also SEZ;, = nb, and o = X var Z;, = ZE%, sech?( 8., E:»). Applying Lemma 5.1 gives

—log P(S, = nb,) = nfu.b, — = log cosh(BuEin) + o(vn)

if (@) 0nB8ns has exact order n'/% and (b) p./0s — O.

Conditions (a) and (b) both hold if the sequences {n~"6?}, {n 0.} and {B..} converge
to positive constants. Since SE} — [ x® dG(x) (Hoeffding, 1953), the first two sequences
converge to positive constants whenever B, has a positive limit.

If we define the df G, by G.(x) = #(E:. < x)/n and expand tanh(B..x) around Bx,
where 8 is defined by [ x tanh(Bx) dGF(x) = b, then

j x tanh(Bx) d{Gn(x) — G(x)} = (B — B) J x* sech®(Brx) dGn(x) = b, — b
for some B, € (Brn., B). Hence B.. — B = 0o(1) as required.

A Taylor expansion gives

—log P(S, = nby,) = nBuby — = log cosh(BnEin) + O(n(Bun — B2)?) + 0(Vn).
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We next show B, — 8. = O(n"'/?). By definition of 8., and 8.,
f x tanh(B,x) d{Gn(x) — G(x)} + (Bun — Bn) J' x? sech?(8},x) dG,.(x) = 0.
By a Taylor expansion of E;, tanh(B,E;.) around Q(i/(n + 1)),

J x tanh(B8.x) d{Gn(x) — G(x)}

(n—1)/(n+1)
@ _ f [@()tanh (8,Q(x.)) — Q(x)tanh (8.Q(x))] dx

+n“Q( z )tanh(BnQ( z ))—J Q(x)tanh(B.Q(x)) dx
(

n+1 n+1 A1)/ (n1)

i

+nty (E,-n - Q(n - 1>>{tanh(,3nE£,.) + B.E}, sech’(B.E})}

where x, = i/(n + 1) for ( — 1)/(n + 1) <x <i/(n + 1) and E’;x € (Ein, Q(E/(n + 1))).
Since 2| Ei, — Q(i/(n + 1)) | = O(s/ﬁ) (Hoeffding, 1973) and 0 < tanh x + x sech’x < 2 for
x>0, the last term on the right is O(n~"/?). By a Taylor expansion of @(x,)tanh {B.Q(x.)},
for x,, € (x,, x), the first term on the right is O(n™") [y<n—1)/0+1) @' (x7) dx, which is no
larger than O(n™")Q(n/(n+1)). By Lemma 5.2, this term and the second and third terms
of (2) are o(n~%?). Therefore, if a.(i) = Ein then B, — B, = O(n~"?), whereas if a.(i) =
Q(i/(n + 1)) then B, — Bn = o(n™?).

Finally, for a,(i) = Q(i/n + 1)), a Taylor expansion similar to the one in equation (1)
gives

> log cosh(,B,,Q(ﬁ)) =n J log cosh(Bx) dG(x) + o(n'?).
If g is nonincreasing, then E;, = Q(i/(n + 1)), and if G/g is nonincreasing, then E;, <
Q@/(n + %)) (van Zwet, 1964). Consequently, under these conditions

2 log cosh(B.E;x) =n J log cosh(B,x) dG(x) + o(n'?)

also, which completes the proof of the theorem. a

In Theorem 5.2 the assumption that g and G/g are nonincreasing can be replaced
with 3| Ei, — Q(i/(n + 1)) | =o(vn). Of course, if £ | Ein — Q(i/(n + 1)) | #0(¥n), then

—log P(S, = nb,) = nf,b, — Z log cosh(B.E;.) + o(vn)

and the asymptotic normal distribution of the corresponding log P-value need not be
centered at nf8b — n [ log cosh(Bx) dG(x).

We next prove the implications required for asymptotic lognormality of two-sample
rank and permutation P-values. Henceforth, if ¢ € [0, 1]thena =1 — a.

