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DISTRIBUTIONS OF SOME MATRIX VARIATES AND LATENT
ROOTS IN MULTIVARIATE BEHRENS-FISHER
DISCRIMINANT ANALYSIS!

BY YAsuko CHIKUSE

Kagawa University, Japan and University of Pittsburgh

In this paper it is shown that some distributions of the matrix variates
and latent roots arising in the multivariate Behrens-Fisher discriminant
problem can be explicitly expressed in terms of the invariant polynomials with
two matrix arguments, due to A. W. Davis, extending the zonal polynomials
of matrix argument.

1. Introduction. We are interested in the discrimination problem of two multivariate
normal populations under the heterogeneity of population covariance matrices. Distribu-
tional problems for the univariate case have been investigated by many authors (e.g.,
McCullough, Gurland and Rosenberg (1960), Ray and Pitman (1961) and Welch (1947)),
and Gurland and McCullough (1962) and Wehrhahn and Ogawa (1975) took into consid-
eration the preliminary testing procedures for the null hypothesis of the equality of the
variances.

Yao (1965) considered approximate distributions of a Hotelling’s T>-type statistic in the
multivariate case. However, to the author’s knowledge very little work has been published
on the multivariate Behrens-Fisher discriminant problem. Our Behrens-Fisher matrix
statistic for the multivariate case may be in the form

(1.1) D = (S1 + S2)728(S1 + S2) 72

where the m X m matrices S, are independently distributed as, in general, noncentral
Wishart Wi,(n,, Z,, ,), i = 0, 1, 2. In practical terms, S; and S are sample error sums of
products matrices, proportional to estimates of the distinct population covariance matrices,
and S, is an effects sum of products matrix, estimating the difference of the population
mean matrices. In the case when =, = 35 = 023(6% > 0) and Q; = & = 0, D is the well-
known MANOVA matrix (central if &, = 0 and noncentral if £, # 0). Hence, D is an
extension of the MANOVA matrix in discriminant analysis.

The matrix A = (S; + S2)7/28:(S; + S;) "2 is a suitable preliminary test matrix for the
hypothesis 3; = 3, where in this paper we assume §; = §2, = 0 whenever the preliminary
testing procedures are considered. When Z; # 2., D and A are dependent, and we may be
interested in the conditional or unconditional distributions of the roots, of D, or suitable
functions of them (conditional on the roots of A).

In this paper, it is shown that some distributions of the matrix variates and latent roots
arising in the multivariate Behrens-Fisher discriminant problem, for the null case, £, = 0,
can be explicitly expressed in terms of invariant polynomials with two matrix arguments.
The invariant polynomials with two matrix arguments have been defined by Davis (1980a),
(1980b), in the need of extending the zonal polynomials due to Constantine (1963) and
James (1964). Properties, relationships between them and applications in multivariate
distribution theory are discussed in the same papers of Davis. It is noted here that explicit
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forms for those distributions for the nonnull case, £ # 0, i.e., when population mean
matrices are different, can be obtained by introducing invariant polynomials with three
matrix arguments, extending the work of Davis. The investigation of invariant polynomials
with larger number of matrix arguments will be presented in subsequent papers (see, e.g.,
Chikuse (1980)).

The invariant polynomials with two matrix arguments are briefly discussed in Section
2. The joint distributions of the roots of D and A are derived in Section 3, and the marginal
(and conditional) distributions of the roots of D (conditional on those of A) are investigated
in Section 4, for the null case, £, = 0.

2. Invariant polynomials with two matrix arguments. Davis (1980a), (1980b)
has defined a class of homogeneous polynomials C5*X, Y) of degrees %2 and [ in the
elements of the m X m symmetric complex matrices X and Y, invariant under the
simultaneous transformations

(2.1) X — H'XH, Y- H'YH, H e O(m),

where O(m) is the group of m X m orthogonal matrices. These satisfy the basic relationship

(2.2) J' C(AH'XH)C\(BH'YH) dH = Y4e..n» C5MA, B)CSMX, Y)/Cy(I),
O(m)

where C,, C», C, are zonal polynomials, indexed by the ordered partitions «, A, ¢ of the
nonnegative integers k, [, f = k + [ respectively into not more than m parts (for the zonal
polynomials, see, e.g., Constantine (1963) and James (1964)). Letting GI(m, R) denote the
group of m X m real nonsingular matrices, ¢ € « - A signifies that the irreducible represen-
tation of GI(m, R) indexed by 2¢ occurs in the decomposition of the Kronecker product 2x
® 2\ of the irreducible representations indexed by 2k, 2\. The properties and relationships
satisfied by the C%*, which are especially utilized in the later sections, are summarized in
the following (see Davis (1980a), (1980b) for proofs and details):

