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ON LOCAL ASYMPTOTIC MINIMAXITY AND ADMISSIBILITY IN
ROBUST ESTIMATION!

By HELMUT RIEDER

University of Freiburg

For a particular pseudoloss function, local asymptotic minimaxity and
admissibility in the sense of Hajek and Le Cam are studied when probability
measures are replaced by certain capacities (e-contamination, total variation). A
minimax bound for arbitrary estimator sequences is established, admissibility of
-minimax estimators is proved, and it is shown that minimax estimators must
necessarily have an asymptotic expansion in terms of a truncated logarithmic
derivative.

1. Introduction. In [17] an asymptotic minimax result has been obtained for the estimation
of the parameter 6 of a one real parameter family {P,} of probability measures, when the laws
of the (independent) observations are allowed to vary over a shrinking neighborhood (e-
contamination, total variation) of some P, The particular pseudoloss function employed is
based upon the upper probability that an estimator falls below, or exceeds, the true parameter
value by a certain decreasing amount. The estimators are restricted to a class of regular
estimators that are distinguished by asymptotic expansions.

If the regularity assumptions on the estimators are dropped, similar complications are
encountered as in the classical asymptotic variance theory as superefficient estimators can be
constructed which render the bound on the asymptotic risk and the optimality result invalid.
These difficulties indicate that the previous risk is only an inadequate measure for the
asymptotic robustness performance of an estimator—unless the estimator is very regular.

The clue to this problem is the observation that the previously assumed asymptotic
expansions imply locally uniform approximation of the extreme limit laws. The idea then is to
evaluate the risk uniformly, instead of imposing uniformity requirements on the estimators.
By this method, unreasonable estimators will be cut out by a high maximum risk, and not by
assumption.

In this way, a local asymptotic minimax bound for arbitrary estimators is established
(Theorem 4.1). Local asymptotic admissibility of minimax estimators is proved (Theorem 4.2).
Moreover, it is shown that they must necessarily have an asymptotic expansion in terms of a
truncated logarithmic derivative (Theorem 4.3).

These results may be viewed as robust analogues of corresponding classical results, for
which the reader is referred to Le Cam (1953), Stein and Rubin, cf. Chernoff (1956), Bahadur
(1964), Huber (1965), Hajek (1970, 1972), and Le Cam (1972).

Our method of proof utilizes the correspondence between estimators and tests, and this is
made possible by the particular choice of pseudoloss functions. It is not clear, and very
unlikely, that more general loss functions can be treated this way. Moreover, in contrast to the
classical case, our minimax solution generally depends on the loss function.

As for local asymptotic minimax bounds in other robust settings, see the manuscripts of
Beran (1979a, b) and Millar (1979).

Received October 1978; revised December 1979.

' Research performed while holding a scholarship of Deutsche Forschungsgemeinschaft and visiting
the Department of Statistics, University of California, Berkeley.

AMS 1970 subject classifications. Primary 62G35; secondary 62E20, 62C15.

Key words and phrases. Local asymptotic minimax bound, local asymptotic admissibility, asymptotic
expansions, regular estimators, superefficiency, contiguity, least favorable pairs.

266

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to /2
The Annals of Statistics. RIK@J:Y

Z)

®

WWw.jstor.org



ROBUST MINIMAXITY AND ADMISSIBILITY 267

2. The model. Let (2, ) be a measurable space and .# the set of all probability measures
on #. Let a family {P,} C.# be given, which is parametrized by an open subset O of the real
line, and, furthermore, parameter functions ¢, §, and 7:0 — [0, ) such that €5 + 8§, > 0 and
79 > 0 for all § € ©. The family {P,} is assumed to be of the following regular kind:

for each § € O there exists a neighborhood U; C ©

@1 of 4 such that P, << P, for all { € U,.

Let p be a dominating o-finite measure, which may be assumed to be equivalent to the family
{Ps}, and denote by ps a version of dP,/dy.

For each 6 € O there exists a nondegenerate function
22 Ay € L¥(dPy) such that

/2 _ 1/2
B pz/z - l Ay in LA(dPy) as{— 6.