LEMMA 5.3. Given a vector Y, = (Y1, «++, Yan) of n = 2 ordered constants (Y < Yjn
for i < j), let Tn(\,) be the sum of a simple random sample without replacement of size
nA (0 < A, < 1) from Y.. Suppose (i) A, — A = O(n™") for some A € (0, 1). Define Gn(y)
= #(Yin < y)/n and assume (ii) G, converges uniformly to a continuous df G with inverse
Q and (iii) [ |y|®> dG.(y) — [ |y|® dG(y) < x. Let {b.} be a sequence of constants



52 DIANE LAMBERT AND W. J. HALL
satisfying (iv) b, = b + o(1) and (v) both b, and b belong to ([ AQ(y) dy, [ ; Q(y) dy).
Further assume (iv) G.(A) = 0 for all n and some finite A. Then
—n""log P{T.(Ax) = nbn} = Bunbn + X, 108 yun — An log A — A, log X,
(vii) — 1712 10g(Ynn + €Pm¥n) + 0(Vn)
= nca (A, ba) + 0(Vn)

where B.. and y.. are determined by
f 1+ Ynne_ﬂ""y)_l dGn(y) = An, j_)’(l + ‘Ynne_ﬁ""y)_l dG.(y) = b..

If Y, is random and G, satisfies (ii), (iii) and (vi) a.s. [G] then (vii) holds a.s. [G].

PROOF. Assume for now that G,(0) = G(0) = 1 for all n. _
The distribution of T, (A,) is the same as the conditional distribution of T, = = U;Yi,

given 2 U; = n)A, where Uy, ..., U, are iid. Bernoulli (p) r.v.’s for any p € (0, 1).
Therefore
3) P(T.=nb,) =32 P{ Tn<§> = nb,,}P(Z'l‘ U= k).

Lemma 5.1 applies to P(T', = nb,) with Xi, = U;Yi, ¢in(t) = p + pe'¥= and
7 = {0 with probability 5(p + pefrYm)~!
l Y.,  with probability pefmYm(p + pef¥m)~?

where B,, is determined by n™' = Yi,(1 + pp " exp(=BrnYin)) ' = b,. It is convenient to
choose p, = (1 + ynx)~' where v, is determined by A, = 7' 2 (1 + yzn €Xp(—BnnYin)) ™™
For this choice of p., the expected number of nonzero Z;, equals n\ .. The existence of 8.,
and v., is guaranteed by (v); their convergence is proved in the appendix, Section 7. Since

Pn = = EIZ,‘,l - ‘EZ,'nl3 =3 El Yi,,|3
and
0721 =23 var(Z,) =2 Yzannne'B""Y'"(‘Ynn + eﬁ'mY’")_zy

it follows from the proof of Lemma 5.1 that

_ BanYin
—log P(T, = nb,) = nubn — 3, 1og<ﬁ"—+i—) + A,

Yan + 1

where A, is nonnegative and has order o(vn). If we approximate (z) in P(2 U; = k) by
Stirling’s formula, we may rewrite equation (3) as

k
1=Y exp[log P{ Tn(;) = nb,,} + nBnnbr — Y log(yn, + €Pm¥um)

—k 1og(§) - (n- k)log(n ; k) + (n — k)log Ynn + A, — log Vn + 0(1)] )

For n sufficiently large, the remainder term r,.(A,, b.) defined by
Fn(An, bn) = log P{Tn(As) = nb,} + nfunb, + nX, 10g yun
— nA.log A, — nA; log X, — ¥ log (ynn + €fmY¥)

is bounded above by log Jn +a constant, because A, is nonnegative.
Suppose 7, (A, b,) < — (A, + log n) for n large. Then r,(k/n, b,) < — (A, + log n) for
1 =<k =< n. To see this, define log P{T.(A) = nb,} by linear interpolation if nA € (i, i + 1),
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0 < i < n. With this convention, Stone (1969) shows that r,(A, ) = o(n) uniformly in A.
The convergence is also uniform in b on compact sets. For, B, and y». converge uniformly
to continuous functions 8 and y of (A, b) and the sequence {log P[T.(\) = nb]}, which is
monotonic in b and A, converges to a continuous function. Hence, r.(A., b.) = o(n) and
ra(AE, by) # o(n) if A = A* + O(n™") and A* 5 A (with y,. and B,. defined as above). In
particular, | 7,(A., ,)| > A, + log n implies | r.(A%, b,)| > Ar + log n for n large. But
r.(Ax, b,) <log Vvn + a constant so r.(Af, b,) < — (A, + log n) for n large as claimed.
Hence,

1=2 exp{r,,(—s—, bn) + A, —log Vn + 0(1)} < n exp{— 3log Vn + 0(1)} = o(1),

which is a contradiction. Therefore r,(A ., b.) =o(~/ﬁ ).

