The Annals of Statistics
1982, Vol. 10, No. 1, 11-43

SPECIAL INVITED PAPER

A REVIEW OF SELECTED TOPICS IN MULTIVARIATE
PROBABILITY INEQUALITIES'

By Morris L. EAToN

University of Minnesota

This paper contains a review of certain multivariate probability inequal-
ities. The inequalities discussed include the FKG inequalities and the related
association inequalities, inequalities resulting from Schur convexity and its
extension to reflection groups, and inequalities for probabilities of certain
convex symmetric sets. .

1. Overview. This paper has been written with the following dual purpose: (i) to
provide the uninitiated reader with enough history and motivation to appreciate some
current formulations and descriptions of several classes of multivariate probability ine-
qualities, and (ii) to provide the more experienced reader with a review of some research
techniques and problems of current interest.

In particular, we have chosen three areas around which to center our discussion. The
description of each of these areas begins with a concrete problem which is used to motivate
more abstract problems.

Once the three general problems have been described in Section 2, the technical
discussion is given in Sections 3, 4 and 5. Section 6 contains general structural information
concerning some of the particular results in the previous three sections.

2. Introduction. In this section we describe three problems which are treated more
completely in later sections. The set of probability measures on measurable space (%, %)
is denoted by .#, or sometimes .Z(%). In most cases % is a Borel subset of a Euclidean
space, R", and in this case, elements of 4 are represented as column vectors with x’
denoting the transpose of x.

DEFINITION 2.1. A pre-order on %, <, is a relation defined on & X % such that (i) x
=< ux, (ii) x < y and y < z implies that x < z (transitivity). If, in addition x = yand y = x
implies that x = y, then =< is a partial order. Both pre-orders and partial orders arise
naturally below.

DeriNITION 2.2 If < is a pre-order on %, a real valued function is increasing
(decreasing) if x <y implies f(x) < f(y) (f(x) =f(y)). A set BC % is increasing (decreasing)
if the indicator function of B, denoted by I3, is increasing (decreasing).

A common description of a multivariate probability inequality is:
(2.1) P(A) = Py(A), AEe
where P; € #(X), i = 1, 2, and </ is some interesting class of sets; for example, &/ might be
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12 MORRIS L. EATON

the convex symmetric sets in a vector space, or perhaps a class of sets which are increasing
relative to a pre-order. The above inequality is

(2.2) JIA(x)Pl(dx) = f Iy (x)P:(dx), A€ L.

Now, let # be the class of functions which can be written in the form
(2.3) f(x) = 3T aila(x)

where m is some positive integer, A; € #and a;=0,i=1, -- -, m. Then & is a convex cone
and each f € & is non-negative and bounded. Clearly (2.2) is equivalent to

(2.4) j f(x)Pi(dx) = j fx)P(dx), feZ

Many of the problems in this paper can be described as “Give}l % find conditions on P;
and P; so that (2.4) holds.”

REMARK 2.1. In many cases, inequalities of the form (2.4) are valid without the non-
negativity or boundedness assumption on the elements of & The proof for these extensions
is ordinarily a matter of truncating, translating, and taking limits. These details will be
omitted.

Here is the first class of problems.

ProBLEM 2.1. Consider a two dimensional random vector X with coordinates X; and
X,. An intuitively appealing condition which expresses “positive dependence” between X;
and X; is

(2.5) PXi=c1,Xo = ) = PXi = 1)) P(X2 = ¢3)

for all ¢; and cs; or, equivalently,

(2.6) PXiz=c|Xo=c) = PXi=c1)

for all ¢; and c,. Such variables were called “positively quadrant dependent” ‘by Lehmann

(1966). One of the most useful sufficient conditions which implies (2.5) is provided by the
notion of association introduced in Esary et al. (1967).

DerINITION 2.3. The coordinates of a random vector Z € R" are associated if for each
pair of non-negative bounded functions f and g on R" to R* which are increasing in each
coordinate variable (with the remaining ones held fixed), we have the inequality

2.7) ' Cov{f(Z), g(Z)} = 0.

When n = 2, if X; and X, are associated, if f is the indicator of [¢;, »), and if g is the
indicator of [cz, «), then (2.7) implies (2.5). More generally, if Z is associated (i.e., the
coordinates of Z are associated), then the inequality

PZizc,i=1,.--,n) =[]k PZi=c)

holds for all ¢1, - - -, ¢,; see Section 3 for a discussion. Thus sufficient conditions that Z be
associated would be useful.

For any two vectors x, y € R", write x <y if x;, <y;fori =1, ..., n so < is a partial
order on R", and is usually called the coordinatewise partial order. Let & be the convex
cone of non-negative bounded increasing (with respect to <) functions on R". The class of
functions for which (2.7) must hold in order that Z be associated is just the class % Hence
Z is associated iff

(2.8) Cov{f(Z2),g(2)} =0, fg€EZ
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If P is the probability measure of Z, write P(dx) = p(x) u(dx) where p is some o-finite
measure on R" and p is the density of P. Then (2.8) can be written

(2.9) j f(x)g (x)p(x)p(dx) = j f(x)p(x)p(dx) J & (x)p(x)p(dx)

for g € ZIf 6 = [ fpdu = 0, (2.9) obviously holds. If § > 0, set p:(x) = p(x) and p2(x) =
87 1f(x)p(x) so p is a density and (2.9) becomes

(2.10) J’ & (x)p1(x)p(dx) < J & (x)p2(x)pu(dx)

for g € Zand f € # Thus, sufficient conditions for (2.10) could be useful for providing
sufficient conditions for (2.9). Indeed, a main result in Section 3 provides conditions for
(2.10) and hence for (2.9) to hold. To describe this condition, let Pi(dx) = pi(x)u(dx) so
(2.10) is .

(2.11) J’g(x)Pl(dx) = fg(x)Pz(dx), gEZ

which is inequality (2.4). When n = 1, then (2.11) means that the distribution P; is
stochastically smaller than P,. In this case, a sufficient condition for (2.11) is that
DP2(x)/p1(x) be non-decreasing in x; that is, the pair (p1, p2) has a monotone likelihood ratio
(MLR) (see Karlin and Rubin, 1956). An equivalent way to express the MLR property on
R'is

pi@pAy) = pix Ay)pe(x v y),  x,yE R,

where x A\ y = min{x, ¥} and x \/ y = max{x, y}. This form of the definition MLR can now
be expressed for densities defined on R”. For x and y € R", we define x \/ y and x A\ y to
be the vectors in R"” whose coordinates are respectively, max{x;, y;},i =1, ---, n; and
min{x;, y;},i=1, - - -, n. It will be shown in Section 3 that when p is a product measure on
R™, if p; and p; satisfy

(2.12) Pi@pAy) = pi(x A y)pe(x v/ y),  x,yER",

then (2.11) holds (see Holley, 1974; Preston, 1974; and Kemperman, 1977). This result will
then provide useful conditions for (2.8) and (2.9) to hold. Inequality (2.9) is often called the
FKG-inequality because of the work of Fortuin, Ginibre and Kasteleyn (1971). Our
discussion of Problem 2.1 is complete.

The inequality (2.11) suggests that the distribution P; has more mass toward the “upper
right hand corner” of R” than does P;. Our next problem involves the idea of concentration
of a distribution about 0 € R".

PrROBLEM 2.2. A set A C R"is symmetricif A =—A.If A is both convex and symmetric,
then certainly 0 is the center of A, and such sets represent a possible generalization of
intervals symmetric about 0 in R'. With this in mind, we say that P; is more concentrated
about 0 than P; if P;(C) = P»(C) for all convex symmetric sets C C R". This relation will
be written P; <- P,. If # is the convex cone generated by the indicators of convex
symmetric sets, then P; <. P, iff

(213) Jf(x)Pl(dx) = f fx)P(dx), fEF

Now, the problem is to give some useful conditions so that (2.13) holds. A reasonable
starting place is to assume P; is the uniform distribution on a given bounded convex
symmetric set of positive Lebesgue measure - say C; with £(C;) > 0. Then P; has a density
with respect to £given by
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{(acyy™  if xeCy
pl(x) =

0 if x&Ch.

Suppose that P, is the uniform distribution on a translate C: + x, of C, so P, has density
pi(x — x0). That P; <- P, seems plausible in this case and a verification of this entails
showing that

(2.14) ACN C) = ACN (Cy + x0))

for each convex symmetric set C. The inequality (2.14) is a consequence of Anderson’s
Theorem (1955) which, among other things, asserts that for convex symmetric sets C and
Cy, and xo € R", the function

(2.15) Y (a) = AC N (C: + ax)), aER'

satisfies ¥ (a) = ¥ (—a) and V¥ is decreasing on [0, ). The usual statement of Anderson’s
Theorem is

THEOREM (Anderson, 1955). Suppose f is a density on R" such that f(x) = f(—x) and
{x|f(x) = v} is convex for each v > 0. If C is a convex symmetric set and § € R" then

(2.16) Y(a) = j fx—af) dx,, a€ER'
(o}

satisfies ¥(a) = V(—a) and ¥ is decreasing on [0, ).

It is this result and a variety of associated ideas and results that constitute the first portion
of Section 5.

Although Anderson’s result involves a translation parameter, the result also has a
variety of consequences for probability inequalities involving covariance matrices. For
example, if P; is the normal distribution N (0, Z;) on R" with mean 0 and covariance matrix
2, i=1,2, and if 3, — 2; = A is positive semi-definite, then it seems plausible that P; <-
P,. That this holds can be proved by observing that X, = Z; + A so P: is the convolution
of P; with a N (0, A) distribution @, say. Thus, for each convex symmetric set C,

Py(C) = J P1(C - y)Q(dy) = P1(C),

since (2.16) implies that P;(C — y) < P;(C) for each y. A much more subtle application of
Anderson’s Theorem yields information about the behavior of certain probabilities as
functions of correlations. In particular, if X € R" is N(0, 2) on R", then

P(|Xi|=ai,i=1,--,n) =" P(|Xi|= a),
=1

where Xj, - - -, X, are the coordinates of X. This inequality was first established by Dunn
(1958, 1959) for some special 2’s to provide a conservative solution to a confidence set
problem. This and other inequalities involving correlations are the subject of the latter
portion of Section 5.

The discussion of Section 4 has been postponed until now since Anderson’s Theorem
provides one possible way to motivate the material there. However, we will begin our
discussion of Problem 2.3 with a problem concerning the number of empty cells in a
multinomial distribution.

