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ESTIMATION OF A MULTIVARIATE DENSITY FUNCTION USING
DELTA SEQUENCES"

BY V. SUSARLA AND G. WALTER

Michigan State University and University of Wisconsin-Milwaukee

This paper studies some asymptotic properties of density estimates fof
f based on d-variate delta sequences. The mean-square consistency, almost
sure consistency, and asymptotic normality of f have been obtained as corol-
laries to the L, convergence properties of these delta sequences. Estimators
based on kernel functions, orthogonal series, and some histogram methods can
be obtained as special cases of f.

1. Introduction. Since the pioneering work of Rosenblatt (1956) and Parzen (1962)
on the kernel estimates of density f, many other methods have been proposed to estimate
f. For details concerning these methods, see the references Wegman (1972 a, b), Wertz
(1978), and Wertz and Schneider (1979). Some of the methods of estimation of a univariate
density f can be extended to the multivariate case (for example, see Cacoullos (1966), and
Deheuvels (1977)). A somewhat more general method was studied by several authors using
the so-called “delta sequence” approach including, among others, Bleuez and Bosq (1976
a, b), Bosq (1977), Delecroix (1977), Foldes and Révész (1974), Walter and Blum (1979),
Watson and Leadbetter (1965), and Winter (1975). This method includes the kernel
method, the orthogonal series method of Cencov (1962), some of the polynomial approxi-
mation methods, and some of the histogram methods. In this paper, we propose to extend
this general method of density estimation to the multivariate case.

The outline of the rest of the paper is as follows: Sections 2 and 3 study some of the
asymptotic properties (needed for Sections 4 and 5) of two types of delta sequences in d-
dimensions. Section 4 proposes estimators f of f based on these delta sequences in Sections
2 and 3, and presents some of their properties. Section 5 discusses an asymptotic normality
result for f.

Throughout, x = (x1, ..., x4) denotes a generic point in the d-dimensional Euclidean
space R? and dx denotes 7, dx;. For an open set 2 C R? let C§ () denote the space of
infinitely differentiable functions on £ having compact support. Unless otherwise stated,
all the integrals are over the full range of the values of arguments involved.

2. Positive delta sequences. In this section, we introduce the basic definition of
one type of multivariate delta sequence and prove a number of convergence theorems.

DEFINITION 2.1. A sequence of functions {8,} in L*(2 X ) is said to be a delta
sequence on {} if for each ¢ € C%(2), and x € Q,

J Sn (X, y)o(y) dy = ¢(x) as m — o,
Q
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ExaMPLE 2.1. Let A, be a nonsingular linear transformation from R“ to R such that
|An| = O(m?). Let 8, (X, y) = | Am|k(Am(y — X)) for a density function % such that &(v)
=o(|v|™#*?) as |v| — . Then {8} satisfies Definition 2.1 (see (1.1), Deheuvels (1977)).
Deheuvels (1977), generalizing (among others) the estimators of Cacoullos (1966), and
Parzen (1962) (see also Wertz (1978)), provides several asymptotic properties including
mean square consistency and the integrated mean square errors of density estimators
based on {6x}.

DEFINITION 2.2. A delta sequence {6,} on R is said to be of positive type if 8, = 0
and for each x in R¢,
(i) [on(x,y)dy =1,
(ii) supr>o 7 { fix—yl>r On (X, y) dy} = O(m™),
(ii) || 8m (X, ) |« = O(m?) as m— o,
and for each n > 0,
(iv) sup {6.(x,y)||x —y|>n} — 0.

NotE 2.1. The order relations in (ii), (iii), and (iv) could depend on x.

The following two propositions, whose proofs are straightforward, give simple sufficient
conditions for a sequence of functions on R? to be a delta sequence of this type.

PROPOSITION 2.1. Let {8} be any sequence of nonnegative functions satisfying
(i), and additionally, be such that

dm(x,y) < cm?/{1+m|x—y|}*".
Then {8} is a delta sequence of positive type.

PROPOSITION 2.2.  Let {8m1(x1,71)}, {8ma(xa, ya)} each be a delta sequence of positive
type, then 8, (X, y) = 7Lt 8m. (xi, y.) is a delta sequence of positive type.

The conclusion of the first part of the following lemma is similar to the results available
in the literature (see Wertz (1978)) and deals with a.e. convergence properties of delta
sequences while the second part provides a rate at which such convergence holds.

LEMMA 2.1. Let f€ L?(R?%), 1 < p < o and let {8} be a delta sequence of positive

type.
(i) Then

J 8 (X, t) f(t) dt — f(x) a.e. Lebesgue(x).