To complete the proof for G.(0) < 1 and G.(A) = 1 for some A > — oo, shift each Yi, to
the right by —A units, observe that P{T,(A.) = nb,} = P{T.(As, A) = n(b, + A,A)},
where T,(A,, A) is the sum of a simple random sample without replacement of size nX,
from Y, — A, - -+, Y., — A, and apply the above result.

The restriction that G be supported on [A, »] is removed in two steps. First, G, and G
are truncated at A and renormalized. The function ¢,(A,, b,, A), which is ¢.()A,, b,) with
the truncated G, and G, is then approximated by a function ¢(A., b., A) which is
asymptotically equivalent uniformly in A. Second, the restriction to finite A is removed.
The first step requires a careful analysis of orders of convergence and different techniques
are needed for random and nonrandom Y,. We first consider nonrandom Y. 0

LEMMA 5.4. Let scores { Y} be generated by an absolutely continuous increasing df
G with density g, inverse Q and finite absolute third moment as follows: either (viii) Y.
=Q(@/(n+ 1) or (ix) Yi = EQ(Us) where Uy, denotes the ith largest order statistic of
a random sample of size n from a uniform (0, 1) distribution. Assume G(x)/g(x) and
G(— x)/g(— x) have finite limits as x — «. Let the sequences of constants {\,} and {b,}
satisfy conditions (i) and (iv) through (v) of Lemma 5.3.

Choose and fix an Ao such that G, (Aq) > 0 for all n = 2. For every A < Aq, define a df
Gra according to

G.(x) — G.(A)
Gra(x) = G.(4)
0 x<A.

x>A

Define G4 from G by analogy. Finally, define functions c.(An, b,, A) and c(An, b,, A) by

en(An, bn, A) = Bnab, + X, 10g yra — Anlog Ay — Anlog X, — J’ log(e?*” + y,4) dGra(y),

¢(An, buy, A) = Baby + X, log ya — Anlog Aw — A log A — f log(e®*” + ya) dGa(y),
where B4 and yna are determined by
An= Jr (1 + Yrae P4?) " dGra(y), b = j ¥ (14 yrae )7 dGra(y)

and Ba, ya are defined similarly but with Ga replacing Gpa. Then

cn()\n, bn’ A) - C(}\n, bn) A) = o(n—1/2)
uniformly in A if {Yi,} is defined by (viii). The conclusion is also valid for (Y..} defined
by (ix) if (x) (i —1)/(n+ 1) =<Yn=Q(/n)for2=i=n-1

REMARK. van Zwet (1964) gives conditions on G which imply (x). The requirement
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(x) may be replaced by the weaker condition that 2| Y;, — @ (i/(n + 1))| = o(n'?) which
is more difficult to verify.

Proor. By a Taylor expansion and the definitions of 8.4 and y,4
cn(}\n, bn, A) - c()\ny bny A)
=- j log(ya + €#4%) d{Gna(y) — Ga(»)} + O((Bra — Ba)’) + O((yra — va)?).
We first show 8.4 — 84 = O(n"/?) and yns — ya4 = O(n""/?). Here and throughout the proof
of the lemma, the O(-) and o(-) terms are taken to be uniform in A as n increases.

As in Lemma 7.1, for bothm =0and m = 1,

4 0= fy"‘(l + y4e ) d{Gua(y) — Ga()}

dGra(y)

| (vna = va)y"e P4 = (Bra = Ba)yay™ e P4
(1 + ynae™Fra?)?

+ O((Bra — Ba)?) + O((yna — v4)?).
Define ny = min{i: Y, = A} and p,a = G.(A), and write

, . i\ -1
fy"‘(l + y4e ) 1 dGra(y) = (NPra) ™ Tizna Q”‘(;L—:l_—l—)(l + YAe_ﬁAQ(m))
i )}{ m(Y})™ ! + ‘YABA(Y;n)me_BAY:"}

n+1 1+ y,qe‘ﬁAY‘" a1+ YAe‘BAY:")Z

+ (npnA)_l Zizrm {Ym - Q(

for some Y}, € [Y,-,L, Q(———l——):l

n+1

The last sum is O(n~"?) (Hoeffding, 1973). The first and last terms of the first sum may

be omitted since each is o(n~*%) by an obvious extension of Lemma 5.2. Therefore,
n—1

prey
j Y"1 + vae )7 dGra(y) = pna f Q™ (%) {1 + yae 1R} dx + O(n™?),

n+1

where x, = i/(n + 1) if ( — 1)/(n + 1) = x < i/(n + 1). A Taylor expansion about x of the
right side integrand then gives

(5) jy’”(l + 746771 d{Gra(y) — Ga(y)} = O(n™'?)

if n

+1

© pii |7 Qm(x)(1 + yae P9y gy
na
n+l

1
-G j Q"(x){1 + yae P12} dx = O(n™"?).