§—0)ps 2
The parameter functions are subject to the condition that for all § € ©
(23) €9+ 200 < 279 J A; dP,.

For later reference, let the numbers dj, d§, o and the functions A¥, IC¥ be (uniquely)
defined by

+ 26,
f(dé-Ao)+ dPo=2?rﬁ=f(A0‘dé')+ dPy
0

249 A

1/2
Af=dyvAerndi, of= (I (AF) dPy> , ICt=—""—;
j AZAodPy

note that djy € (—x, 0), d§ € (0, ®), 6§ € (0, ), and [AFAy dPy € (0, ) (cf. also [15],
(7).

Estimators shall be studied locally at an arbitrary parameter value 6. This value is fixed
and may therefore be dropped from notation whenever feasible. With this understanding we
define (for { € Uy, say):

en=N""%y, &y=N72, 1nv=N"’1,
(2.5) Pns={Q EM|QZ (1 —en) P — 8y on B},
PRe= (O Q:|Q; EPny fori=1, ..., N}.

The generic element of 2} ; is subsequently denoted by Wy, It stands for the joint law of the
independent observations x;, - -, xy at sample size N, when the single laws are allowed to
range over the class Py, which is a natural generalization of e-contamination and total
variation neighborhoods (cf. [15], page 1082, Remark 5).

A new parameter space %3 has to be introduced for the local and asymptotic investigations
at 6,

(2.6) Sy = {On|supyN?| Oy — 0| < 0}.

For each such sequence 6y we define the asymptotic neighborhood Hy, of the sequence of
product measures (P§) by

(27) HaN = {( WNﬁN)l WN,0N € @)Nv,oN for all N} .

A mathematically interesting variant is the contiguity-sub-model consisting of the classes
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(2.8) Hy, = {(Wn,,) € Ho, |(Wnp,)  contiguous to (PF)}.

In this distributional framework, an estimator T= Ty, i.e., a sequence of measurable mappings
Tw: QN — (—o, ®), shall be scrutinized with respect to the limiting upper probability that T
falls below, or exceeds, the true parameter value by the amount 5. Formally, let a sequence
of randomization constants yn € [0, 1] be given. Define random intervals C% of the following
form,

Ch=(Tv—1n, Tn+ 78]  with probability yw
2.9)
=[T~n— v, Tn + 7n) with probability 1 — yw,

where the randomization at the boundaries is independent of the observations. Then, with
self-explanatory notation, the risk r(T’; n), respectively r(T; On), of T at O € F is given by

r(T; On) = lim supy sup Wy,g[0n < CH1 V sup Wa,e,[0n > CK]
(2.10) = supn, lim supy Wio,[0n < CR] v Wa,[0n > CR],

°r(T; On) = supe, lim supy W,o,[0v < CF]V Wi [0n > CF].
N

Occasionally, the corresponding quantities will be used when lim supy is exchanged for lim
infy in the above expressions; they are denoted by ro(T; On), respectively by ro(T; On).

The particular choice of randomization constants yy is of no importance (e.g., to avoid
randomization at all, yy could be taken 0 or 1). Moreover, if the estimator 7 satisfies condition
(4.1) below, then the boundary points of C} may be treated completely arbitrarily (e.g., C¥
could be taken (Tw — 7n, T + 7n) or [ T — 7, T + 7n]). However, form (2.9) of C% seems
to be necessary if no assumptions about T are made.

Some further notation is required. Given Oy € % the sequences oy, O1n € S5 are defined
by
2.11) Oon = On — TN, Oin=0n+ .

Let (Q%.6,y» QF.0,y) be any least favorable pair for (Py4,.» Pn.g,,)> cf. [14]. Then the N-fold
product of Q% , ' is abbreviated by W%, ,j =0, 1, L, denotes their loglikelihood,

dw?
2.12 Ly, = log — 0
( ) N,0n Og dW;\';’ooN,

and @3, stands for the Neymann-Pearson test for W36,y VETSUs W5, . based on Ly, ,
(2.13) oy = (1= YR [Lyg, > IN] + YR I[Lygy Z Iv],

where the critical value /y and the randomization constant y} are chosen in such a way that
2.14) f oy AW,y = f (1= @Ro,) dWh, = akis, say.