(2.3) C (X, X) = 05°Co(X), where 65 =CM(I,1)/Cy),
(2.4) CMX, I) = [05°C,(I)/C(I)]C(X),  and similarly for C$ (I, X),

def def

(2.5) CX(X, Y) = CX), CMX,Y) = G(Y),
(2.6) CMaX, BY) = a*B'CM(X, Y) (@, B complex constants),
(2.7) CiX)Cr(X) = Toexr(051)?Co(X) = Toecr 821 Co(X),

where gt = Yy=y (05)%, which is defined in Constantine (1966, Equation (27)),

(2.8) f C:MAH'XH, AH'YH) dH = C$MX, Y)C,(A)/C,(I),
O(m) ‘
(2.9) J etr(—WR) | R|*PC5MXR, YR) dR = T'n(a, ¢) | W|™® ANXWTL YW,
R>0
where p = (m + 1)/2,

(2.10) f CsNA’H'XHA, B) dH = C5M(A’A, B)C.(X)/C.(I),
O(m)

X
f |R|“?|I - R|“"C\(AR) dR
0

(2.11)
= Tn(p) | X|* To-0 Tewexnr Tnlt, &) (—u + p) 85 CNX, AX)/RITu(t + p, ¢),
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’4
(2.12) J |R|*?|I = R|“PCR, I — R) dR = Tn(t, K)Tom(ut, NS Cy(I) /Tt + 1, &).
0

A multivariate generalization L5(X, A) of the Laguerre polynomial due to Khatri (1977)
has an expansion

(2.13) o(X, A) = (t + P)o Terween (RIS CNA, —=XA) /(¢ + ph.

The following lemma is also useful.
LeEMMA 2.1

I I
@) f J’ |[I-R-T|*®|R|*™?|T|°C5\R, T) dR dT
0 0
(2.14)
= T(@)T (b, K)Tmlc, AN)Co(I) /Tmla + b + ¢, ¢), O<R+T<I
X
(ii) J |R|*PC5*ARA’, B) dR
(2.15) ° \
=I'n(p)Trla, k) | X|*C3"(AXA’, B)/T'n(a + p, ).
Proor. (i) We evaluate the integral form

1‘=J' J' J' etr — (X + Y + Z) | X|*?| Y|* | Z|*PCSNY, Z) dX dY dZ.
X>0 JY>0 JZ>0

Making the transformations U=X+ Y+ Z, R=U""2YU V2 T = U""2ZU""/? and using
(2.9) gives

I'=T.a+ b+c ¢)A,
where A is the left-hand side of (2.14). On the other hand, it may be shown that
I’ = T0(@)T(b, K)Tnlc, )OS Co(I).

Hence (2.14) follows.
(ii) The integral is given by the coefficient of C5NU, V)/k!1!C,(I) in

X
J' |R|*” etr(ARA’'H'UH) dR etr(BH'VH) dH
O

(m) YO

= [Tn(P)n(@)/ (@ + DI X % Ssco Sen(@)e f C.(AXA'H'UH)

O(m)

-C\(BH'VH) dH/k!l!(a + p)., because of Constantine (1963, Equation (60)),
leading to the desired result (2.15) on using (2.2).

3. Joint distributions of the roots of D and A. The latent roots of A = (S; +
S2)7Y281(S: + Sz) V2 may be utilized as suitable preliminary test statistics for the hypoth-
esis X; = Xz, where the S; are independently distributed as Wishart W,,.(n;, Z;), i = 1, 2.
The distributions of the roots of S7'/2S;87"/% have been considered for the case &, = 0 by
Davis (1980b) who expressed them in terms of the C%*. We consider the matrix D = (S,
+ S2)7128,(8; + S2)"*/? in connection with the discriminant problem under the heteroge-
neity of covariance matrices, where S, is distributed as noncentral Wishart W,,(no, Zo, )
independently of S; and S.. When X, = 3,, D and A are independent and D is the well-
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known test matrix for the null hypothesis £, = 0 in MANOVA. When 3, # 3, they are
dependent and we may be interested in the conditional distributions of the roots of D or
suitable functions of them (conditional on the roots of A).