() Ifp>1,and |fx+t) — f(x)|sc|t|' fora0<y<],then

‘ J 8 (x, t) f(t) dt — f(x) | = O(m™?) where 8 = min{q~", v} withg'=1-p™.

ProoF. Part (i) is similar to Theorem 1.25 of Stein and Weiss (1971) in our notation
and its proof will be omitted. The proof of part (ii) has some analogue to the proof of the
same theorem; but since we are interested in rates of convergence we must look more
carefully at various null sequences involved in the proof of the theorem.

Let n > 0, then we have

all
|t—x|=7

=I1+Iz

(2.1 U'&n(X, t) {f(t) - f(x)} dt‘ = ‘f
|[t—x|<n
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By a change of variables to polar coordinates, we obtain

v 1/m 7
(2.2) L =c f €n(X, r)\ré ridr = cl{f + f } =c(I1 + I7)
0 0 1/m
for sufficiently small 5 and for 1 < my where c; is a constant and

(2.3) en(x, r) = f 8n(x, X + rt’) dé(t').
S

d—1
x

Here S¢7! denotes the surface of the unit sphere with center at x and dé(t’) represents the
element of surface area on S¢7. In terms of this notation, Condition (ii) of Definition 2.2
becomes

(2.4) f €n(X, 8)s* " ds = O(m 'r"!) uniformlyin r> 0.

By condition (iii) of Definition 2.2, we have I1 = O(m™) and by integration by parts, we

have
w N . w
I = {r’J' €n(x, §)s?! ds} + yJ r- I(J €n (X, 5)s?7! ds) dr
r 1/m r

1/m

n

=0Om™)+0m™) + czm_lf rv2

1/m
=0(m™)+0(m™) (or O(m™'log m) if y = 1)
by (2.4). Hence we have Iy = O(m™") or (O(m~"log m) if y = 1). We now show that I also

satisfies a similar order relation. By Hélder’s inequality,

It|>n

Izsf | f(x + t) |8n(x, x + t) dt+f | fX)|6m(x, x + t) dt
[t|=n

(2.5) = llo 108 llg + 1 £ |08 |1
=1 Fllo 19a8m 1 198 11/ + | £ | |08

where ¥, = I{t € R%; |t| > n}. By condition (iv) of Definition 2.2, || {/48m [l. = 0(1) and by
condition (ii)

ot = [ outix 0 dt = 00n 1)
[t|=n

Hence from (2.5), I, = O(m~"/?). This rate together with that for I, proves part (ii) of the
result.

REMARK 2.1. Part (i) of the lemma still holds if we do not assume that §,, = 0, but
merely require that || 8. ||: be bounded. Such a result is analogous to Theorem 1A of Parzen
(1962) for d = 1, Lemmas 1 through 4 of Foldes and Révész (1974), the i.i.d. case of
Theorem of Foldes (1974) and Theorem 2.1 of Cacoullos (1966) and Corollaire 2.2 of
Deheuvels (1977) for d = 1. Foldes and Féldes and Révész assume, in addition to the other
usual conditions on f, that [ |x|*f(x) dx < » for an a > 0 which we do not have in our
theorem and that their ®, (which is similar to our 8,,) satisfy a uniform (in n) Lipschitz
condition. Also, Bleuez and Bosq (1976, Proposition 3) consider density estimators based
on kernel and orthogonal functions and obtain necessary and sufficient conditions for the
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uniferm mean square convergence of f. Our pointwise result can be extended to a uniform
result by assuming an appropriate uniform condition on f.
Listed below are two additional examples which satisfy the condition of Lemma 2.1.

ExXAMPLE 2.2. The multivariate Fejer kernel of Fourier series 6, (x, y) = [[%1 8n(x,,
y:), where
(sin{(m + 1)(x: — 1)/2})*

27T(sin{x1 _yl)/2})2 [y —x =71

Om (x1, y) =

defines a positive delta sequence by Proposition 2.1 (See Winter (1975) for d = 1). Such
estimates would be appropriate for estimating densities which have compact support.

ExaMPLE 2.3. Let K be a fixed compact subset of R. For each m, partition K into
K., ..., Knme disjoint sets each of which has diameter = ¢/m for some constant ¢
depending on K. Let ., , denote the indicator function of K,.,,j =1, ..., m" Then

8 (X, ) = X7 Yy (X)W (¥)

is a positive delta sequence satisfying the definition. A special case of this delta sequence
obtains Example 3 of Foldes and Révész (1974). Similar estimates have been used in
classification problems by Gordon and Olshen (1978), and Van Ryzin (1966).