3. Technicalities. This section supplies the tools for the derivation of the main theorems;
perhaps, the subsequent results are even of some independent interest. The first lemma is a
generalization of Theorem 4.1 of [15].

LeEMMA 3.1.  For Oy € & the j‘ollowing asymptotic normality holds:
L(Lnoy| Whiay) = N (=276(03)% 47i(0)"),

L(Lngy| Wi,y = N (21%(03)% 475(0F)?), as N— o,
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PrOOF. As for the explicit form of the loglikelihood of least favorable pairs, cf. [14], [15].
Thus LN,oN = 27N Zfil A}'(,(x,), where AN =dy Vv AnNA dK/, An= (1/21‘1\!) lngolN/poON and d;v
= (1/27n) logAn, d% = (1/27n) logA%, AN and A% being the positive numbers defined
according to equations (4.11), (4.12) of [14]. In view of Lemma 4.3 of [15], whose proof can
straightforwardly be extended to the present situation, we have that

3.1 dn— dj, dy— dy as N —o o,

where dj, di, as well as the quantities A}, o} subsequently used, have been introduced in
(2.4). Since An —. p,Agby (2.2), (3.1) and bounded convergence imply that

(3.2) I(A,‘Q—A;‘fdPo—»O as N— oo,

Furthermore, [|dPg,, — dPs| = O(N~"?) by (2.2), and sup{[|dQ~ —dPs,, | On EPn sy }
= O(N ') by the definition of neighborhoods, (2.5). Hence

53 A% dQy— 0, I(A;:,)2 dQy— (02),

uniformly in ONE Pngy  asN—

Assume that, along some subsequence, N> [A % dQ%, . converges to some ay. Then, in view
of (3.1) and (3.3), the normal convergence criterion (Loeve (1977), page 328) tells us that,
along this subsequence, L(Ln,gy | Wh.on) = A (270as; 475(c})?). Because ( P7,) and (PP,)
are mutually contiguous, so are ( W3,g,,) and ( Wx,,,) (Lemma 4.2 of [15]). Thus necessarily

(3.4) N2 f A% dQ%, — —Tdo})} as N— o,

and the first part of the assertion is proved. The second one can again be obtained by a
contiguity argument. 0

Let ® denote the standard normal cdf, and let 6y € . Then the following immediate
consequence of the preceding lemma on the tests ¢4, introduced in (2.13), (2.14) will be used
later on:

3.5) af e, — P(—Ts07), and Iy—0 as N — oo,

Moreover, if Y35, denotes the Neyman-Pearson test for W}, . versus W, = which minimizes
the sum of the error probabilities, then

(3.6) f Vo, dWSg + J (1= Yky) dWh, — 20(-108) as N— o,

The second lemma shows that the loglikelihoods Lu,g,, in addition to being asymptotically
normal, even have nice asymptotic expansions.

LEMMA 3.2. IfOn € S5 and N'*(On — 0) — h then
Lugy — (27v SN AF(x.) — 27k j A}¥ANgdPy — 19e5(dy + dj)} — 0

in L¥(dPY), as N — .

ProoF. Ifay= [ A} dP,then

j (La,oy —27eN%ap — 278 Y1 A¥(x,))? dPY
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=47§J'(A,’t,—aN—A;)2 dP,
§473J'(A,’(,—A:)2 dPy— 0,

because of [A} dP, = 0 and (3.2). Thus it remains to prove that N'/?a, tends to the appropriate
limit. For this purpose observe that, by Theorem 5.2 of [14],

3.7 N2 f A% d[ Q%o — (1 — en) Py, 1 = —8odi + (€5 + 8) di.
Because f A% dPg,, — 0, (3.1), (3.4) and (3.7) entail that

3.8) N2 J' A} dPy,, — —74(0%)? + 8edy — (€0 + 8,) di as N — oo

The summands of Sy = N2 YL, A%(x,) are uniformly bounded and Var(A}| Pg,y) —
(62)% by (3.1), (3.3). So, in view of the normal convergence criterion, (3.8) implies that, on one
hand,