PrROBLEM 2.3. Suppose X € R* has a multinomial .#(p, &, n) distribution so X has
non-negative integer valued coordinates Xi, - --, X such that 2X; = n. The probability
vector p € R* satisfies 0 < p; < 1 and Zp; = 1. Let Z be the number of X; which are zero
so Z is the number of empty cells in a multinomial, and the possible values of Z are 0, 1,
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cee,k—1.Form=1,2, --- k, define probability vectors p™ by

0, i=m+1,--.,k

Thus, p® has all its coordinates equal to 1/k. Intuitively, we expect Z to take on smaller
values with higher probability the closer p is to p*. One way to try to make this precise
is to consider

(2.17) ¢(p)=Py(Zz=a)

for a fixed number a € (0, 2 — 1), and attempt to describe the behavior of ¢ as p varies. In
particular, it seems reasonable to conjecture that ¢(p™) is decreasing in m. More
generally, it may be possible to define a pre-order on p’s so that ¢ is monotone in this
ordering. Although far from obvious, the order defined by majorization, which we will now
describe, is appropriate for the current problem. For n € R*, let ug) = u@ = -+ = uw)
denote the ordered coordinates of u. For y, z € R*, write y < z if

(2.18) Zin 240 = Zin Y@, m= 1, .-, k—1, and Z{l z2i = E{e Yi.

When y =< z, we say z majorizes y or y is majorized by z. It was shown by Wong and Yue
(1973) that ¢ is increasing in < on probability vectors, that is, if p < g, then ¢(p) = ¢(g).
In particular,

(k) (k—1) (1)
P =p =..-=p7,

50 ¢(p™) is decreasing in m. The fact that ¢ is increasing can be expressed in another
useful and interesting way. Let P(- | p) be the probability measure defined on R* by the
A (p, k, n) distribution. Thus, if B is a Borel set,

P(B|p) =f h(x|p)A(dx)
B

where A is counting measure on the points in R* which have integer coordinates and
h(-|p) is the density of P(. |p) with respect to A. If fis the indicator function of the set
{Z = a}, then

(2.19) ¢(p) = jf(x)h(xlp)k(dx).

Now, it is not hard to show that f is increasing in the majorization pre-ordering. Thus, it
is plausible that the right hand side of (2.19) is increasing in p for any f which is increasing.
Indeed this was proved by Rinott (1973) and will be one of the topics considered in Section
4.

REMARK 2.2. Functions which are increasing (decreasing) in the majorization pre-
ordering are often called Schur convex (concave).

The above example is a special case of a class of problems to be treated in Section 4. To
introduce these, we first reformulate Anderson’s theorem. Let G, be the two element group
consisting of I, and —I, where I is the %2 X k identity matrix. For each x € R*, the convex
set generated by I x = x and —Ix = — x, say C(x), is just the line segment between x and
—x. A function f on R* which satisfies f(x) = f(gx), & € G, will be called Go-invariant; that
is, f(x) = f(—x) for this particular group. Here is an alternative way to state Anderson’s
Theorem.

THEOREM. Suppose f is a Go-invariant density such that {x|f(x) = v} is convex for
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each v > 0. Suppose C, is a convex set such that Ic, is a Go-invariant function; that is, Co
= —C(). Let

(2.20) 6(0) = J Ic, @) f(x — 0) dx, 0€ R*.

Then ¢ is Go-invariant and n € C(0) implies that ¢ (1) = ¢ ().
The conclusion here suggests we define a pre-order on R* as follows:

n=<40 iff n € C(9).

Thus, ¢ is Go-invariant and decreasing in the pre-order <. The validity of the above result
for other groups is the obvious question. It was answered by Mudholkar (1966). Let G be
any subgroup of the group % X % orthogonal matrices. Typical groups of interest include

%, - the group of all 2 X & permutation matrices
9y, - the matrix group of coordinate sign changes on R*
O - the group of all £ X % orthogonal matrices.

For each y € R*, let C(y) be the convex set generated by {gy|g € G}. Write x =y ifx €
C (). It is easy to verify that < is a pre-order on R*.

THEOREM (Mudholkar, 1966). Suppose f is a G-invariant density such that {x|f(x)
= v} is convex for each v > 0. Suppose Co is a convex set such that I¢c, is a G-invariant
function (gCo = C, for g € G). Let

(0) = j Ic, (x) f(x — ) dx, 6 € R*.

Then ¢ is G-invariant and G-decreasing, that is, decreasing in the preorder defined by
G.

REMARK 2.3. At this point the reader may want to draw some pictures. A simple
example for which the geometry is easy is for £ = 2, G = %, f(x) = (27) ' exp(—Y%x’x) and
Co = {x|A1x3 + A2x3 < 1} where A, and A, are positive.

In the above theorem, the convexity assumptions coupled with the G-invariance assump-
tions imply that both fand I, are decreasing. Note that any decreasing function must be
G-invariant since x < gx and gx < x for all x € R* and g € G. This, together with
Mudholkar’s results, suggests the following question:

(Q.1) For which groups G is it true that if f; and f; are non-negative and G-decreasing
then

(2.21) (0) = jfl(x)fz(x —0)dx
is G-decreasing?

If f2 is a density and f; is the indicator of a set C, then ¢ (@) is the probability of C computed
when the value of the translation parameter is 6. A partial answer to (Q.1) is

THEOREM (Marshall and Olkin, 1974). If G = %, then ¢ is G-decreasing for each non-
negative and G-decreasing f, and fo.

To connect the current discussion to the results of Wong and Yue (1973) and Rinott
(1973), we first mention a result of Rado (1952) to the effect that z € R* majorizes y € R*
iff y is in the convex hull of {gz|g € #.}. In other words, the majorization pre-order
defined earlier is the same as the pre-order defined by the group #.. One way to state the
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Rinott (1973) result is:

If X € R* has a .#(p, k, n) distribution and if f is Z.-decreasing, then &, f(X) is a
Z,-decreasing function of p.

Similarly, the Marshall-Olkin (1974) Theorem is:

If x € R* has a density f;(x — §) where f; is 2, -decreasing and if f is #,-decreasing,
then &, f(X) is a Z.-decreasing function of 6.

The parallel between the two results is now obvious. These results were extended to other
parametric families, including the gamma and Dirichlet families, in Proschan and Sethur-
aman (1977) and Nevius, Proschan, and Sethuraman (1977).

For translation families, Eaton and Perlman (1977) extended the Marshall-Olkin Theo-
rem to other groups, called reflection groups, which include 9, and the group generated by
2. U 9. Based on this work, Conlon, Leén, Proschan and Sethuraman (1977a, 1977b) then
extended the work in Proschan and Sethuraman (1977) and Nevius et al. (1977) to include
the reflection group case. In Section 4, we describe the results concerning reflection groups
together with some examples. The primary examples of reflection groups are %, 25 and
the group generated by %, U 2. This completes our discussion of Problem 2.3.

In Section 6, we discuss a general structure theorem given in Kamae et al. (1977) and
Strassen (1965). In many cases, this result provides necessary and sufficient conditions so
that inequality (2.4) holds. However, the conditions are of little practical use in deciding
whether or not (2.4) holds for particular examples.

The recent book of Tong (1980) is a comprehensive general text on multivariate
probability inequalities. A number of topics not discussed here can be found there, together
with many applications and an extensive bibliography. The most important example of
the results in Section 4 concern majorization and the permutation group. In fact, majori-
zation has played an important role in the development of many probability inequalities.
The recent volume by Marshall and Olkin (1979) is an encyclopedic work which, among
other things, covers the theory of majorization and its applications to statistics, probability
and many other branches of mathematics.

3. Inequalities on Coordinatewise Ordered Spaces. Throughout this section, the
space % will be a product, & = [[T %; where each %; is a Borel subset of R. Forx,y €
Z, write x <ytomean x; <y, fori =1, ..., n, so < is a partial order on Z. Let & be the
convex cone of all non-negative bounded increasing functions on %. given P;, P, € ./, we
now consider Problem 2.1 described earlier—namely, find conditions on P; and P, so that

(3.1) J f(x)Pi(dx) = J f@)P(x), fEZ

There are a couple of cases when (3.1) is easily verified.

ProrosiTION 3.1. Take & = R". For P, € #, and § € R", define Py by Py(B) = Py(B
— 0) for Borel sets B. If n < 6, then

(3.2) J’ f(x) P, (dx) = J fx)Py(dx), [fEZF

Proor. Forany 8 € R", [ f(x)Ps(dx) = [ f(x + ) Po(dx). Since n < 8, x + n < x + 6 for
allx € R"so f(x + n) < f(x + @) for all f € & Thus, for fE€ &

J’f(x)P,,(dx) = J’ f(x + 1) Po(dx) = f f(x + 0)Po(dx) =J’ [(x) Py(dx),

which completes the proof.
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The above result treats the case of a translational parameter family of distributions on R".
There are other types of parametric families which are not translation families but for
which a similar argument will establish (3.2). Rather than formulate a general result which
would lead us astray from the theme of this section, we will give an example that well
illustrates the idea.

ExaMPLE 3.1. Take = R", © = (0, ©)" and let dx denote Lebesgue measure on R".
Consider the family of densities on R" given by
9,-1

px|0) =i ;—20—5 exp(—2x;) I 0,0 (%:).

This family has the property
p(x|0+m) = f

Rn
for x € %, 0, n € 6. Such families are called convolution families and will come up again
in Section 4. Let P, be the probability measure defined by the density
p(-]0). For n < 6, we claim that

f f(x) P, (dx) = j f(x) Py(dx).

Letd=60—-71s08;=0,i=1, ---, n. Then,

plx—y|0)p(y|n) dy

jf(x)Pa(dx) = J fx)p(x|n +8) dx
=Jff(x)p(x—yln)p(y|8) dy dx
=f{ff(x+y)p(xln) dx}p(yIS) dy

= J’ U flx+y)p(x|n) dx}p(yIS) dy
(0,00)"

Ef {ff(x)p(xln)dx}p(ylﬁ) dy
(0,00)"

=ff(x)P,,(dx).
The inequality above follows from the fact that f(x + y) = f(x) for y € (0, )" since f €
% The argument given is valid when 8; > 0 for i = 1, .--, n but a simple continuity

argument establishes the general case of §; = 0. The above argument can also be used in
the Poisson case (see Example 4.2).

We now return to the general case and assume that p is a product measure on % - that
is, jp = ju1 X + -+ X u, where each y; is a o-finite measure on %;. The following result, which
underlies much of the remainder of this section, is basically due to Ahlswede and Daykin
(1979). However, the proof which we outline below is due to Karlin and Rinott (1980). For
x, y € %, the notation x \/ y and x A y will be as defined in Problem 2.1.