Let di, ds, - -+, dn and ai, as, - - -, a, denote the latent roots of D and A respectively
(di>dy>--->dn>0,1>a;,>as> .-+ > a, > 0). In this section, we shall derive the
joint density function of dj, - - -, d», and ai, - -+, a, and the joint distribution functions of
d; and a;. The ‘marginal’ and conditional distributions of d;, - - -, d,, will be considered in
the next section. It is shown that these distributions can be expressed in terms of the C%*
for the null case, £y = 0.

Make the transformations

(3.1) D=8"25,872 A=8"1’5,87", S=85+8.

in the joint density function of Sy, S; and ~Sz; then the J ac_obian of the above transformation
is| S|*. D and A have the same roots as D = H'DH and A = H'AH, H € O(m), respectively;
averaging over O(m), we have the joint density function of D, A and S in the form, using
(2.2),

f(D, A, S) = [[Ii=0 Tm(n;) | 22, |/2"]
(3.2) | D |V | AV I — A| VP etr(—%351S) | S| V2R onp
Yo~ CNEG'S, (ST — 271)S)CMN D, A) /R 11 27C,(T).

Integrating (3.2) over S > 0, using (2.9), yields the joint density function of D and A in the
form

f(D, &) = Cat | D| V0P | A|V*M7P | T — A| V%P You0(—1) [(%ZEon.)s
@3) Ot 2, B S — INCPN(D, A) /RN C,(I),
where
(3.4) Ca1 = Tn(% Zon:)[[[3-0 Tm(%n:) [[=o| 2, 2" |V T

Here we should acknowledge the fact that (3.3) will not be convergent for all D, which is
a multivariate generalization of F.

The joint density function of d,, -+, dn, and a;, ++-+ a,. By the usual method, the
joint density function of d, - .-, d, and a, - - -, an, is derived from (3.3) in the form

fldy, -+, dn, a1, « -+, an)
(3.5) = Cy| D|>P| A| V2P| T — A| V][ (d — d)) [T (@ — @)
Yeno(—1) (AZ10,) 05 CENE 2, 211 Ze — I)Ce(D)Cr(A) /R 1 CAT) CAT),
where Ciz = Cy[7V*" /T (%em)]? with C; given by (3.4).
The joint distribution function of d, and a;. We shall obtain the joint distribution of

the largest_roots d; and a; of D and A respectively, PO <d; < §,0<a;<a)=PO0<D
< 81,0 < A < ol). It may be shown that

81
J | D|V2orCsND, A) dD
0

(3.6) = Tl p)Tn(Yeno, k)05 Cy ()82 0¥ C\(A) /T (Voo + p, k) Cr(I),

of because of (2.15), and then (2.4),
J |A || I - A|*PC\(A) dA
0
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(8.7)  =Tn(p) Timo Yoireor Tm(¥eny, 7)(=%n2 + p)o(02*)*C.(I)a/*™™* /T (%n: + p, 7)s!,
because of (2.11).

Thus, (3.6) and (3.7) with (3.3) establish the joint distribution function of d; nd a; in the
form

P(0<di<8,0<a;<a) = Cyd /2> T2y (1) (Y Zieoni)s (Yane) 05"
(3.8) C (20", 2120 — 1)8* T30 Yoireon
- (%n1)(=Yans + p)ogiaC.(I)a'/k! U s! (Yano + p) (s + p),Ci(I),
where

Cis = [T D) FT (% Bioon)[Tm(¥onz) [Ti-o Tm(n, + p) | 2231 |V*] 7

4. Marginal and conditional distributions of the roots of D. Following the
notation in Section 3, we shall derive the ‘marginal’ joint density function of di, - - -, dn,
the distribution function of d; and the density function of tr D, in this section. The
conditional joint density function of d;, ---, d». given ai, ---, a, and the conditional
distribution function P(0 < d; < 8|0 < a1 < a) are obtained from these ‘marginal’
distributions and the results of Section 3.