3. Higher order methods. In order to obtain improved rates of convergence, it is
known that it is desirable to use nonpositive delta sequences. It is known in the univariate
case that density estimators based on such sequences have mean square rates of conver-
gence which approach O(n™'). (See Walter and Blum (1979) and Wertz (1978).) However,
it was also shown there that the same property which allows this faster rate keeps them
from being asymptotically unbiased for some continuous densities. This latter property
seems to us to be such a disadvantage so as to preclude their use except in exceptional
cases. Thus we present only two examples in the multivariate case and do not provide here
the general theory, which can be obtained.

ExamPpLE 3.1. (The Fourier transform delta sequence). Define

3.1) Sm(x, 0) = L e "™ dt, Sn(x,y) =8,(x —y,0).
(2"7) |t]=m

The rate of convergence of [ 8,.f to fis O(m™"*%?) if f is assumed to satisfy the condition
(1 + |x|?) fisin L2(R“) for p > 1, where fis the Fourier transform of f. This extends the
estimator of Blum and Susarla (1977) to the multivariate case.

ExaMpPLE 3.2. Let £ be a bounded region in R?, and ¢ € C*({). Let ®, be a complete
orthonormal set of eigenfunctions of the operator A — g(x) (A is the Laplacian operator)
which vanish on the boundary of ©. Then define delta sequence {8.} by

O (X, ¥) = X¥=0 ¢r(x) ¢r(y).
If f€ C*, where 4p > d + 5 and has support in the interior of &, then
‘f(X) - f O (x,y) f(y) dY) = | Xi=m+1 ¢x(x) (dx, )|
Q

Z;:=m+l (;bk (X)

<(A_Q)p¢k,f)‘

¢r(x)

= | Zk=me1—— (%, (A —q@)" ) )
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= e — g)7f|3

where {A,} are the eigenvalues of A — g This last inequality follows from the facts that
Ax ~ ck¥? (see page 169 of Titchmarsh (1958)), | $n (X) | < c(x)Ax and Schwarzs inequality.
Hence the bias has rate O (m!@+5- /24y,

If ¢ = 0, and = (0, 7), we obtain trigonometric series estimator. (See Bleuez and Bosq
(1976b)). This may also be extended to = R? for g(x) = | x| In this case, we obtain
Hermite series estimators (see Cencov (1962) and Schwartz (1964)) associated with

(3.2) 0 (X, y) = YR ol (X) A (y)

where m = (m, ..., m). By using an inequality in Walter (1977), the bias rate can be
shown to be O(m?~"~?) for f such that (A — |x|*)?fe LY RY).

4. Rates of convergence results in density estimation problem. The intent of
this section is to apply the results of Sections 2 and 3 to the multivariate density estimation
problem using ii.d. random vectors x, ..., x, which have the common density f with
respect to Lebesgue measure on R? Our main theorems concern the rates of convergence
of M(x) = E[(f(x) — f(x))?] to zero where

- 1
(4.1) fx) = " 271 8n(x;, X).

Here {8} with m = m(n) is a delta sequence satisfying the conditions either of Sections
2 or of 3. The proofs of various parts of the theorem will follow the usual method of
obtaining rates for Var(f(x)), and for Bx) = (E [fx)] - f(x))? separately, and then
choosing the parameter m in §,, so that these two rates are equal. The common rate would
then be our rate result for M (x).

THEOREM 4.1. If {8,} is a positive type delta sequence, and m = o(n" ), then M (x)
— 0 a.e. Lebesgue (x).

THEOREM 4.2. Let {5,} be a positive type delta sequence, f € LP(R 4, p>1, and
satisfy a Lipschitz condition of order vy at x; if § = min{y, 1 — p~'}, then for m =
[nl/(d+26)] M(X) = O(n—28/(d+28)).

THEOREM 4.3. Let f be a rapidly decreasing function R? and let {dn} be given by
(3.1) or (3.2). Then foreachr=d + 1 and m = [nV"], | M. = O(n=1*42r,

Note that for rapidly decreasing functions (i.e., f € C* such that | x |” £ (x) is bounded
for all r = 0 and s = (sy, ..., s4)), both the condition that (1 + |x|?) f € L? and the
condition (A — [x[*)?f € L? are satisfied for all p, where fis the Fourier transform of f.