THEOREM 3.1 (Ahlswede and Daykin, 1979; Karlin and Rinott, 1980) Suppose p;, i =

1, .. .,4 are non-negative functions on & which satisfy
(3:3) Pi(x)p2(y) = ps(x \/ y)palx N ).
Then

(3.4) f p1dp J’ p2dp= J’ps du J’ D4 dp.
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Proor. The proof is by induction on n. The important observation is that when (3.3)
holds for p;, i = 1, - .., 4, then (3.3) also holds for the marginals

¢i(u) = J’ pi(u’ S)l-"n(ds)y = 1’ ) 4
4

An

where u € [[1 ; and s € %,. A bit of algebra and the use of (3.3) with x = y shows that
the inequality ¢:(1)$2(v) < ¢s(u \/ V)ds(u A v) is equivalent to

f f {p1(u, s)p2(v, t) + p1(u, t)P2(v, )} pn(ds) . (dt)

(3.5)
= J J {ps(u v/ v, S)pa(u A v, t) + ps(u \/ v, )pa(u A v, 5)}pn(ds)pn(dE).

With a = pi(u, s)ps(v, t), b = pi(y, t)p2(v, s), ¢ = ps(u \/ v, s)ps(u A v, t) and d = ps(u \/ v,
t)pa(u A v, s) it suffices to show that a + b < ¢ + d to verify (3.5). Since s < ¢, (3.3) implies
thata<d,b<dandab=cd. Butc+d— (a+ d) = (1/d){(d — a)(d — b) + (cd — ab)}
=0,sothe ¢;, i =1, - -, 4, satisfy (3.3). However, exactly the same argument, suppressing
v and v in (3.5), shows that (3.4) holds for n = 1. Since u is a product measure, the induction

step is now easily completed.
The first application of Theorem 3.1 yields a useful sufficient condition for (3.1) to hold.

THEOREM 3.2 (Preston, 1974; Holley, 1974; Kemperman, 1977; Edwards, 1978). Let P;
and P; be probability measures on %. Assume there exists a product measure p on %
such that P; has a density p; with respect to p and

(3.6) Pi(x)p2(y) = pi(x A y)pa(x v/ y).
Then
3.7) J f()p1(x)u(dx) = f f@)p(x)u(dx), fe€ £

ProOF. Let p) = p:f, P2 = p2, Pps = p2f and p; = p:. Then (3.3) holds for p;, i =1, - -,
4. Since p; is a density, (3.4) implies (3.7) and the proof is complete.

REMARK 3.1. The proofs of Theorem 3.2 due to Kemperman and Edwards are similar
and use induction. These proofs use a property of conditional distributions which is of
independent interest and is connected with the work of Daley (1969) and of Kamae et al.
(1977).

THEOREM 3.3 (Sarkar, 1969; Fortuin, Ginibre and Kasteleyn, 1971). Suppose p is a
density on X with respect to a product measure p. If p satisfies

(3.8) pXp(y) =p(x A y)p(x v/ y),

then for fi, € %,
(3.9) J’ f1(%) o (x)p(x)u(dx) ijl(x)p(x)u(dx) J' L(@)p(x)u(dx).

That is, Cov{ fi(X), f2(X)} = 0 if X € & has density p.

Proor. Letd = [ fip du, so (3.9) is obvious if § = 0. For § > 0, let p. = 6 'fip and p;
= p. Then p; and p. are densities which satisfy (3.6). Applying (3.7) with f= f; yields (3.9)
and the proof is complete.
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REMARK 3.2. When n = 2, then (3.8) is just the assumption that p is totally positive of
order 2 (TP); that is, p has a monotone likelihood ratio. For general n, a non-negative
function p satisfying (3.8) is MTP, (multivariate TP;); see Karlin and Rinott (1980).
Condition (3.8) is difficult to check in most cases. However, under certain conditions, if p
is TP; in each pair of variables with the others held fixed, then p is MTP,. For a more
complete discussion of this issue, see Kemperman (1977, Assertion (i) in Section 6) and
Karlin and Rinott (1980, Proposition 2.1). Densities which are MTP, have a number of
interesting properties. For example, any marginal of a MTP; density is again MTP,. Also,
a basic composition theorem for MTP; kernels extends the well known composition result
for TP; kernels (Karlin, 1956). These as well as many other facts about MTP, densities are
established in Karlin and Rinott (1980).

As mentioned in the discussion of Problem 2.1, a random vector X € R" is associated if
(3.10) Cov{f(X), g(X)} =0, fgeZ

and (3.8) is a sufficient condition for (3.10) to hold. For example, if the coordinates of X are
independent, choose p to be the probability measure of X and choose p = 1. Thus, for
independent variables, (3.10) holds (Esary et al., 1967). If X is multivariate normal, N( s
Z), then (3.8) holds iff the matrix B = ="' satisfied b,; < 0 for i # j (Sarkar, 1969). For
other examples and a more thorough discussion, see Tong (1980) and Karlin and Rinott
(1980). '
When X is associated, (3.10) yields useful probability inequalities. For example if
1 if xi=ze;, 1=1,---,k
@1, eees 2a) = {0 otherwise

and
(x xn) = 1 if xi=c, i=k+1---,n
WXL, o5 %) =10 otherwise

then (3.10) yields
PX;=c,i=1,.--,n)=zPX;=c,i=1,--- ) PX;=ci,i=k+1, .--,n).
An easy induction argument then gives
PX,=zc,i=1,.---,n) =[]k PX; = c).

Another interesting application of the results in this section has been given recently by
Perlman and Olkin (1980).

A random vector X € R" is called associated in absolute value if | X |, ---, | X, | are
associated in the sense of Definition 2.2. Jogdeo (1977) has given some sufficient condition
that X be associated in absolute value. In the case that X € R" is N(0, =), Karlin and
Rinott (1981) have shown that X is associated in absolute value iff there exists an element
D € 9,, the group of coordinate sign changes, such that B = (DED)™' = {b;;} satisfies b;,
=0 for ¢ # j. A recent result of Pitt (1981) asserts that if X is normal, then X is associated
iff all the covariances are nonnegative.

4. Majorization and reflection groups. Much of the material in this section is
motivated by the vast literature concerning majorization and Schur functions as introduced
in Section 1. With the results established below, it will be demonstrated that a number of
common families of multivariate distributions (e.g., the multivariate normal with varying
mean vector, the multinomial with varying cell probabilities) determine increasing families
of distributions relative to pre-orders defined by special groups of orthogonal transforma-
tions. Many of the examples below concern the permutation group %, and the majorization
pre-ordering. In fact, these applications were known prior to the development of the
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general theory of this section. However, the application of the general theory given in
Proposition 4.2 does show that problems of practical interest can be attacked by the results
in this section. We now proceed with the technical details.

Consider n-dimensional space R” and let G be a closed subgroup of ¢, the group of
n X n orthogonal matrices. Vectors in R" are column vectors and gx, x € R", g € G means
the matrix g times the vector x. For y € R", C(y) will denote the convex hull of the set
{gy|g € G}. The set C(y) is compact as G is compact. We will write x < y to mean that
x € C(y) so < is a pre-order. A function f on R" is G-increasing (G-decreasing) if x < y
implies that f(x) = f(y) (f(x) = f(y)). Let & be the convex cone of non-negative, bounded,
Borel measurable G-increasing functions. Observe that any f which is increasing or
decreasing necessarily satisfies f(x) = f(gx) forallx ER", g€ Gasx<gxandgx<x.In
general terms, the problem to be discussed in this section is the following: Given two
probability measures, P; and P., under what conditions will we have

.

(4.1) J’f(x)Pl(dx) = J’ f(x)P:(dx), f€ F?

One case of particular interest is when G is the permutation group so the pre-order is that
of majorization.

Very little is known for the general problem posed above; for a discussion, see Eaton
(1975). However, a fair amount is known for a class of groups called reflection groups (see
Benson and Grove, 1971). To define these, let € R", || r| =1 and set S, = I — 2rr’. Then
S, is an n X n orthogonal matrix such that S,r = —r and S, is the identity on H, = {x|x
€ R", r'x = 0}. Thus, S, is a reflection through the hyperplane H,, or more simply, S, is a
reflection.

DEFINITION 4.1. Let G be a closed subgroup of ¢,. Then, G is called a reflection group

if there exists a set A C {x|x € R%, || x| = 1} such that G is the smallest closed subgroup
of (), which contains {S,|r € A}.

In what follows, it will always be assumed that G is a finite reflection group.

A decomposition result for reflection groups (see Proposition 3.2 in Eaton and Perlman,
1977) shows that there is no loss of generality with this assumption. For statistical
applications, the three most important examples of reflection groups are:

(i) 2. - the group of n X n permutation matrices,
(ii) 2, - the group of coordinate sign changes acting on R" — 2, has 2" elements,
(ili)) £, U 9, - the group generated by £, and 2,.
If G is a reflection group, then the set
AG@) =A{rllrl=1, S, €G}

is called the root system of G. It is clear that if » € A(G), then gr € A(G) since gS,g™' =
S, for g € G. A set Ao of vectors of length one is called a generating set for G if G is the
smallest closed subgroup of ¢, which contains {S,|r € As}. Generating sets for £, and
2, provide useful examples.

ExaAMPLE 4.1. Lete, - - -, &, denote the standard unit vectors in R". For £,, a minimal
generating set is
{(ei — es1)/V2:i=1, .-+, n — 1}.
For 2,, a minimal generating set is
{e.:i=1, .-, n}.

If Ao is a generating set for G, then A(G) = {gr|r € Ao, g € G}; see Theorem 4.2.5 in
Benson and Grove (1971).
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The basic property of reflection groups, G C ¢,, which simplifies a characterization of
G-increasing functions, will now be discussed. Let 2 C R" be a G-invariant subset of R".
Given r € A(G), let u € R" be any vector such that r’u = 0 and define B, C R' by

Bu.={(Blu+pre 2).

Note that B, , may be empty for certain vectors « and r € A(G). Since S.(u + Br) = u —
Br, it is clear that B, , = —B,,,.

THEOREM 4.1. Let f be a real valued function defined on %, and let A, be a generating
set for G. The following are equivalent:

(i) fis a G-increasing function,
(ii) fis G-invariant and for each r € Ao and u such that r'u = 0, the function ¢ defined
on B, by (B) = f(u + Br) is non-decreasing for 8 =0, 8 € By,.

Proor. For (i) implies (ii), observe that if 0 < B8; < B: then u + Bir is in the line
segment connecting u + B2r and S (u + B2r) = u — Bor and thus u + Bir € Clu + Ber).
Hence ¢(B81) = ¢(B:) since f is G-increasing.

The converse is the more difficult and useful assertion. It depends on the following
basic geometric fact concerning reflection groups.