G(A)

When G(A) = 0 for some finite A, p.a = G(A) = 1 and the last condition (6) holds by
Lemma 5.2. When the support of G is unbounded below, the left side of condition (6)
is O(pna — G(A)) + o(n™3). If Yi, = Q(i/(n + 1)) then ny is the largest integer in
(n + 1)G(A); if Y, = EQ(U,,) then under assumption (x) na is between nG(A)— 1 and
(n + 1)G(A) + 1. In either case, p.a = G(A) + O(n™").

Returning to (4), we now have
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J' (Yna — ya)y™e Pa? — (Bna — Ba)yay™ e FaY

(1 + ynae™Pna%)? 4G ()

= O((Bra — B4)") + O((yna — v4)) + O(n™"?).

Consequently, both 8,4 — B4 and y.a — 4 are O (n~"/?); cf. the proof of Lemma 7.1.
In SummarY9 cn(An, bn, A) - C(An, b,,, A) = O(n_l/z) lf

(nPna) ™" Yizns log(ya + €Ba¥a) = J’ log(ya + €#4?) dGa(y) + o(n™"?).

The last term in the sum on the left may be disregarded since
1
nE., < Q(x) dx = o(n™*?)
1

n—

n

(Lai and Robbins, 1976). Under assumption (x), the remaining terms of the sum are
bounded by

n

n+1
Pk log(ya + efs@x) dx,

na
n+l1

where x, = i/(n + 1) when i/(n + 1) = x < (i + 1)/(n + 1), and by

n
DA f log(ya + efQ&w) dx,
na-1

n

where x, = i/n when (i — 1)/n < x < i/n, if n is sufficiently large that n4 = 2. Since both
bounds equal [log(ya + e1*) dGa(x) + o(n™*?) (cf. the derivation of equation (5)), the
proof of the lemma is complete. O

THEOREM 5.3. Under the conditions of Lemma 5.4,
—log P(T, = nb,) = nc(As, ba) + o(n™"?)
where

¢(An, bn) = Bubrn + Alog v, — J’ log(y» + ef?) dG(y) — Anlog A — An log A,
and B, y» are the solutions to

An = J’(l + y.e 757 dG(y); b, = fy(l + v.e7*?) 1 dG(y).

Proor. If G(A) = 0 for some finite A then the Theorem is already established in
Lemmas 5.3 and 5.4. If the support of G is unbounded, then the theorem is proved by an
extension of Section 3 of Stone (1969). The extension will be sketched for completeness.

As in Lemma 5.3, let T,(A,) be the sum of a simple random sample taken without
replacement from G,. Let nS,4 be the sum of those sampled values which are greater than
A(A < 0). Say n).4 sampled values exceed A. Then P{T,(A,) = nb.} = P(Spa=bn) =
EP(8Sp4 = nb,|Ana). For each fixed Apa < A, Lemmas 5.3 and 5.4 imply

7 —(npra) ' 10g P(Spa = nbn|Ana) = ¢(Ana/Pna, bn, A) + €na

where pna = G.(A) and €,4 = o(n™""?) uniformly in A.
Plainly, the sequence {exp(— nc(A.a/pra, bn, A))} is uniformly integrable. It also
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converges in probability uniformly in n as A — —o. For, Ana/pra — An = 0,(1) uniformly
in n (i.e., lima P[sup,|Ana/Pra — An| = 8] = 0 whenever § > 0) and limac(A, b, A) =
¢(A, b) uniformly in A, b on compact subsets of {A\, b: 0<A<LAfQ(y)dy<b< fx Q(y)
dy} since Ba(A, b), ya(A, b) converge uniformly to B(A, b), y(A, b) by Lemma 7.1. Hence,

P{T.(\,) = nb,} < E[exp{— nc(An, b,) + o(n'?}1].