3.9 L(SN| P => N (—1,(05)? + 8edy — (€0 + 8,)d5; (6)%) as N — oo

On the other hand, it follows from the asymptotic expansion of log dP§, /dP}’, implied by
(2.2), and by Le Cam’s third lemma that for S% = N2 T¥, A*(x,) we have

(3.10) L(S%| PY) = N(h— Te)ngAedpe; (62)?) as N— oo

Since, by the first part of the proof, S — N?any — S& —py, 0((Py,,) contiguous to (P5)),
(3.9) and (3.10) cannot hold unless

NY%ay — —h f AYA,dP, + 1, J AF(Ag— AF)dP,+ 8,dy — (e + 8,) df

1
=—h f A3 Dy dPy = 3 e(dy + df).

This proves the assertion. [

The preceding asymptotic expansion will be carried over to minimax estimators by means
of the third lemma.

Let Qo, Q1 EM, A =dQ./dQo, S:2 — (—», ©) measurable, y € [0, 1], p = (1 — y)I[S
>0]+ yI[S=0],and y* €0, 1], k € [0, ®], p* = (1 — y*)I[A > k] + y*I[A = k] such that
Jo* dQo= [ (1 — ¢*) dQ: = o*, say. Let v* = kQo — Q1, | »*| the total variation measure of
v*, and n = 0. The lemma is certainly well known for n = 0.

LeEMMA 3.3.  Assume that [ ¢ dQo Vv [ (1 — @) dQ1 = a* + 0. Then

[V | (AA[A>KD)=(k+ 1)y  for A=[S>0] or A=[S=0]
ProOF. By assumption we have

JedQo=[o*d0o+n, [(1—¢)dO:=[(—9¢*)dQ:+n,

which entails that

devk§J¢*dvk+(k+ Dn,
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ie.,

M8 > 0] + y'[S = 0] = v*[A > k] + y*»*[A = k] + (k + D).
Since »*[A = k] = 0 this implies that
(3.11) vH(A) = v*[A > k] + (k + )y,

where A =[S > 0]if »*[S=0]=0,4 =[S = 0] if »*[S = 0] <O.

Let D € 4, D C [A > k]\ A. Then necessarily »*(D) = 0. Assume that v*(D) < — (k + 1)n.
Put £ = A U D and conclude from (3.11) that, under this assumption, v*(E) < v*[A > k].
However, [A > k] minimizes »*. Thus »*(D) = — (k + 1)y for all such D.

Similarly it can be shown that »*(D) = (k + 1)y for all D € B, D C A\[A > k], which
completes the proof. 0

For the application of this lemma later on, let us mention the following fact. Given two
sequences of statistics Sy, Ly:Q" — (—o, ®) such that

forall A € (—w, ) and for Ayx =[Sy > k] or An =[Sy = h],

G.12)
' PY(ANA[LN>h])—>0 as N o,

(3.13)  thelaws A(Ly| PY) are uniformly tight.

Then Sy — Ly —py 0 as N — . (A certain converse holds also.)

Turning again to the sequences of least favorable pairs (W%, ), (W%,,,), the fourth
lemma states that in particular (W5, ) € “Hy,, and (W3, ) € “H,,, for Oy € &; a possibly
related result has also been announced by Wang (Bull. Inst. Math. Statist. 41, abstract 78t—
187). This lemma, which is an asymptotic version of the fact that the measures Q%, .. Q%
and P, are eventually equivalent, must be seen in line with the observation in other areas of
robust statistics: the least favorable situation always looks rather innocent (e.g., Fisher
information is minimized by a very smooth Lebesgue density, whose tails are unexpectedly
slim, rank statistics attain their extreme laws already under continuous i.i.d. distributions, cf.
also Lemma 2.1 of [17]).

LEMMA 3.4, For Oy € S5 the sequences ( Wiion) and ( PY’) are mutually contiguous, j=0,
1.