Fact4.1. Suppose x € C(z). Then there exists g1, g2 € G and a sequence of vectors Yo,
Y1, + o5 Ve, and ro, « -+, a1 € Ao, such that yo = gix, yr = g22, riy; = 0 and yi1 = yi + vir
where ;= 0,fori =0, .-+, k — 1.

Geometrically, Fact 4.1 means that there is a polygonal path from g;x to g2z, which we
write yo — y1 — - -+ — ¥, and on each affine segment I'; = {y; + 0r;, 0 == v}, 0 = 5
implies y; + ér; < y; + &r;. To show f(x) = f(2), it suffices to show that f(y;) = f(y:+1) and
for this we write

yi+dri=ui+ar; €T,

where u/r; = 0. Hence a = r/y; + 8 = 0 and as § moves from 0 to y;, « moves from r/y; to
riy; + yi. Since u; + ar; < u; + ar; for a < &, we see that

f(yi) = fu + (riydr) < flui + (riy: + vor) = f(yin1),

so f(x) = f(z). The proof of Fact 4.1 is given in Eaton and Perlman (1979) for the general
reflection group. However, this fact can be established quite easily for G = 2,. For G =
2,, a related result due to Hardy, Littlewood and Polya (1934) concerns the existence of
T-transforms; see Marshall and Olkin (1979, page 21) for a discussion.

The content of Theorem 4.1 is that f € & iff f is G-invariant and behaves properly on
certain lines in R", namely f must be symmetric and non-decreasing as 8 € B, moves
away from zero on the line {u + 8r|8 € R'}. Of course, a similar characterization holds
for G-decreasing functions. That is, f is G-decreasing iff f is G-invariant and ¢(8) = f(u
+ Br) is symmetric and unimodal on B, ,, that is, symmetric on B,,, and decreasing on [0,
©) N By,r.

Theorem 4.1 can be used to give an easy proof of a basic convolution result. Take 2
= R" and suppose [ is a density with respect to Lebesgue measure on Z.

THEOREM 4.2. Suppose f, is a G-decreasing function on R". For any bounded G-
decreasing function f,

() = j f(x)fo(x — 6) dx
Rn

is also a G-decreasing function.
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Proor. Letr € A(G) and let u be such that »’u = 0. It must be shown that

Y(u+ Br) = f f@x) folx — u — Br) dx

Rn

is a decreasing function on [0, ). The G-invariance of ¥ is easily verified as f, f; and
Lebesgue measure are all G-invariant. Write x = v + »r with v € H, and » € R, First
integrating on » and then integrating over H,, the above integral is

‘I'(u+,8r)=J J fw+vw)fo(lv—u— (8 —v)) dvdv.
H, J-»

But, for fixed v, f(v + »r) is a symmetric function of » and is decreasing for » € [0, x). Also,
f(v — u — dr) is a symmetric function of 4 and decreases for § € [0, ©). Now, for fixed u and

v’
&p) = f fo+wfolv—u— (8—vr)dy

is the convolution of two symmetric unimodal functions on R’, and hence £ is symmetric
and unimodal (see Wintner, 1939). Then, integrating over H, also results in a symmetric
unimodal function of 8. By Theorem 4.1, ¥ is G-decreasing.

For G = #,, Theorem 4.2 was first proved by Marshall and Olkin (1974). The general
reflection group case was established by Eaton and Perlman (1977) using the proof above.
For G = 2,, this result was proved independently by Jogdeo (1977). Of course, Theorem
4.2 implies that if f is G-increasing, then ¥ is G-increasing. Examples of G-decreasing
functions are provided by any G-invariant function f such that {x| f(x) = v} is convex for
each v € R'. In particular, if f is log concave and G-invariant, then f is G-decreasing.
When fo(x|o) = («/2_7,'0 " exp(—%o~2x’x), then f, is G-decreasing for every reflection
group G so Theorem 4.2 holds for f,. This implies that any mixture (on o) of fo(- | o) also
is G-decreasing for any reflection group G. For G = %, G = 9, or G = 9, U %,, the
density fi(x) = 27" exp(—Z | x:|) is G-decreasing and Theorem 4.2 holds. Further examples
will be given later.

Since there are many useful and interesting parametric families which are not transla-
tion families, it is natural to ask for sufficient conditions on a density p(x| 4) so that

¥(6) =J f(x)p(x| 6)A(dx)

is G-decreasing (or G-increasing) when f is G-decreasing (or G-increasing). When G = £,
Proschan and Sethuraman (1977), Nevius et al. (1977) and Hollander et al. (1977) have
obtained some useful sufficient conditions in order that ¥ be monotone. These results
have been extended to reflection groups in Conlon et al. (1977a, 1977b). We will discuss
general reflection groups but will use a slightly different approach than in Conlon et al. In
the discussion that follows, the reader is urged to keep the following examples in mind:

(i) the translation family example with G taken as %,, 9, or %, U 9,,

(ii) the multinomial distribution with G taken as £,,

(iii) the n-variable Poisson distribution with independent coordinates, a different pa-
rameter for each coordinate and G = £,.

To set the stage for our general discussion, let G be a finite reflection group acting on
R" and let 2 and © be G-invariant Borel subsets of R". A useful property of real valued
functions defined on & X O is the following.
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DEFINITION 4.2. A function 2 on & X © to R' is a decreasing reflection (DR) function
if

(i) k(x,0) =k(gx, g0),x € 2,0 € 0, g€ G, and
(ii) for r € A(G), if r'xr’6 = 0, then k(x, 8) = k(x, S,9).

REMARK 4.1. In the case that G = Z,, DR functions have been studied in a number
of contexts. Savage (1957) considered this property in his study of rank order statistics.
DR functions were said to have “property M” by Eaton (1966) in a paper concerned with
ranking problems. Later, Hollander et al. (1977) introduced the term ‘“decreasing in
transposition” for such functions. See Marshall and Olkin (1979, 6.F) for some related
material.

REMARK 4.2. If we think of k(x, 8) as a likelihood function, the DR property has an
interesting geometric interpretation. For r € A(G), the condition r’xr’§ = 0 means that x
and @ are on the same side of the hyperplane H, = {x|r’x = 0}. Thus, condition (ii) of
Definition 4.2 means that: given x, between the two possible parameter points  and S, 6,
the one that is more likely is the one on the same side of H, as x.

REMARK 4.3. In some special cases, DR functions are related to functions with a
monotone likelihood ratio. Let 2, be a subset of R' and let ©, be a subset of R'. Assume
that Z = 1 X+ X Z1CR"and ©=0; X ... X O; C R". Let £ be defined on %7 X 6,
to [0, =), and consider £ on & X O given by

k(x7 0) = H;;] é(xiy 0!)

for x € Z and 0 € 6. For G = 2, clearly k(gx, gf) = k(x, 8). It is not difficult to show
that k is a DR function (G = 2,) iff £ has a monotone likelihood ratio (see Eaton, 1966).

REMARK 4.4. When 2 on 4 X O satisfies (i) of Definition 4.2, the verification of (ii)
can often be restricted to a much smaller set of reflections than {S,|r € A(G)}. For
example, if (ii) holds for S,, r € A, where A, is a set of generators, then (ii) holds for all S,,
r € A(G). More generally, if A, is a set of roots such that

A(G)={rlr=grl, gEG, T']EA[},
and if (ii) holds for S,, r € A, then (ii) holds for all S,. When G = £,, it is sufficient to
verify (ii) for one particular r, namely (e; —&2)/ V2.

REMARK 4.5. A definition equivalent to Definition 4.2 for functions % has been given
in Conlon et al. (1977a, b). We have chosen the definition above because of the interpre-
tation in Remark 4.2 and because of technical considerations.

A useful connection between G-increasing (G-decreasing) functions and DR functions
follows.

ProrosiTION 4.1. Assume Z C R" is a group under addition, and that G acts on %.
Given f defined on X to R, define k; and k2 on & X ¥ by
kl(xy y)= f(x_y)) kZ(x7 y)= f(x+y)

Then, f is G-decreasing iff k, is a DR function. Also, f is G-increasing iff k; is a DR
function.

ProoF. Assume f is decreasing. Since f is G-invariant, obviously ki(x, y) = f(x — )
satisfies k,(gx, gy) = ki(x, y). For r € A and x, y such that r’xr’y = 0, it must be verified
that ki(x, y) = ki(x, S,y). Writex =u + Brand y=v + yr with 8, yE R' and u'r = v'’r
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= 0. Thus, r'xr’y = By = 0. This implies that |8 — y| = |8 + y|. Since f(w + ar) is a
unimodal function of « for each w with w’r = 0, we have

kix, )= flu—v+ (B—y)r)= flu—v+ (B + y)r) = kix, S;y).

Conversely, assume that &i(x, ¥) = f(x — y) is a DR function. For r € A, u with u’r = 0,
and 0 < oy < a2, we must show that f(u + a;r) = f(u + asr). Now, set x = u + Y%(a; + a2)r
and y = %(az — a1)r. Then r'xr’y = 0 and

flu + air) = ki(x, y) = ki(x, S y) = f(u + aqr).

The case for f increasing is similar.

For G = Z,, Proposition 4.1 is due to Hollander et al. (1977) while the general case is
in Conlon et al. (1977a, b). The following basic composition theorem was first established
by Hollander et al. (1977) for G = £, and was proved for general reflection groups in
Conlon et al. (1977a, b).

THEOREM 4.3. Consider Borel sets %, %, % C R" which are acted on by a reflection
group G. Let ki(x, y) and ka(x, y) be DR functions on £ X % and ¥ X %. Let \ be a o-
finite G-invariant measure such that

ks(x, z) = J ka(x, ¥)k2(y, 2)A(dy)
)

is well defined and finite for all x € & and z € Z. Then ks is a DR function on & X Z.

Proor. That ks(gx, g2) = ks(x, 2) is easily verified from the G-invariance of %, %, and
A. For r € A(G) and for x and z such that r’xr’z = 0, we must show that § = ks(x, 2) — ks(x,
S,z) is non-negative. Define % C % by # = {y|y € %, r'y > 0}. Using the assumed
invariance properties of ki, k2 and A, a bit of manipulation shows that

(4.2) 8= {kilx, y) — ki(x, S P} {ka(y, 2) — ka(y, S 2)}IN (dy).

%
However, when r’xr’z = 0 and y € %, the assumption that %; and k; are DR functions
implies that the integrand in (4.2) is always non-negative. Thus § = 0 and the result

follows.

Theorem 4.3 has a number of interesting applications. This result together with
Proposition 4.1 provides another proof of Theorem 4.2 (in fact, a slight extension of
Theorem 4.2).