REMARK 4.1.  The rate in Theorem 4.2 can not be better than O (n~¥®*9) while the
rates in Theorem 4.3 approach O(n™") as r — . In the case of Theorem 4.1 or 4.2, we can
use the immediately verifiable fact that n Var (fx)) = O(|| 6m(x, *) ||l) (since E[f x)]—
f(x) and §,, = 0) while we used the slightly weaker rate O(|8%(x, -) |l=) for n Var(f(x)) in
Theorem 4.3. Since this is the essence of all the proofs of available results similar to
Theorems 4.1 and 4.2 (for example, Cacoullos (1966), Deheuvels (1977), Foldes (1974),
Foldes and Révész (1974), etc.) and since the rates for the bias depend on Lemma 2.1, the
contents of Remark 2.1 apply here as well.

We now obtain rates for || f(x) — E[f(X)]]l= =4 O (a.s. stands for almost surely) and
| Fx) — f(x) -.—as 0. We derive the rates for the first convergence as a corollary to
Theorem 2 of Kiefer (1961) concerning the L., behavior of the empiric distribution less its
expectation while the second result follows as a corollary to the first convergence result
and rates obtained for the bias of f.(x) in Sections 2 and 3. Asin Theorems 4.1, 4.2 and 4.3,



352 V. SUSARLA AND G. WALTER

we state the rate results for || f(x) — E[ f(X)] |l —as. O for various delta sequences satisfying
the additional condition

«2) |

a? d

where m = m(n) —  and m could depend on x. The integration by parts used in the proof
below has been used by Nadaraya (1965) in the case when d = 1, and {$,.} is the sequence
generated by kernel extimators.

THEOREM 4.4. Let {5,.} be a delta sequence satisfying (4.2.) Then
|f(x) — E[f(x)]| = O(m® VlIn/n) as.

Proor. With F, denoting the empiric distribution function of x,, ..., X, whose
common distribution function is F), it can be seen that

(4.3) fx) - E[f(x)] = f 8n(x, t) d(F,(t) — F(t)).
Rd

Integration by parts followed by an application of (4.2) shows that
d

1hs of (4.3)| < sup{|Fn(t) —-F@)||te Rd} X [ 8 (x, t)‘
aty, ..., 0tq

(4.4) !

=||F, - F|..O(m?) a.s.

But Theorem 2 of Kiefer (1961) shows that the first factor on the right-hand side of (4.4)
is a.s. O(lln/n)"? thereby completing the proof.

In order to obtain rates for B (x) = f(x) — f(X) —as. 0, we use the above theorem and the
rates obtained for B(x) = E[f(x)] — f(x), which is the bias of the estimator f(x) of f(x).
The latter are obtainable from the results of Section 2 just as in the proof of Theorem 4.2.

COROLLARY 4.1. If (4.2) holds and m = O(n'/*?) for an a > 1/2, then B(x) —., 0 a.e.
Lesbegue (x).

COROLLARY 4.2. Let (4.2) hold. Let the conditions of Theorem 4.2 hold. Then B (x)
— O(Hn)l/2/n8/2(8+d} a.s. wtth m= [n(l+28/2(d+6)].

The proofs of the above corollaries are not hard. For example, to obtain Corollary 4.2,
observe that | B(x) | < | f(x) — E[ f(x)]| + | B(x) | < ¢{n"’m?(lin)/> + m~*} a.s. for some
constant c.

REMARK 4.2. Similar results hold for the delta sequences given in Examples 3.1 and
3.2. However, they do not necessarily satisfy (4.2), although similar conditions, different
for each example, can be shown to hold. We compare the above result to some of the
available results in this direction. Both Foldes (1974), and Foldes and Révész (1974), obtain
exponential upper bounds for P[| f(x) — f(x) | = €] (¢ > 0) for d = 1 case when xi, . ., X»
are i.i.d. and in the case of dependent (but stationary) xi, ..., X, under several conditions
including the finiteness of ath absolute moment of x; and a uniform Lipschitz condition on
delta sequence {6,.}. Moreover, it is hard to recover a rate from their theorem 2 because
all the null sequences hidden in their results (Theorem 2 of Foldes and Révész or Theorem
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1in Foldes) are also involved in a very complex way on the conditions of the theorems. We
obtain our results (though weaker) under fairly minimal conditions on {8,}. Moreover,
inequality (4.4) can be used to obtain an exponential upper bond for P[|f(x) — f(x) | = €]
by using Theorem 2 of Kiefer (1961). On the other hand, Bleuez and Bosq (1976a, b)
appear to have stronger convergence rates under easily verifiable conditions, but for special
cases only. Bertrand-Retali (1974) provides necessary and sufficient conditions for a.s.
convergence of histogram type density estimators. Up graded versions of Theorems 4.1,
4.2, and 4.3, and Corollaries 4.1 and 4.2 to obtain uniform (in x) conclusions can be used to
estimate the mode of a multivariate density. (For a recent paper in this direction, see Sager
(1978).)