PrOOF.  According to Corollary 1 of Oosterhoff and van Zwet (1975), or Lemma A3 of Le
Cam and Traxler (1978), the following conditions are necessary and sufficient for mutual

contiguity of (W}, ) and ( Pf,):
(3.14) these measures do not separate entirely, for instance sums of squares
of Hellinger distances stay bounded;
dQ%
3.15 limy.oo limy N- Q%4 | —5— =0
( ) 1My My QN”’ON [ dPguN > b] O,
Q%0 1
3.16 limy .o, imy N Py, [ ——— <— | = 0.
(3.16) imy. limy 00N|: o <b] 0

By Theorem 5.2 of [14] we have that Q% , =< Py, + Ps,,, and, if we letq,,, denote the
p-density of Q% , . that the following relations must hold 1 a.e.

Gl = (1= e)pay  on [A;v <P - A,’(,]

1 —¢ P 1 ’
(A_;VN).PQN = q:’ﬁoN = (1 — en) poyy on [..if’. < AN]

1 -
(1 — en)pg,y = qRoy = (A—;N)pym on {@ > AK/] ,
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where Aj, A} are the numbers introduced in the proof to the first lemma; 0 < Ay < 1 < A%
< oo,
This implies that

J’ ((g%0,0)"" = (Poo)?)? dps
(3.17)
=2(1- e) J ((Pou)”? = (Poy)2)? d + 2(1 — (1 — en)?)%.

Moreover, because Ay, Ay — 1 by (3.1), (3.17) further entails that for b > 1 eventually

318 0%, [q’*v'("’”>b =p Py
VL Poon lN Poon
9oy 1 Poy 1
3.19 P, - = P, S
( ) o [ Oon = bj— fon Poon = b

From (3.17) — (3.19) it follows that conditions (3.14) — (3.16) are satisfied whenever( Pj,)
and ( Pj,,) are mutually contiguous. The assertion concerning ( W%,,,) can be obtained by
similar arguments, or directly from Lemma 4.2 of [15]. O

4. The main results. Local uniformity considerations play an important role in modern
asymptotic estimation theory. On one hand, locally uniform weak convergence of estimators
is a basic requirement for the Hajek-Le Cam convolution representation theorem; on the other
hand, the local asymptotic minimax criterion has proved to cut out the artificial, formerly
superefficient, estimators, in an intuitively appealing and elegant way; cf. Hajek (1970, 1972)
and Le Cam (1972). Although not very explicitly, uniformity has also been made use of in
[17]. If this is spelled out, a more natural and more general proof of this asymptotic minimax
result is possible, which may serve as a motivation for the approach to follow.

As for the notions of stochastic limit superior and stochastic limit inferior, the reader is
referred to [16]. The estimators T now considered are supposed to have extreme limit laws
with respect to “Hy (8 also denotes the sequence identically ) that are normal and locally
uniformly approached; i.e., there exist 55 5§ € [0, ) and gy € (0, ) such that for all fy € %

lim sup{(AN 1 2( Tn — On)| Wr o )|(Wnisy) € ”HBN} = N(st, a%)
4.1)
lim inf{(LN"*(Tx — O|(Wno)) | (Wnioy) € “Ho,, = N(—54; 05).

Evaluation of (4.1) at the sequence identically § shows that the risk defined by (2.10) is of the
form

@2) H(Ti0) = ® (s” _ ”) v q)(” — T").
[¢]] Oy

The assertion then is that

(4.3) q>(s”; ”) v q><s” — ”) = (- r07)-
6

09

To prove it we may pick any Oy € % and employ T, as a test statistic for W¥;, = versus
W o8 = I[NV*(Ty — ) > 0]. We choose 7 such that @ ((s; — 74)/05) = (= 74065 — 1)
and let x5 be the Neyman-Pearson tests for W5k, = versus W%, such that limy [ x7
AW} = O(— 1905 — n). By Lemma 3.1, limy [ (1 — x#) AW, = (- 1665 + 7). As lim
supy [ on dWhy < ®((s5 — 79)/0p) it follows that D((si — 79)/0g) = D(— 1605 + 1). So D((s5
— 19)/05) ¥ ®((s§ — 74)/09) = ®(— 7405 — M) V ®(— 7605 + m) which is = ®(— 7407); this
proves (4.3). ’

The estimators T = T(IC) considered in [17] satisfy (4.1) with 55 = s§(ICq), 5§ = 55(ICp)
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and oj = [ IC} dPy; cf. [17]. Indeed, the proof to Lemma 2.1 of [17] is still applicable in the
case of moving centers P,,; moreover, we can make use of [ /CyAy dPy = 1. Thus it appears
that the essential purpose of the asymptotic expansions assumed in [17] has been to guarantee
(4.1). Besides being more general, the present proof also clarifies the relation to testing which
has only formally shown up in [17].