THEOREM 4.4. Suppose & C R" is a group under addition and % is acted on by the
reflection group G. Let p be a translation-invariant measure on %. Suppose f, is a G-
decreasing density with respect to u and let f be a non-negative G-decreasing function.
Then

¥(0) = f f@) folx — O)p(dx)
v

is a G-decreasing function of 0 € Z.

Proor. It suffices to show that k;(6, n) = ¥(0 — 7) is a DR function on & X %. But,

¥l —n)= f f(x) fo(x —(60 — n))p(dx) = f flx =m)folx — )uldx),

where the last equality follows from the translation invariance of u. From Proposition 4.1,
k1(8| x) = fo(x — 8) and k(x| n) = f(x — 1) are DR functions. The conclusion follows from
Theorem 4.3.
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REMARK 4.6. Theorem 4.4 applies to the case wheﬁ Z is the set of vectors in R™ with
integer coordinates and u is counting measure. The group of interest here would ordinarily
be #,.

Now, we consider the general problem. As usual, 2 and © are G-invariant subsets of
R™, \is a G-invariant measure on . Suppose k(x, 8) is a DR function on 2" X O such that
k(., 0) is a density with respect to A for each § € ©. Here is the problem: Find further
conditions on % so that

(4.3) ¥(0) = j f(x)k(x, 0)A(dx)

is G-increasing on © whenever f is G-increasing on Z.

REMARK 4.7. The assumptions made on % are not sufficient to show ¥ in (4.3) is G-
decreasing. For example let 2 = R 2and © = {(6:, 62) | 6: > 0, ¢ = 1, 2}. Consider

&(x;, 0:) = {(1)/0" exp(—x/6:;), x>0

x<0
and let

k(x, 8) = [Tf &(x:, 6)).

Take A to be Lebesgue measure on R? and take G = %. The results of Diaconis (see
Marshall and Olkin, 1979, 12.K.3, page 377) show that ¥ is not G-decreasing for all G-
decreasing f.

One possible approach is to consider ¥(d + n) and attempt to verify that this is a DR
function. Now, assume O is closed under addition and assume that 4 C R" is a group
under addition. Then,

Y@+ 1) = f f(x)k(x, 8 + n)A(dx).

Following Proschan and Sethuraman (1977), now assume that {k(-|8):0 € O} is a
convolution family - that is, assume there exists a measure » on 2 such that

(4.4)  k(x,0+7) = J (x = y, 0)k(y, n)v(dy)

v
for x € Z, 0, 7 € O (see Example 3.1). With the further assumption that A is translation
invariant, we have

Y@ +1) = J f(x)k(x, 6 + n)A(dx)
(4.5) = j J fx)k(x — y, 0)k(y, n)v(dy)A(dx)
=f { j flx + y)k(x,ﬂ)k(dx)}k(y,n)v(dy).

When f is G-increasing, Theorem 4.3 shows that the inside integral is a DR function in §
and y. Assuming » is G-invariant, a second application of Theorem 4.3 coupled with
Proposition 4.1 yields that ¥ is G-increasing. Summarizing all of this yields
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THEOREM 4.5. Suppose & C R" is a group under addition and © C R" is closed
under addition. Assume G is a reflection group acting on both % and © and assume that
A is a translation-invariant and G-invariant measure on %. Let k(-, -) be a DR function
on ¥ X © such that {k(-, 0)| 0 € O} is a convolution family with respect to a G-invariant
measure v on Z. If f is G-increasing, then

¥(9) = J’ f(x)k(x, 6)A(dx)
2

is a G-increasing furlction on .
Proor. The proof is given above.

Although the assumptions of Theorem 4.5 are rather restrictive, this result does have
a number of important applications. .

ExamPLE 4.2. (Poisson; Nevius, et al., 1977). In this case, let Z be the set of integers
in R', & = Z" and let A be counting measure on %. With © = (0, »)", consider
e "gF

xi!

k(x, 0) =[]

Ijo, «)(2x:)

The assumptions of Theorem 4.5 are readily chécked with G = £, and » = A. If we let Py
denote the probability measure on 2 defined by k(-, -), then, in terms of the notation in
Section 1, we have Py < Py, whenever 0 < §’. Such families {P;|§ € O} were called Schur
families in Nevius et al. (1977).

EXAMPLE 4.3. (Gamma shape family; Nevius et al., 1977). Take 4 = R" and © = (0,
)" with A as Lebesgue measure. Define . by

X0 g™
0) =T =
k(x, 9) ")
With G = £, and » = A, the assumptions of Theorem 4.5 are easily checked.
In the case that G = £, other examples of Schur families can be constructed by
conditioning and by mixing.

Io, ().

ExaMPLE 4.4. (Multinomial; Rinott, 1973, Nevius et al., 1977). Consider the multinom-
ial density

x,

k(x|p) = N![[= (p )I[o, ) () IN(ZT x;),

x!
where each x; is an integer, 0 < p; < 1, 37p; = 1 and In(Z1x;) is the indicator of {Z7x; =
N}. The sample space, %, and the dominating measure are the same as in Example 4.2.
Now suppose f is a Z.-decreasing function and consider a random vector X € % whose
components are independent Poisson’s with parameter p;, { = 1, - - -, k. Conditional on
3tx; = N, X has the above multinomial distribution. But, the expectation of f under the
multinomial distribution is proportional to the expectation of FX) = InCIX) f(X).
However, fis #.-decreasing so by Example 4.2, this expectation is Z,-decreasing in p. Thus
the multinomial family is a Schur family.

ExampLE 4.5. (Dirichlet; see Application 4.2 in Nevius et al., 1977). Let X € R" have
independent coordinates with the ith component having a Gamma distribution with
density

X

x0le

— . . l
F(0,) I(O, w)(xz)y xlER )
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where §; > 0,i =1, ---, n. Let f be a Z,-decreasing function ~deﬁned on (0, )" (the
complement of this set in 4 has probability zero) and note that f defined by

fx) = F((Zhx) %)

is also Z,-decreasing. Thus, from Example 4.3, the expectation of f(X) is Z,-decreasing in
the vector §. But (£2X;)"'X has a Dirichlet distribution with parameter vector §. This
shows that the Dirichlet family is a Schur family.

ExaMPLE 4.6. (Negative Multivariate Hypergeometric; see Application 4.2 in Nevius
et al,, 1977). Let Ki(- | p) be the probability measure of the multinomial distribution and
let K(- | @) be the probability measure of the Dirichlet distribution. Consider Ks(- | -)
given by

K- |6) = j Ki(- | p)Ka(dp) 9).

From Examples 4.4 and 4.5, K;(-|-), i = 1, 2 maps %, -increasing functions into %,-
increasing functions. It follows easily that K(- | -) does the same. (This argument holds in
much greater generality; see Section 6). But the Dirichlet mixture of a multinomial
distribution yields the negative multivariate hypergeometric distribution, so {K;(- | 6)} is
a Schur family.

For the case of G = %,, many other examples and applications are given in Marshall
and Olkin (1979). Although Theorems 4.4 and 4.5 are essentially the only general results
currently available, in some cases, a direct verification that

4.6) v(9) = f f(x)k(x, 8)A\(dx)

is G-increasing (or G-decreasing) is possible. What must be shown is that ¥ is G-invariant
and for r € A(G) and u such that r’u = 0, the function

n(B) = ¥(u + Br)

is an increasing (or decreasing) function of 8 for 8 = 0 (when u + Br € 0). In fact, since
Theorem 4.5 is relatively recent, it should not be surprising that many results were first
established using this direct approach. Examples of the direct approach can be found in
Eaton (1970, 1974), Rinott (1973) and Gleser (1975).

To illustrate the usefulness of the general results for reflection groups, we now will
discuss a method for obtaining probability inequalities when covariance matrices change
in special ways. First suppose that 2, is a fixed p X p positive definite matrix and define
3(8) by £(0) = Xy + 06’ for § € R”. Particular cases of such covariances have occurred in
a number of contexts; for example, see Dunnett and Sobel (1955), Dunn (1958) and Das
Gupta et al. (1972). When X is N (0, 2(6)), the problem is to describe the behavior of

¥(0) = &f(X)

for certain types of functions f.
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REMARK 4.8. When %, is diagonal, say 3o = D and
1
folx) = {0

if |x|=<a, i=1..-,p,
otherwise,

then
Y(0) =éfo(X)=Py(| X, |=ai,i=1, ---, p).

If Xis N(0, D + 68’), it will be shown below that ¥ (0) is a 2,-decreasing function so ¥ (0)
= ¥ (#). This inequality should not be confused with the inequality of Dunn (1959). Fix 4
and let D, = D + D, where D; has diagonal elements 63, ---, §%. When X is normal,
Dunn’s result implies that

\I'(0) ZPD,('XL‘I =, i= 17 "'yp)-

A generalization of this inequality is given in Das Gupta et al. (1972), see their Corollary

3.1 and the ensuing discussion.
To proceed with the development here, first write Z, in a spectral decomposition as

3o =28, }\ixixf,

where A, --- , A, are the eigenvalues of £ and {xi, - - -, x, } is an orthonormal basis of R”
consisting of eigenvectors of 2. Let S; = I, — 2x;x} so S; is a reflection and note that

5:568i=39, i=1,---,p.
Now, let G be a reflection group acting on R” such that gZ,g’ = Z, for all g € G. In
particular, G could be the reflection group generated by the reflections Sy, - - -, S,.

ProPOSITION 4.2. Suppose X is N, (0, =y + 60’), and G is a reflection group such that
8308’ =3 for all g € G. If f is a G-decreasing function, then

¥(0) = &of(X)

is a G-decreasing function.

Proor. First observe that X has the same distribution as Z + Y6 where Z is N,,(0, ) and
is independent of Y € R' which is N(0, 1). Fix Y = y and let

x(0, y) = 6f(Z + y9).
With 5 = y6, the density of Z + n is
p(Z =) = (V2m) ™| 2|72 exp{—(Z — ) 251 (Z — n))}.

Since p(-) is log concave and is G-invariant (gZ0g’ = 3 for g € G), it follows that p(.) is
G-decreasing. Theorem 4.1 implies that &f(Z + 7) is a G-decreasing function of 7. It is then
easy to show that for each y, x(6, y) is a G-decreasing function of § and hence that

¥(0) = éx(6, Y)

is G-decreasing. The proof is complete.

ExaMPLE 4.7. Suppose 3 = D is diagonal and take G = 9,, the group of coordinate
sign changes. Also, take fto be

flx) = {(1)

Then Z(8) = D + 60’ and

if |X,~|5ai, i=1, ---,P
otherwise.