The final step is to show that the last inequality may be reversed. Let S7a = Tn(A,) —
S,4. Conditional on A,4, the sums S,4 and S,4 are independent and S;4 is the sum of a
simple random sample without replacement from H,4 where H,a(y) = Gn(y)/G.(A) for y
=< A. Let b, > b,. Then

P{T.(\,) = nb,} = P{Sua = nb;, Sra=—n(b, — b))}
= E[P(Swa = nb,|Ana) P{Sra= — n(bn — b.)|Ana}l.
Invoking Chebyshev’s Inequality, we have
P{Swa=—n(by— ba)|Ana} =1 — €pa,

where €,4 is independent of S,4 conditional on A,4 and lim,Ee€;a = 0 uniformly in A.
Thus,
P{T.(\,) = nb,} = exp{— nc(\,, b;) + o(n'’?}.

Letting b/, decrease to b, completes the argument since c is continuous. 0

The next objective should be to extend Theorem 5.3 to random sequences {Y,}. This
goal is not achievable, however. The assumption @((i — 1)/(n + 1)) < Y., < Q(i/n) for 2
< i{<n — 1in Theorem 5.3 controls the variation between G, and G to such an extent that
the error in approximating n 'S log(y + e#¥») by [ log(y + e”’) dG(y) is o(n™"/%). For
random {Y;,}, however, n™'Zlog(y + e#¥») — [log(y + ) dG(y) = O,(n~"?). Therefore,
the sum in the following Theorem 5.4 cannot be replaced by an integral.

THEOREM 54. Let Y, = (Yin, -+, Yun) be the order statistics of a random sample
from a continuous distribution with finite absolute third moment and inverse Q. Let
T,.(\.) be the sum of a simple random sample of size n\, taken without replacement
from Y,. Suppose (i) A\, — A = O(n™") for some Ae(0, 1). Let {b,} be a sequence of
constants satisfying (iv) b, = b + o(1) and (v) both b, and b belong to S = (A [Q(y) dy,
J5 Q(y) dy). Then as.[G]

— n ' log P{Tn(A\s) = nb,| Y.} = Ca(An, bx) + 0o(n™"?)
where

Cr(An, b2) = Bubn + Mlog va — n 'S log(y, + €P¥m) — Ndog Aw — Anlog An

and B», y» are determined by

A= f 1+ y.e7 )1 dG(y), b, = j y(1 + y.e ™) dG(y).

PROOF. Similar to Lemma 5.4, we first show ¢, (An, b., A) — Ca(As, ba, A) = O(ks)
uniformly in A < A, where G(Ao) > 0, k, = n"'log log n,

Cn(}\ny bny A) = anA + X,,lOg Ya — f log(YA + eﬂAy) dGnA(y) - )\nl()g )\'l - X'llog X"
and B4, ya satisfy

A = j (1 + yae )1 dGa(y), bn= jy(l + yae P4 dGa(y).
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The df’s G.4 and G4 are defined in Lemma 5.4. A Taylor expansion similar to the first one
in Lemma 5.4 gives

cn(}\n, bn, A) - Cn(}\ny bnr A) = O((ﬁnA - ﬁA)z) + 0((YnA - 'YA)z)-

Obviously, ¢, (s, bx, A) — Cr(An, bn, A) = O(k,) if (*) Bua(\, b) — Ba(A, b) and v.a(A, b)
— va(A, b) are both O(kY?) uniformly in A and in (\, b) on compact subsets E of (0, 1) X
4. Following the proof of Lemma 7.1, (*) is satisfied if

VoA, b, A) = fy"’(l + 74\, b)e™Pa%I) T d(Goa(y) — Galy)) = O (k)

uniformly in A and in (A, b) on E for both m = 0 and m = 1. Here V,, (A, b, A) is an average
of i.i.d mean zero, finite variance s2(\, b, A) r.v.’s, and the Law of the Iterated Logarithm
implies lim sup 2Y2s(\, b, A)V,(\, b, A) = 1 a.s. [G]. Hence (*) is satisfied since B4(A, b)
and ya(A, b) are continuous and converge to continuous functions (A, b) and y(A, b) as
A — —o (again, as in Lemma 7.1). ’

A further Taylor expansion gives

Cn(\, b, A) = Co(\, b) = b(Ba — B) + Alog(ya/y) — Ba jy dGua(y) + ﬁj ¥ dG, (y)

- f log(1 + yae™#+*) dGna(y) + f log(1 — ye™®) dG(y).