ReMARK. Condition'(4.1) appears to be a natural, though more restrictive, analog of the
regularity assumption used for the convolution theorem. However, since the present risk not
only involves asymptotic variance but simultaneously bias, a convolution representation
cannot be expected in this framework.

If condition (4.1) is dropped then the bound °7(T: ) = ®(— 7405) is no longer valid.
Superefficient estimators can be constructed in the following way. Given an estimator 7° such
that for every { € © the laws LN *(T% — §)| PY) are uniformly tight. Let Ty = 8 + (T% —
OI[| T — 6| > N""". Then Wy [Tn=TX] — 1 as N — o for all (W) € “H; and so “r(T;
$) = n(T% ¢) if ¢ # 0; whereas “r(T; ) = 0 because Wy [Tn = ] — 1 as N — oo for all (W)
€ “Hy. Thus, in the absence of uniformity, the risk ‘r(7; 6) is not a meaningful quantity.

REMARKS. 1. With obvious modifications, the preceding considerations carry over to the
full neighborhood model, i.e., with the superscripts © dropped throughout.

2. The problem whether the set of superefficiency must necessarily have Lebesgue measure
zero is still unsolved. Bahadur’s (1964) most lucid proof in the classical case does not seem to
carry over due to measurability difficulties.

When no restrictions shall be imposed on the estimators, the appropriate method will be to
evaluate the risk uniformly. That is, we consider the local asymptotic maximum risk of
estimators 7 at § which in view of the definitions in Section 2 is naturally given by

R(T; 6) = sup,r(T; On)
(44) = supgNsupHﬂNlim supn WN,aN[oN < Cﬁ] v WN,gN[6’N > CK}]

= limg_lim supysupy_g<xysup Wal§ < CN] v W d¢ > CR,

where Ky = N™'?K, respectively in the contiguity-submodel by
@5) R(T; 6) = supy,‘r(T; On)

= supy,supc,, lim supy Wio [0y < CH1V W0 > CR].

The corresponding quantities when the sign lim supy is replaced by lim infy in the above
expressions are denoted by Ro(T; 8), respectively by ‘Ro(T; 6).

THEOREM 4.1.  For any estimator T, the quantities R(T, 6), ‘R(T, ), Ro(T, 0) and ‘Ro(T;, 6)
are bounded from below by the number ®(— 7403 ).

PrROOF. Subsequently, if T is an estimator, yn the randomization constants occurring in
(2.9), and { € O, we shall employ the notation

(4.6) @he= (1 = ynI[N*(Ty = §) > 0] + ywI[N'*(Ty — {) = 0].
Let Oy € % and (Wny,) € Hy,,,j =0, 1. Then, by the definition of C%,

W glon < CE] = j Phay AW g,y
@.7)

Wie, J0in > CH] = j (1 = piey) AW,y
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Now, in view of Lemma 3.4 and Lemma 3.1, (3.5), we may conclude that

SUPey, ey, lim infy Wig,y[fon < CE1 Y W, [0in > CH
Z lim infy W, [0on < CF] v W, [6iv > CF)
= lim infy J Ploy AW, v f (1 — @fay) dW¥,, |
= limy J PXay AW kg ¥ f (1 — ko) dWhy

= (= 7407)-
So the theorem follows if we can show that

4.8) ‘Ro(T; 8) Z supe,Supc,, c, lim infaWig[on < CX] V Wag,[0in > CV].

Given Oy € % and (Wng,,) € “Hy,, j = 0, 1 define another sequence {v as follows,

N = Oon if  Wagplfon < chlz W, [0in > ci]

= Oin if WN,yON[eoN < Cﬁ] < WN,”:N [01N > Cz’{;]

Then {nyE Y%, (Wn,zy) € ‘Hy, and

Wialin < CR1 Y Wi [iv > CH1 2 Wagnlbon < CH1 V W [6in > CFI.