\I’(o) =P0(|Xilsai7i= 1) "'yp)'
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Proposition 4.2 implies that ¥ is 9,-decreasing, that is, ¥ is a function of | 6|, - - -, | 6, | and
is decreasing in | ;| fori=1, -- -, p.

ExXAMPLE 4.8. Suppose 3, has intraclass correlation structure - that is, S = 02R where
the diagonal elements of R are all one and the off diagonal elements of R are all p, —1/(p
— 1) <p <1 Take G = £, so g3eg’ = I, for all g € G. Then, if f is any Z#,-decreasing
function (Schur concave function) and 2(8) = 3 + 66, then

¥(0) = &f(X)
is #,-decreasing when X is N (0, Z(6)).

EXAMPLE 4.9. Suppose 2 = I, and let G = %, N 9,. As in the previous examples, if
fis G-decreasing then ¥(6) = &f(X) is G-decreasing when X is normal.

The extension of Proposition 4.2 to multivariate distributions which are scale mixtures
of the mean zero multivariate normal is quite easy. However, the validity of Proposition
4.2 for distributions with densities of the general form

px|8) = |2(0) | 2q(x’=(06)'x), x€R”

is in question.

A natural question to ask is whether or not any of the results of this section are valid for
non-reflection groups. We will focus our attention on Theorem 4.2 and show by counter-
example that this result is false with a vengeance for some very simple rotation groups in
R?. Let G, be the group of counterclockwise rotations through /2, so that G4 has four
elements. Also, let f, be defined by

if |x=1,

3|~

folx) =
0 otherwise,

s0 fo is a density with respect of Lebesgue on R2 Let 6, € R have coordinates (10, 10) and
let 6, have coordinates (10, 0) so 6, is in C(6o), the convex hull {gfy|g € G4}, that is, 6; =
0;. With S = {x ||| x|| = 1}, define the set A by

A = Ures+a,C (%).

Then, u € A implies that C(z) C A so I, is a G4-decreasing function. Obviously, fo is a G-
decreasing function. Now, consider

¥(9) = f Ly (x)fo(x — ) dx.

R2

We will now argue that ¥ is not a G,-decreasing function although ¥ is the convolution of
two G-decreasing functions. First note that ¥(6,) = 1 since S + 6, C A and the support of
fo(x — ) is S + 6. However, a careful analysis of the set A will convince the reader that
S + 6, is not contained in A since the boundary of the set A “caves in” where the boundary
intersects the coordinate axes. Since the support of fo(x — 6) is S + 8, it follows that
V¥(0,) < 1. But 6, < 6, so ¥ cannot be Gs-decreasing. One possible attempt to salvage
something in the current situation is to ask for conditions on a particular density, fi, so
that

¥1(6) =f f@x)fi(x — 0) dx
R2

is G-decreasing whenever fis G-decreasing. However, even for f; (x) = (27)—1 exp(—% || x ||?),
it is not known whether or not ¥, is G-decreasing when fis G-decreasing. There is nothing
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special about rotations through 7/2: a similar analysis provides a counter example when G,
acting on R? is the group of rotations through 27/k for k = 3,4,5, - - - .

5. Inequalities for Special Convex Sets. The results of this section are related to
the problem introduced in Problem 2.2. Our approach here is to proceed from first
principles and establish a few of the important facts concerning log concave functions, the
behavior of probabilities of convex symmetric sets under translation, and the behavior of
probabilities of some special convex sets when correlations change.

We begin with a basic result concerning log concave functions.

DEFINITION 5.1. A function fdefined on R" to [0, =) is log concave if for all x, y € R"
and A € (0, 1), we have
(5.0) fx + (1 =Ny) = ).
The following theorem first appeared in Prékopa (1973), but the proof given here is due to
Brascamp and Leib (1974).

THEOREM 5.1. Suppose f: R™ X R" — [0, ») is log concave on R™ X R" and
g(x) = f f(x, 2) dz
Rn

is finite for each x. Then g is also log concave.

We first argue that it suffices to prove the theorem for m = n = 1 and when f has
compact support. Given % > 0, let I, denote the indicator of the set {(x, 2) || x|* + || ||
=< k} so I is log concave. The Monotone Convergence Theorem shows that

&r(x) = J’ f(x, 2)Ir(x, 2) dz
Rn

converges to g(x) for each x. Since f- I is log concave and (5.0) is preserved under pointwise
limits, it suffices to prove the Theorem for f with compact support. Now, g is log concave
on R™ iff for each x; and x, € R™, the function g(t) = g(x; + tx2) is log concave on R'.
Since f(t, 2) = f(x1 + tx,, 2) is log concave on R' X R™", it suffices to prove the theorem for
n = 1. However, if the result is known to hold for m = 1, then an easy induction argument
will establish the Theorem for general m.

We now proceed with the proof for m = n = 1 when f has compact support. First, a
technical lemma.

LEMMA 5.1.  Let C be a bounded convex subset of R* and define go by

Lolx) = f Ic(x, 2) dz.

—00

On the set D = {x| go(x) > 0}, & is a concave function.

Proor. For any x, the set
C.={z|(x,2) € C}

is a convex subset of R!. For x;, x; € D, go(x1) > 0, i = 1, 2, so C, must be an interval with
a non-empty interior, say int(Cs, ) = (a;, b:) with a; < b;, i = 1, 2. Thus

&o(x;) = J' Ic(x, 2) dz = b; — a;, i=1,2

For any two sets A and B, define A + B={a +b|a €A, bE B}, and\A = {Aa|a E A}
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with A € R'. For A € (0, 1), it is easy to show that
Crutiomss 2 ACs, + (1 = N)Cr,.

But, the interior of AC,, + (1 — A)Cy, is (Aa; + (1 — A)az, Aby + (1 — A)by). With i, denoting
Lebesgue measure on R', we have

SoAx1 + (1 — Nx2) = i(Crxyra-nx) = p1ACy, + (1 — AN)Cy,)

= }\bl + (1 - }\)bz - (}\a1 + (1 - }\)ag) = }\go(xl) + (l - }\)go(xz)-

The proof of Lemma 5.1 is complete.
To complete the proof in the case of m = n = 1 when f has compact support, it suffices
to show that

(5.1) gAx 4+ (1 = Nx2) = gMx)g ™M)

for A € (0, 1) and for x; such that g(x;) > 0, i = 1, 2. Clearly, fis bounded. Without loss of
generality, assume

(5.2) sup.f(x, z) = sup.f(xz, 2) = so.

(If this is not the case, replace f by e**f(x, z) where b is chosen so (5.2) holds. Multiplication
by e** does not affect (5.1).) Since g(x;) > 0, so > 0. For y > 0, let

D(y) = {(x, 2) | f(x, 2) = v}
Since

flx, 2) = f Ipo)(x, 2) dy
o
we have
glx) = J J In(x, 2) dz dy.
0 Jw

For each y € (0, so), the set
D.(y) = {z|f(x:, 2) =y} C R'

is non-empty, as y < s, and is convex, i = 1, 2. The log concavity of f and the condition
&(x;) > 0 imply that D,.(y) has a non-empty interior for each y € (0, so). Now, we apply
Lemma 5.1 to the function x — [Z. Ip.,) (x, 2) dz for 0 < y < so to obtain

gAx; + (1 —Mxp) = J J’ Iny(Ax1 + (1 — AN)xe, 2) dz dy
0 Jo

ZJ {7\ J Ipy(x1, 2) dz + (1 —A) J Ing) (%2, 2) dZ} dy
0 —o0 —o0

=Ag(x1) + (1 = Ng(xz) = gMx1)g' ™ (x2).
The final inequality follows from the arithmetic-geometric mean inequality. This completes
the proof of Theorem 5.1.
Theorem 5.1 has a number of important consequences. The following result, due to
Davidovic et al. (1969), is one. It shows that the convolution of two log concave functions
is log concave.

THEOREM 5.2. If h; and h; are log concave functions on R" such that

gx) = J hi(x — 2)h2(2) dz

exists for each x € R", then g is log concave.
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Proor. The function
f(x, 2) = hi(x — 2)h2(2)

is log concave on R™ X R". The result follows immediately from Theorem 5.1.

LemmMa 5.2.  If C; and C. are convex sets in R"™ and u, is Lebesgue measure, then the
set

D(y) = {x|p(C: N (C2 + 1)) = v}

is convex for each y € [0, ).

Proor. This result, proved originally by Sherman (1955), is deduced from Theorem
5.1 as follows. The function

£(x) = pa(CL N (Co + %)) = f Io,(2)icy(x — 2) dz

is log concave on R". Thus, the upper sections of g, namely D(y), are convex.

Now, we will establish a result due to Mudholkar (1966) which generalized an important
theorem proved by Anderson (1955). First, we need to introduce one possible definition of
a unimodal function on R®. This definition is due to Anderson (1955); see Dharmadhikari
and Jogdeo (1976) and Das Gupta (1980) for other possible definitions.

DEFINITION 5.2. A function fon R" to R' is A-unimodal if {x|f(x) = v} is convex for
eachv € R

Now, let G be a subgroup of @, so each g € G preserves Lebesgue measure. Recall that
G induces a pre-order on R" - that is, x < y iff x € C(y) where C(y) is the convex hull of

{ev|g € G}.

LEMMA 5.3. Iff:R"™ — R'is A-unimodal and G-invariant, then f is G-decreasing.

ProoF. For x € C(y), we must show that f(x) = f(y). But, the set D = {z|f(2) = f(¥)}
is convex and invariant. Since y € D, gy € D for each g € G so C(y) C D as D is convex.
Thus x € D and the proof is complete.

THEOREM 5.3 (Mudholkar, 1966). Suppose fi and f. are non-negative, A-unimodal
and G-invariant. If h(x) = [ fi(x — ) f2(y) dy is finite for each x, then h is G-decreasing.

ProoF. Clearly h is G-invariant. Let Di(y) = {x|f;(x) = v}, 0 < y < +. Since fi(x) =
I& Ip(x) dy, we have

h(x) = f J f Ip,oh(x — y)Ip,(y) dy dy dr.
0 0 Rn

Since the set of non-negative G-decreasing functions is a convex cone, it suffices to show
that

ho(x) = f Ip,»(x — y)p,(y) dy
o

is G-decreasing. Of course, D:(r) and D,(y) are convex G-invariant sets. Hence A, is G-
invariant. But, Lemma 5.2 implies that A, is also A-unimodal. By Lemma 5.3, A is G-
decreasing and the proof is complete.