5. Asymptotic normality of f of (4.1). Since f, defined by (4.1), is a sum of » i.i.d.
random variables for each fixed n, the Basic Lemma (page 277, Loéve (1960)) can be used
to show that { f(x) — E[ f(x)]}/S.d.(f(x)) converges in law (— ) to the standard normal
distribution (N (0, 1)). There are several variations of the asymptotic normality result for
f depending upon the conditions of the delta sequence {8}, and the unknown density f.
We shall assume that {8} has most of its mass concentrated near the set where x =t
leading to

DEFINITION 5.1. A positive delta sequence {§,} (see Definition 2.2) is said to be
regular if 3 an interval JJ in 2 ¢ containing 0 and a constant C such that

(5.1) Om (X, t) = Cm;(m(x — t)) a.e. (Lebesgue).

We then have the following basic asymptotic normality result.

THEOREM 5.1. Let {8,} be regular and let m = O (n"¥~¢) for some 0 < de < 1. Then
{(fx) — E[f(x)]}/s.d.(f(x)) = N(0, 1) for x such that f(x) > 0.

ProoF. By the above quoted result of Loéve (1960), it suffices to show that E[| 8, (x,
X))] - E[8.(x, X1)] |3)/~/; 5.d.3(8 (x, X1)) — 0. But this ratio is bounded by n™"?|| §, (x,
) lo/s.d.(8, (%, X1)) = (= Ln, say, since m = m(n) — « as n — «). Now L, — 0 provided
lim sup n°L, < « for some 1 > 2a > 0, which will be shown below. Observe that

lim sup n°L, = 1/lim inf {s.d.(8, (X, X1))/||8n (X, *) [-n***},
and
lim inf n'~2« J’ 82,(x, t) f(t) dt
lim inf (s.d.(8, (x, X1)))?n!™% -
I 8m(x, ) 1% B |8 (x, ) I

provided n'~2*/m?? — 0, since E[5,(x, X;)] — f(x) by (i) of Lemma 2.1, and || 8 (X, -) |-
= O(m?). The proof will be complete if the right-hand side of (5.2) = ¢ > 0 for some
constant c. Since {6,} is regular,

(5.2)

f 82,(x, t) f(t) dt = Cm? f ILiim(x — t) f(t) dt

= Cmdf f(x —s/m) ds
J
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= Cmdf (f(x —s/m) — f(x)) ds + Cmdj f(x) ds
J J

=C1md(f(x) —€)

for m = mo and an 0 < €; < f(x). Hence the right-hand side of (5.2) = Con' **m~% If m =
[n"729/9] then n'~2*m~? = 1 for a = de/2(< %) and the proof is complete.

REMARK 5.1. We now compare the conditions of Theorem 5.1 specialized to the d =
1 case to the conditions (H1), (H2), and (H3) (among others) of Delecroix (1977) specialized
to the independent case. Under (5.1) and m = O(n'"¢), it can be seen that (H1) and (H3)
are obviously satisfied. Moreover, as noted in the above proof, Lemma 2.1 shows that even
(H2) is satisfied. Also, a(i) =0 fori =1, 2, --. in Delecroix’s theorem in the independent
case. One can replace (5.1) (slightly stronger than is necessary) obviously by the condition
I 8%,(x, t) f(t) dt = cm*® which is a generalization of (H3) to delta sequences. Finally, our
theorem can be generalized to the a-mixing case by following the method of proof of
Theorem 1 of Delecroix (1977).

REMARK 5.2. Both the mean square consistency result, and the asymptotic normality
result, hold under (5.1). E[ f(x)] can be replaced by f(x) in the above theorem if n*(E[ f(x)]
— f(x))/|| 8~ (X, -) || — O which is implied by a Lipschitz condition on f at x.

A CONCLUDING REMARK. In the problem of estimation of a regression function, we have
verified that an appropriate modification of the density estimators based on delta sequences
of Section 2 satisfies the sufficient conditions on the sequence of weights occurring in
Theorem 1 of Stone (1977). Consequently, we note here that the density estimators
proposed here can be adapted to obtain estimators for the regression function, and such
regression function estimators can be shown to have mean square errors going to zero with
a rate. As in Prakasa Rao (1978), the results obtained here can be adopted to obtain
sequential multivariate density estimators.

Acknowledgements. The authors wish to thank the referee for a number of helpful
suggestions and for pointing out references overlooked in the original draft of the paper.
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