Several applications of the Glivenko-Cantelli Lemma and the convergence of [ |y [° dG.(y)
to [ |y]® dG(y) give lima_,_., C, (A, b, A) — C,(A, b) = 0 uniformly in r and in (A, b) on E.

The remainder of the proof parallels the proof of Theorem 5.3. Here equation (7) is
replaced by

(8) (npnA) _llog P(SnA = nbn I Yn, AnA) = Cn(}\n, bn, A) + €nA,

where €,4 = 0 (n""?) uniformly in A a.s. [G]. Then an ordered sample Y, is fixed, a sample
for which (8) is true, G, = G + o(1) uniformly and [ |y|® dG.(y) = [ |¥|® dG(y) + o(1).
The statement of the theorem is then established for the chosen sample. Since the set of
such samples has probability one under G, the proof is now complete. 0

6. Applications. We first consider the one-sample problem in which X;, X;, - .. are
ii.d. normal (6, 1) r.v.’s and the null hypothesis is Hy: 8 < 0. Under the alternative, 4 is
positive. With these conditions, Bahadur (1960a) derived the asymptotic lognormality of
the X, ¢ and sign test exact P-values. The parameters of the limiting distribution are given
in Table 1.

The asymptotic lognormality under normal alternatives of many other P-values appro-
priate for H, is available from Theorems 4.1, 5.1, and 5.2. For example, Huber’s (1965,
1968) robust test is based on T} = n"'Z X} where x* = median (a, x, b) and the censoring
parameters a, b depend on the choice of alternative # and the extent of contamination
under each hypothesis. Both the exact P-value (cf. Theorem 5.1) and an approximate P-
value based on the asymptotic normality of T} (cf. Theorem 4.1) are asymptotically
lognormal. The approximate P-value is more practical; the parameters of its limiting
distribution are specified in Table 1. Theorems 5.2 and 4.1 imply the asymptotic lognor-
mality of the one sample Wilcoxon exact and approximate P-values; Table 1 gives the
parameters corresponding to the exact P-value. Note that the asymptotic standard devia-
tion of n™"%log P, for an exact rank P-value satisfying the conditions of Theorem 5.2
equals the standard deviation of the test statistic multiplied by the parameter 8 defined in
Theorem 5.2.

In the two-sample normal shift problem, the observations X, - - - ,Xi,, are i.i.d. normal
(i, 1) and the observations Xy, - - -, Xz, in a second independent sample are i.i.d. normal
(p + 0, 1). Here p is unspecified na/(n; + n2) = A,, say, converges to some A € (0, 1) at rate
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TABLE 1
Parameters (c, %) of the asymptotic distribution of the log P-value
One Sample Tests for Location; Normal (6, 1) Alternative

Test Slope ¢ T2
X 9%/2 6’
2 2\2
t -;—log(l + 6% /0 +8)
sign ®(0)log B(9) + B(0)log B(0) + log 2 D(9)D(0) (log(®(0)/D(6)))*

Huber’s robust
approximate
P-value cen-
soring at a, b

1 . - *0%b0/ 0%
2_(,"-11,[),11_I-‘ru,b.o)z/afz,b,n Bass = babo) Tusal Oaso

Wilcoxon B(2®(26) — 1) — log cosh B 432([ O*x + 0)p(x — 6) dx — <I)2(~/§0))

Lapy = J' x*¢p(x — 0) dx; x* =median (a, x, b); o024 =J’ (X* = paps)’d(x — 0) dx;

1

B solves ®(v26) = 2 j x(L+ e )7 gy

0

O(n™"). Under the null hypothesis § < 0 and under the alternative 6 is positive.

The asymptotic lognormality of the two-sample Wilcoxon, normal scores and van der
Waerden (for which a,(i) = ®'(i/(n + 1)) P-values under an alternative @ is implied by
Theorem 5.3. The asymptotic standard deviation of any two-sample rank standardized log
P-value equals the standard deviation of the test statistic multiplied by the parameter 8
of Theorem &.3. The asymptotic variance of the normal scores and van der Waerden test
statistics is given by Dupac and Hajek (1969).