Recall that fon R" to R' is called symmetric if f(x) = f(—x) for all x € R".
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THEOREM 5.4 (Anderson, 1955). If fi and f> are non-negative, symmetric and A-
unimodal and if

h(x) = J filx — ) fo(y) dy
Rn

exists for each x, then h(axo) is a symmetric unimodal function of a € R' for each x, €
R™,

ProoF. Consider G = {I,, — I,,} acting on R", where I, is the n X n identity matrix.
Clearly, C(x) = {Ax + (1 — A)(—x) | 0 = A = 1}. A function A, defined on R" is G-decreasing
iff Ao is symmetric and a — ho(ax,) is decreasing on [0, ) for each xo € R". The result now
follows immediately from Theorem 5.3.

REMARK 5.1. Here, we briefly describe an extension of Anderson’s Theorem due to
Sherman (1955). For a real valued function on R", let ||f]l: = [ |f(x)]|dx, let ||f] =
sup: | f(x) |, and let || f||s = max{| fll1, | f||}. Also, let ¥, denote the closure under | - ||s of
the convex cone of functions generated by the indicator functions of compact convex
symmetric sets in R". Thus, functions of the form

(*) flx) = 2511 aiIc,(x)

for a; = 0 and compact convex symmetric C;, i = 1, ---, m are all in %;. For compact
convex symmetric sets C; and Cs, the function

o(y) = J Ic(y — x)Ic,(x) dx
Rn

is log concave, continuous, and has compact support. Thus, for each u > 0,
Au) = {y|o(y) = u}
is a compact convex set. It is not difficult to show that
lim.o | €' X521 Lagin(+) — o(-) | =0

and the same holds for || - ||s. Thus ¢ € 4;. The continuity of convolution in || - ||s shows
that the convolution of the %; functions is in %; (Sherman, 1955). However, the convolution
of two symmetric A-unimodal functions need not be A-unimodal (see Anderson, 1955).
Using similar arguments, it can also be shown that the marginal of %; function is again a
%, function, on a lower dimensional Euclidean space.

Theorems 5.1 and 5.2 have lead to a number of interesting and useful generalizations;
for example, see Borell (1975) and Rinott (1976). In the statistical literature, the main
applications of Theorems 5.3 and 5.4 have been to establish properties of testing procedures
such as unbiasedness and monotonicity of power functions. For some typical applications,
see Das Gupta et al. (1964) and Eaton and Perlman (1974). Ordinarily, Theorems 5.3 and

5.4 are stated as follows:

If fo is a G-invariant A-unimodal density on R™ and if A is a convex G-invariant
set, then h(0) = [afo(x — 0) dx is a G-decreasing function.

Here, 6 is a translation parameter and A(#) is the probability of A when the density is fo(x
- 6).

Although Anderson’s Theorem is stated in terms of a translation parameter, it does
have applications to other types of problems. In what follows, we will establish a result due
to Das Gupta, et al. (1972) which shows that probabilities of certain convex sets are
monotone functions of the multiple correlation coefficient. A formal statement of this
result follows. Let X be an n X n positive definite matrix and for A € [0, 1], define X, by

_ 2 A2
= (AEZI 022)
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where 2;; is (n — 1) X (n — 1). Since A € [0, 1], =, is positive definite. Consider Y € R"
with a density of the form

(5.3) | =A% f(y' 2X'y), yER™

THEOREM 5.5 (Das Gupta et al., 1972). Let C C R™' be a symmetric convex set and
suppose h = 0. Partition Y as

Y
Y=|Y.1], YeR"2

Y,
For A € [0, 1], let
¥\ =P{(Y, Y1)’ EC, |Y.|=h}.

.

Then ¥, is non-decreasing.
Before beginning the proof, a few remarks are in order. The usual reduction to canonical
correlations shows that there exists an n X n non-singular matrix A of the form

_ An 0
(5 o)
with A;; being (n — 1) X (n — 1) and as; > 0 such that
I, 0
(5.4) A A = 1 M
0 [Ap 1

where 0 < p < 1; the trivial case of p = 0 is omitted. Of course, p is the multiple correlation
coefficient between (Y, Y,_;) and Y, (assuming the coordinates of ¥ have second moments)
when the density of Y is (5.3) with A = 1. Thus the effect of varying A is to vary the
multiple correlation coefficient. Setting Z = AY, and absorbing p into A, it suffices to show
that

(5.5) Vo(\) = PA{(Z, Zn-1)’ € Aii(C), | Z,| < axh}

is non-decreasing when Z has the density
|\ 7*f(z' @31 2), zER",

I, 0
Q= 1 A, 0<A<l
0 A1

where

Now, write @\ = T)\T} where

I, 0
T\= 10 , 0=A<1,

0 |[A V1-=A
and set Z = Th»X where X has the density f(x” x) for x € R". Then (5.5) becomes
(5.6) P(\) = P{(X, Xp-1) € C1, | A X1 + V1 = N2 X, | < 1)

where h; = axph > 0, and C; = Ay;(C) is again a symmetric convex subset of R”™'. The
importance of the representation (5.6) is that the distribution of X is orthogonally invariant
on R" since the density of X is f(x’ x) on R". In what follows, it will be shown that ¥, is
non-decreasing when X has the uniform distribution on S,—; = {x||| x| = 1, x € R}. This
case easily implies that ¥, is non-decreasing for all X which have ¢,-invariant distributions.

We now proceed to the technical details. In what follows, all convex sets are assumed
to be closed. This assumption does not affect the generality of Theorem 5.5 since the
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Lebesgue measure of the boundary of a convex set is zero. Let p, denote the uniform
probability measure on S, C R*, and let B, = {x|x € R*, || x|| = 1}. For

w= (w) ERY, weR",
recall that for any integrable function ¢ on S;_;,
5.7 [ athmmmman =0 | g T @
Sp—1N {wr>0} B, ,

where c(k) is a fixed positive constant.

LEMMA 5.4. Let fon R" to [0, ) be a symmetric A-unimodal function with continuous
partial derivatives. For each x € R”,

(5.8) J’ f(x + w)x'wp,(dw) < 0.
Syt

Proor. Without loss of generality, we can take x = fe, where ¢ > 0 and &, is the nth
standard unit vector in R". This reduction uses the ,-invariance of p,. With

w=<w>, weE R,
Wy

Wi(t) = J f(h, t + wy)wap(dw) =0
Sp-1

it must be shown that

for ¢ = 0. Using a change of variable and (5.7), we have

¥y(t) = c(n) f (i, ¢ + VT TwlP) — £, ¢ — NT= @)} dui
B,

V1w 2
= c¢(n) J {J (D.f)(w, t + u) du} duw,
B,y N V1w

where D, denotes partial differential with respect to the nth argument. Interchanging
integration and differentiation, we have

Y3(t) = c(n) 9 {J Ip (W, w)f (W, u + t) dudu)} .
..

However, the expression inside the square brackets is the convolution of two symmetric A-
unimodal functions evaluated at e, and hence is a decreasing function of ¢, £ = 0 (Theorem
5.4). Thus, ¥3(t) = 0 for each t = 0.

REMARK 5.2. Inequality (5.8) does have a geometric explanation. If f were the indicator
of a convex symmetric set, say f = I¢, then the left hand side of the inequality is

Cov{lc-(W), x’ W}

where W is uniform on S,—_;. Now, x’ W is the component of W in the x-direction, and C
has been translated so its center is at —x, in a direction opposite to x. Thus, when x” Wis
large Ic—.(W) tends to be small, and conversely. Hence it is not surprising that this
covariance should be non-positive.
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LeMMA 5.5. Suppose U has the uniform distribution on S,—; and partition U as
U ..
U=\|U,.], UeR™2
U,
Let C be a convex symmetric set in R™™" and let h > 0. For A € [0, 1],
Y\) = P{(U, Up-1)’ € C, |AUp—y + V1 = X2 Uy, | < h}

is a non-decreasing function of \.

ProoF. Let f: R — [0, 1] be the indicator function of C and let g: R' — [0, 1] be the
indicator of [—A, A]. Then,

YY) = &{f(U, U—)g U1 + V1 — N Uy)}.

Fore> 0, let

1
fi(x) = J’ (V2 &)~V exp(— o7 [lx — y||2>f(y) dy
Rn*l

and let
1
&g(2) = J (V2 8)_19XP{—' 247 (z — y)z}g(y) dy.
R!

Then both £, and g. are symmetric A-unimodal functions, bounded and continuous with
continuous partials and lim,_of.(x) = f(x) for x # 8C, lim,_.0g.(2) = g(2) for z # + h.
This implies that

T, (\) = E{f.(U, Up1) g AUn1 + V1 = X2 U,)}
converges to ¥(A) as ¢ — 0. Thus it suffices to show that ¥, is non-decreasing. But
TIA) = E[£(U, Up){Un-1 = A1 = N 2U,} g2 (A Upy + V1 = N2 Up)]
= (1= N2 (V, V1 = N Vot + AV,) Vi g2 (Va)),

V = Vn—l = — —)\ Un—l .
Vn 0 1 }\ >\ v 1 - Az Un

where

Since the transformation from U to V is orthogonal, V has the uniform distribution on
Sn.-1. Now, we argue with V,, € (-1, 1) fixed. First, V,,g.(V,) < 0 since g. is a symmetric A-
unimodal function on R. Conditional on V,, (V, V,_:) has a uniform distribution on {x | x
€ R, ||x||>=1— VZ}. A direct application of Lemma 5.4 shows that

Vo6 {f(V, V1 =N Vi + AV,) Vet | Vo) =< 0.

This implies that g.(V},) times the above conditional expectation is non-negative so ¥/ is
non-negative. This completes the proof.

To complete the proof of Theorem 5.5, we will show that ¥,(A) given in (5.6) is non-
decreasing. Recall that X € R" has an O,-invariant distribution if (i) P(X = 0) = 0 and
(i) (X)) = ATX) for all ' € @,. (Condition (i) is to void some annoying technical
problems).

Facr 5.1. The random vector X € R™ has an (,-invariant distribution iff AX) =
L(RU) where U is uniform on S,_;, R is a positive random variable, and R is independent
of U.
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Since the X occurring in (5.2) has an (),-invariant distribution, we can use Fact 5.1 to write
h

=— | R;.
7| %)

But, for each R, the above conditional probability is non-decreasing in A, by Lemma 5.5,
so ¥, is non-decreasing. Thus Theorem 5.5 is proved.

Wy(A) = éﬂP{(U, U,-) e% C, | AUn1 + V1 =N U,

REMARK 5.3. The above proof of Theorem 5.5 is a minor modification of the original
proof given in Das Gupta et al. (1972).