The joint density function of D and A, (3.3), is integrated over 0 < A < I to obtain the
density function of D; making the transformation A — H’AH, H € O(m), and averaging
over O(m) with the use of (2.10) and (2.4), and then averaging over 0 < A < I with the use
of Constantine (1963, Equation (22)), we can establish the density function of D in the
form

f(D) = Cs1| DV Fro(—1) (ni A (%Zion,), 05
(4.1) 3
CNZ0'S, 'S, — I)Cu(D) /R 1! (%(ny + na)WCe),
where Cs; = Tr(%220n,) [T n(%no)Cn(Y(ny + n2)) [[iwo| 222" |V#T7

The joint density function of d;, ---, dn. By the usual method, the joint density
function of dj, - - -, dn is readily derived from (4.1) in the form

fldy, «++, dn) = Cs| D> 7 [[Ei(d; — d)) T2re(=1) " (oni)s

4.2)

 (HZ20n,) 05 CN(Z0" s, 'Sy — I)Co(D) /! (%(ny + na)WCe(),
where
(4.3) Csz = Csy /%™ IT(Yam).

The distribution function of d;. The distribution function of d;, P(d; < 8) = P(D <
8I), is obtained from (4.1) in the form, using Constantine (1963, Equation (22)),

P(dy < 8) = Cs38"™ Ting (1) (o) (Vora (Lo, ) 05"
“4 CsMNZ' 2, 213, — 1 /RN! (Yoo + p)(%e(ny + nz)h,
where
Cs3 = Tn(p)Tm(% Zion)[Cm(ono + P)Tm(Ya(n1 + n2)) [Tico| 2231 V#4170

The density function of tr D. By the method similar to that used for deriving th_e
Hotelling trace in Davis (1980b, Section 8), the density function of d = tr D equal to tr D,
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is obtained from (4.1) in the form
f(d) = Caad?™™7 1 ¥zsio (=1) [(Yono) (oni)r (% Zi-o 1)y
OPCENEG e, ZTIZ, = 1) d¥ /RN (emne)r (Y (g + na)ha,

(4.6)

where Csy = I'n(%Z20n) [T (Yamno) T (Y(ny + n2)) [[1=o | 2,227 |Y?™]7L. (4.6) is a gener-
alization of Constantine’s series for the Hotelling trace (see Constantine (1966)). Presum-
ably it may converge only for |d| < 1.

The conditional distributions of the roots of D given those of A. It is easily shown
that the joint density function of the roots ai, - - -, a. of A is given by
flay, -+, an)
= Css|A|#M7P | T = A|#7 T, 1, — @) Fo((n + no); S0 25 — I — A),

where Css = T (%(n1 + n2))7/>™ [T(Yem) [[221 Tm(%n) - | 122" |Y?™]7), and that the
distribution function of a; is given by

4.7)

P(a; < a)
(4.8)
= Css[a(l — a) 1]V2" ", Fy (Yany, Y (ny + ng); %en, + p; —a(l — a) ' 2713,),

where Cs = I'n( p)I'm (% (n1 + n2)) [T (%en2) T (Y2n: + p) | 127" | Y2™]7), and the o F| is the
Gaussian hypergeometric function of matrix argument (see, e.g., James (1964)).

Hence, the conditional joint density function of d;, - - -, dn given ay, - - -, @, is obtained
as

(4.9) fldi, e, dnlay, «--,an) =f(d1, ~-+,dn, a1, -+, aw)/flai, -+, am),

where f(di, -+, dm, a1, -+ -, an) and f(a, - - -, a,) are given by (3.5) and (4.7) respectively.
When Z; = Z,, (4.9) becomes independent of A in the form of the density function of the
roots of the F matrix, expressed in terms of the | F, hypergeometric function with two
matrix arguments (see, e.g., James (1964, Equation (65))).

The conditional distribution function of d; given a, is obtained as

(4.10) Pdi<f8|lai<a)=P(di<é,a1<a)/Pla; < a),

where P(d; <4, a; < a) and P(a; < a) are given by (3.8) and (4.8) respectively. When =,
= 2, (4.10) reduces to the distribution function of the largest root of the F matrix,
expressed in terms of the . F; hypergeometric function of matrix arguments (see, e.g.,
Chikuse (1977, Equation (2.4))).

Before closing this paper it is noted that we can extend some of these results by
introducing invariant polynomials with larger numbers of argument matrices, extending
the work of Davis (1980a), (1980b). These will be discussed in subsequent papers (see, e.g.,
Chikuse (1980)).
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