The asymptotic lognormality of the conditional P-value of the permutation test based
on X, (or equivalently on X, — X;) under normal shift alternatives follows from Theorem
5.4. To see this, first note the constants y and 8 of Theorem 5.4 that correspond to A and
the a.s. limit of n'ZX,; are Ae®”/?/A and @ respectively. Therefore, the slope of the X,
permutation P-value P, is A8%/2 — [ log(Ae?*/*%* + \)(Ap (2 — 8) + Ao (2)) dz = c,(8), say,
where ¢ is the normal (0, 1) pdf. Theorem 5.4 then implies thatvn (log P, + ¢p(8)) and

«/ﬁ(n‘IE log(\, + yn'X,efrXi) — X j log(X + y~'Ae Mo (x) dx

+ n7'Z log(\, + yaAne Fr¥a) — A J log(\ + yAe £ (x — 6) dx)

have the same limiting distribution, if any. The central limit theorem and a.s. convergence
of B,., y» to B, y complete the proof that P, is asymptotically lognormal. The parameters
of the X, permutation P-value, as well as the parameters for the normal scores, van der
Waerden, Wilcoxon, pooled-sample-variance ¢ and parametric X, — X, P-values, are listed
in Table 2.

Numerical values of the exact slopes for the one- and two-sample rank tests mentioned
above are reported and discussed in Klotz (1965) and Woodworth (1970). The maximal
slope for testing the two-sample nonparametric hypothesis that all n observations have
identical arbitrary continuous marginal distributions is derived in Hajek (1974) and
tabulated for normal shift alternatives in Jones and Sethuraman (1978) for A = %. It is
shown in Bahadur and Raghavachari (1970) that if A = %, the permutation test based on
X, attains the maximal slope at normal shift alternatives. It is easily seen from our general
formula that this optimal property of the permutation test is valid for each A, 0 <A < 1.
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TABLE 2
Parameters (c, %) of the asymptotic distribution of the log P-value
Two Sample Tests for Shift; Normal (g, 1), Normal (p + 6, 1) alternative

Test Slope T2
X - X ARG2/2 ARG?
t, pooled variance % log(1 + AXG?) AO%/(1 + AN?)
Wilcoxon 28W, + Alog y — log(y + ef) AXB*(j @ (x)p(x — 0) dx — @2(0/~/§))
—Alog A — Xlog A

Normal scores and N3/(2\X) N3Ve/(AX)

van der Waerden

approximate

Normal scores and A2V,

van der Waerden, 6N, — j log(v + e®)¢(y) dy
exact —Alog A — X log(A/»)

X, — X, permutation A6?/2 —f Py(y)Ad(y) + Ay — 0)) dy N + Az)(J’ Pi(y)o(y) dy

—(j Pyy)¢(y) dy)z)

Wy=A J’ AD(y) + A®(y + 0)¢(y) dy; B, ysolve A = J’ 1+ye™™) ' dyand W, = f y(1 + ye ™)' dy;

Ny=A j DT'AD(y) + A0(y + 0))o(y) dy;

ds dt;

-2 J’ f A (s)p(t)D(s — O)D(O — ¢) + Adls — 0)(t — 6)D(s)D(—t)
Vo o L. @7TAR(s — 0) + AD(s)p(@ AD(t — 0) + AD(2)))

8, vsolve A = f 1+ ve™)7'¢(y) dy and N, = fy(l +ve™)7'¢(y) dy;  Po(y) = log(Re” "> + N).

For all the tests considered here under normal alternatives, the T parameter approaches
zero as @ approaches zero, suggesting that slopes may be reliable indicators of P-value
behavior for small §. The value of 7 for an optimal test may or may not exceed the value
of 7 for a nonoptimal test. For example, the asymptotic standard deviation of the parametric
X log P-value increases linearly in 6, and the asymptotic standard deviation of the ¢ and all
the nonparametric tests considered here eventually approach zero as § increases. But the
value of 7 for the X, permutation P-value, which is optimal, is strictly smaller than the
value of 7 for the normal scores P-value. As Groenboom and Oosterhoff (1977) report, the
exact slopes of all the rank P-values herein approach log 2 as 6 increases; the slope of the
X, permutation P-value shares this property. The 7 for each of the rank and permutation
exact P-values approaches zero for absolutely continuous symmetric alternatives and
therefore each of these P-values should exhibit similar behavior for large 6 and n.