A key step in the above proof is the representation of #(Y) as ¥ (HX) where H is a
non-singular n X n matrix and X has a spherical distribution. We will now discuss some
possible generalizations of Theorem 5.5 when .#(Y) has such a representation. Partition Y
into YE R?and Y € R7sop + g = n. Let C; C R? and C, C R? be two convex symmetric
sets, and assume without loss of generality, that ¢ < p. When #(Y) = £ (HX) where X has
a spherical distribution, the distribution of Y depends on H only through HH’ since ¥ (X)
= #(TX) for allT € 0¢,. Now, write HH' in its canonical correlation form:

Ap 0) I (D) (Au 0>’

HH'=<
0 Ay ©,D) I, 0 A

where A1 is p X p and Ay is ¢ X ¢ with both nonsingular and D is a ¢ X ¢ diagonal matrix
with diagonal elements 1 > 6, = ... = 4, = 0. This implies that

_(Au O I, 0
H= < 0 A22)<(0, D) (I, - DY 1/2)F0

where Ty € 0, and (I, — D?? is a ¢ X q diagonal matrix with diagonal elements
(1-6»)"%i=1,--.,q.Since X has a spherical distribution, we have

(5.8) P(YEC, YEC)=P{XeC, (0,D)X+ (I, - D»"*X € Gy} =¥ ()

where C; = A7'C;, i = 1, 2, is a convex symmetric set. Here, § is a g dimensional vector
with elements 6, - - -, 0, as defined above. The problem is to describe the behavior of ¥.
When ¢ = 1, Fact 5.1 and Lemma 5.5 imply that ¥ is nondecreasing. This observation
yields a minor improvement on Theorem 5.5 since a density for Y was not assumed in this
discussion. When ¢ > 1, virtually nothing is known about ¥. If ¢ = 2 and Y is multivariate
normal, Pitt (1977) has proved ¥ (8) = ¥ (0), but the method of proof does not extend. Of
course, a result for the uniform distribution on S, _; would carry over to all Y’s, but even
a result for the multivariate normal would be useful.

Although the distribution £ (Y) = £(HX) may not have mixed second moments, so Y
will not have a covariance matrix, the numbers 6, - - -, 6, do have a geometric interpre-

tation. First, identify R” with those vectors in R” of the form g € R" where % € R? and

identify R? with those vectors of the form (2) where ¥ € R?. With this identification,

regard R” and RY as subspaces of R". Then, 6, ---, 0, are the cosines of the angles
between these two subspaces of R" computed in the inner product (-, -) given by

(x,y) =x'HH'y,  x,y € R"™

Of course, when Y does have a covariance, 6;, --., 8, are the canonical correlations
between Y and Y.

Although Theorem 5.5 is rather special, it does have a number of useful statistical
applications. Some of these are given in Das Gupta et al. (1972). The particular parame-
terization chosen for Theorem 5.5 seems rather natural, but there are others of interest.
For example, the generalization of Slepian’s theorem given in Section 5 of Das Gupta et al.
(1972) is expressed in terms of correlations as opposed to canonical correlations.
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6. Representation Theorems. In some situations, it is possible to obtain a useful
structural relationship between two probability measures P; and P, which satisfy

(6.1) J’f(x)Pl(dx) = f f(x)P:(dx), fEZF

where & is some given convex cone of functions on a measurable space (%, #). For
example, in Sections 3 and 4, Zis the convex cone of non-negative bounded increasing (in
a given pre-order) functions. The results of this section are ordinarily of little use in
verifying (6.1), but do provide important theoretical information.

Before beginning the abstract discussion, we first look at an example. On R’, a
distribution P; is stochastically smaller than P, (P; < P,) if (6.1) holds where Fis all
bounded non-negative increasing (in the usual order) functions. Let X; have distribution
Pi,i=1,2,SOP1<P2iff

(6.2) Ef(Xy) = 6f(Xa), fes

This condition involves only the marginal distributions of X; and X,. However, suppose
(X1, X,) had a joint distribution on R? such that the conditional distribution of X; given
X, = x; had all its mass in U (x;) = {x|x < x5}. Then, conditionally,

(6.3) E{f(X1)]| X2} = f(X3) w.p.l

since X; is in U(X;) w.p.1. Taking expectations of both sides of (6.3) yields (6.2). Thus, the
above condition on the joint distribution is sufficient for P; < P,. For simplicity, assume
the distribution function of X;, say F;, is continuous, { = 1, 2. We will now argue that the
above condition, i.e., the existence of a conditional distribution satisfying (6.3), is also
necessary. First observe that P; < P, iff Fi(x) = Fa(x) for all x € R!. Construct a joint
distribution on R? as follows: (i) X, has distribution F», and (ii) given X; = x, X; =
F1Y(Fy(x2)) w.p.l.

When Fi(x) = F,(x), then x = F1'(Fas(x)) so given X» = x, X1 € U(xz) w.p.1, and it is
easily verified that X; has distribution F;. For the case at hand we have shown that P; <
P, iff there exists a distribution A on R? with marginals P; and P, such that, given x, the
conditional probability under A of U (x) is one; that is, X; =< X, w.p.1 under A.

The obvious question is: To what extent can the above observation be carried over to
other cases? In particular, can we obtain results similar to that above in the cases
considered in Sections 3 and 4 of this paper. More generally, suppose that Z'is a complete
separable metric space (a Polish space), 4 is the o-algebra of open sets, and =< is a pre-
order on % such that

U={x,)€E X X|x=<y}
is a closed subset of Z X Z. In this case, the pre-order is called closed. Let # be the
convex cone of measurable non-negative bounded increasing functions. For P;, P; € ./,
write P, < P, if (6.1) holds. If A is a probability on 2 X %, then @:(B) = A(B X %) is the
first marginal of A and @:(B) = A(Z X B) is the second marginal of A.

THEOREM 6.1. (Strassen, 1965; Kamae et al., 1977). Under the above assumptions, the
following are equivalent. (i) P, < P, (ii) There exists a probability A on & X % with first
marginal P, and second marginal P; such that A\(U) = 1.

Essentially, this result follows from Theorem 11 in Strassen (1965). The above equivalence
and other useful equivalences are given in Kamae et al. (1977) for the case that < is a
partial order, but the same arguments apply to the pre-order case. Condition (ii) says that
we can construct random variables (X;, Xz) € & X %, with joint distribution A, such that
X has distribution P;, i = 1, 2, and X; < X, w.p.1.

REMARK 6.1. In the case of Proposition 3.1, the explicit construction of A is easy once
P, and P, (with n < @) are specified.
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In Proposition 3.1, 3.2, and in Examples 4.2 to 4.6, the family of distributions increased,
in the sense of (6.1), when the parameter vector increased in the specified pre-order. To
discuss this type of situation in general, it is useful to introduce Markov kernels. Consider
two Polish spaces %1 and % with o-algebras %, and %,. A Markov kernel K is a function
defined on %; X % to [0, 1] such that K(- | x;) € # (%) and K(B]| -) is %. measurable for
each B € %4,. Given pre-orders <; on %;, i = 1, 2, a Markov kernel is called increasing if
X2 <3 y2 (X2, y2 € %>) implies that

(6.4) J f(x)K(dexz)SJ f@)K(dx|y), fEA,

where # is the convex cone of non-negative bounded increasing functions on (%, <).
When (6.4) holds, we write K(- | x2) < K(-|y.) in accordance with our previous usage of
< for elements of ./ (21).

N

ExamPLE 6.1. Take %1 = R", %> = (0, )" and <; to be the pre-order defined on %, by
the permutation group %,, i = 1, 2. Let K(- | §) be the probability measure of the Gamma
shape family, § € %;, defined in Example 4.3. The results of Section 4 show that K (- | §)
is an increasing Markov kernel (also called a Schur family for the particular pre-order of
this example). Most of the other examples in Section 4 can also be used to construct
increasing Markov kernels.

REMARK 6.2. It is useful to interpret condition (ii) in Theorem 6.1 in terms of kernels.
Suppose (X1, Xp) € & X & has the joint distribution A such that A(U) = 1 and A has
marginals P; and P,. Then, the conditional distribution of X; given X, = x, (which exists
since % is Polish), say K(- | x2), can be chosen so that K(U (x)| x2) = 1 where U(x.) =
{x1| x1 = x2}. By definition, we have

P(B) = f K(B | x2) Pa(dx>), Be 4.
Note that such a K satisfies
Jf(xl)K(dxl | x2) = f(x2) w.p.1, fEF

and integrating this (P,) gives (i) of Theorem 6.1.

Now, suppose X;, i = 1, 2, 3 are Polish spaces with pre-orders <;, i = 1, 2, 3. Suppose
Ki(- | -) is an increasing kernel on %, X %; and K(- | -) is an increasing kernel on %, X
Zs. Then the kernel K; on 4, X %; defined by

K;3(B| x3) =f K (B| x2) Ka(dx2 | x3)

A2

is easily shown to be an increasing kernel. This is another example of a composition result
similar in content to Theorem 4.3 and to Proposition 3.4 in Karlin and Rinott (1980). An
application of this is Example 4.6.

There are a number of important applications of and results pertaining to increasing
kernels we will not discuss in detail here. For example, applications to stochastic processes
includes the work of Daley (1969), Kamae et al. (1977), Harris (1977), Kamae and Krengel
(1978), and Karlin and Rinott (1980). Alternative proofs of Theorem 3.2 which used
properties of increasing kernels occur in Kemperman (1977) and Edwards (1978).

We now return to the general situation where (%, #) is a measurable space, Zis an
arbitrary convex cone of nonnegative bounded measurable functions. As usual, for P;, P,
€ M, write P; < P, to mean

(6.5) f f(x)Pi(dx) = j fx)P(dx), fEZ
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To provide a sufficient condition for (6.5) to hold, suppose there is a Markov kernel K
which satisfies

(6.6) Py(B) = f K(B]| x2) P2 (dx2), Be #
and
(6.7) ff(xl)K(dx1|x2) = f(x2) w.p.l (P2), fE Z

Then, we have

ff(xl)Pl(dxl) = ff f(x1)K(dx, |x2)P2(dx2) = J' [(x2) Py (dx2),

so P; < P,. A kernel which satisfies (6.7) is called an #dilation. Thus, the existence of an
Hdilation so that (6.6) holds is sufficient for (6.5). In some instances not covered by
Theorem 6.1, the converse is also true. That is, P; < P, implies the existence of a K so (6.6)
and (6.7) hold. For example, see Strassen (1965), Meyer (1966, Chapter 11) and Alfsen
(1971). Some recent results directly related to the theme of this section are given in
Riischendorf (1981).

Acknowledgment. I wish to thank J. H. B. Kemperman, David Lane and two
referees for many useful comments.
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