The approximate distributions of the above one- and two-sample P-values for » = 100
and n; = ny = 50 are compared in Figures 1-5. In each case the slope c¢(6) (or approximate
mean and median of the —n""log P-value) and the approximate 2.5 and 97.5 percentiles,
namely c(8) + .1®71(.975)7(0), are drawn as a function of §. The censoring parameters 0,
1.0 and —2.5, 3.5 for Huber’s robust test are designed for testing § = 0 against § = 1 in the
model Py € {(1 — €)N(6, 1) + €G, G arbitrary} with € = .126 and e = .00008 respectively.
As would be expected, the effects of censoring the log likelihood ratio are minimal near
0 = 0 and substantial for large 6.

For each rank test, the percentiles have been graphed either for the one-sample case or
the two-sample case. In the two-sample case, if A = .5 and the score generating function is
symmetric about s, then the parameter y of Theorem 5.3 equals exp(fs), and the slope
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F16. 5. Approximate mean, 2.5 and 97.5 percentiles of the two-sample (n, = n; = 50) —.01 log P-value
for a normal (0, 1), normal (m, 1) alternative.

¢(f) and variance parameter 72(f) of the two-sample rank P-value equal the slope and
variance parameter for the corresponding one-sample P-value evaluated at /2. It is
interesting to note that although the Wilcoxon test has larger slope than the sign (or two-
sample median) test at normal alternatives, the Wilcoxon approximate 95th percentile is
lower than the sign approximate 95th percentile for large 6. Hence, the slope should be a
more reliable measure of test behavior for the Wilcoxon than for the sign test at large 6,
but the additional variability in the sign P-value does allow it to assume (exceedingly)
small values with higher probability. Also note the difference in both the slopes and the
widths of the approximate 95% probability bands for the exact and approximate normal
scores log P-values. For 6 < .625, both the approximate and exact P-values have similar
approximate distributions, but for 6 > 2.4, approximately 97.5% of the normal scores exact
P-values lie above approximately 97.5% of the normal scores approximate P-values. The
properties of the exact test, then, are not necessarily inherited by an approximate
procedure. Finally, as discussed above, the approximate 95% probability band for the X,
permutation test lies entirely within the corresponding exact normal scores band.

APPENDIX

LEMMA 7.1. Under conditions (ii), (iii) and (v) of Lemma 5.3, the functions B, (A, b)
and v, (A, b) defined by

A= j 1+ yae ™)1 dGu(y), b= f YA + e ") dGo(y)

converge uniformly on compact sets to functions 8 (A, b) and y(\, b) defined analogously
with G replacing G,.

PRrRoOF. Observe that

07 Jym(l + vae™ ) 7 dGa(y) — j Y"1+ ye ) dG(y)
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both for m = 0 and m = 1. A Taylor expansion gives
0 =fy'"(1 +ye )TN d{G.(y) = G(»))

[ yMam = v)eTP = (B = B)yy" e
J (1 + ynef)? ()

ym+le—/}y 'Ynym+2e_ﬂi‘y

O + e oy 400

1

+ y;te—ﬁ/.'y)2

for some v, € (y», y) and B, Br € %B., B). The first integrand on the right is bounded
by |y|; the last two integrands are O(|y|’). Hence (iii) and a further expansion of
(1 + y5 exp(—B7y))~* imply

(Yn = ¥)y"e™" = (B = B)yy™ e N 2 2
1) = n n — n — .
o(1) j T+ 7e Py dGn(y) + O((B. — B)) + O(lyr —¥))
Suppose B. — B or y» — y does not converge to zero uniformly. Then 8, — 8 and v, —

v must have the same order. In fact, from the last equation,

J ydGX(y)
=)
Y

1)

?= (Br—B) Jde;f(y), Bn—B = (1
jysz;':(y)

where G (dy) = e #7(1 + ye #)2G,(dy)/f e #’(1 + ye #) 2 dG.(y).

2
Hence, 14+0(1) = (f deif(y)) /j ¥y dGX(y),

which is a contradiction. Therefore, 8. (A, b) and v, (A, b) converge uniformly on compact
sets to B(A, b) and y (A, b). In particular, B8, (A., b.) = Br. and v, (An, b,) = Y., converge to
positive constants under the assumption of Lemma 5.3 0
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