(By a similar argument we even have equality in (4.8)). O
The possibly most suggestive version of the local asymptotic minimax bound is the
following, which says that the limit of the minimax risks of the experiments at time N is at

least ®(— 7407).

THEOREM 4.1 A.  The following bound holds,

limg_.lim infy infr supy—_g<x, sup W, {¢ < CH] v Wn ¢ > CH] = ®(— 740)-

Proor. Since for every estimator T

SUpj;—aizry SUp Wi[§ < CR] v Wi [¢ > CA] .
= W?v,o-f,,[e — < CH]V W§’0+TN[0 + 78 > Cn] = aky,

in view of (4.6), (4.7), it follows that an even stronger statement is true, namely
lim infy infr supy—gz=., sup Wil < CF] v Wiil¢ > CRl = ®(— 7607)- O

By an estimator which is locally asymptotically minimax at § we shall mean any estimator T’
that satisfies R(T ) = ®(— 1407), respectively ‘R(T §) = ®(—407), depending on the model
considered. The next theorem asserts that such estimators are automatically also locally
asymptotically admissible at 6. In view of the infinite dimensional aspects of the problem the
admissibility result is fairly surprising even though we deliberately employ such pseudoloss
functions that essentially enable us to treat estimators as test statistics.
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THEOREM 4.2.  Let the estimator T be locally asymptotically minimax at 6. Then T is locally
asymptotically admissible at 0.

Proor. The theorem follows if estimators T that are locally asymptotically minimax at
necessarily have constant local risk at 6, i.e., r(T; On) = ®(— 7405), respectively r(T; Oy) =
®(— 1407), for all Oy € . This in turn is a consequence of the following implication, which
holds for any estimator T

If ro(T, {n) < ®(— 74 04) for some {y €  then

r(T: 8n) > ®(— 75 03) for another Oy € %. (Similarly, if superscripts ¢ are added.)

To prove this, assume on the contrary that lim supxy sup Wy, [0n < CcHlv W [0n > cfl
= ®(— 1405), for all Oy € %. Using the sequence &y = {1v and (4.6), (4.7), we conclude that

lim infy f PRy AWy < (= 1605),

lim supy f (1 — k) AWy, = B(= 70)-

However, this is a contradiction to Lemma 3.1, (3.6). O

A closer analysis allows the following sharper version of this theorem that seems particularly
suited to demonstrate the erratic behavior of formerly superefficient estimators. Note that
®(— 7405) — O(— 1905 — 1) < B(— 190 + 1) — (—7605¢) for all n > 0. Thus it will follow that
the amount by which the local risk can fall below the minimax risk at one local parameter
point is necessarily more than offset by the increase of the risk at another point. For example,
if °ro(T; 6) = 0 then °r(T; On) = 1 for the two sequences Oy = § — 27y and Oy = 6 + 27n.

THEOREM 4.2 A. Let T be an estimator such that ro(T; {n) = ®(— 7405 — n) for some {n €
% and some n > 0. Then there is another sequence Oy € % such that r(T, On) Z ®(— 7905 +
n). (Similarly, if superscripts  are added.)

PrOOF. According to the preceding proof, lim infy [ @i, AW, = ®(— 1905 — n) for
&v = {in. Let xR, denote the Neyman-Pearson test for W4, versus W5, such that limy [
XX, AWhe, = ®(— 750§ — m). Then Lemma 3.1 implies that limy [ (1 — xX,) dWhe, =
®(— 1905 + 7). Thus lim supy [ (1 — pke,) AW, = ®(— 10f + n), and so r(T: &iv) =
®O(— 1905 + 7). O

The last theorem gives the necessary asymptotic expansion at 8 of estimators that are locally
asymptotically minimax at 6. This expansion uniquely determines the asymptotic behavior of
these estimators under each (Wn,,) € “Hon, On € S5 in particular, another admissibility proof
for the contiguity-submodel is implied.

Recall the definition of I1C¥, (2.4).

THEOREM 4.3. If T is an estimator such that “R(T;, ) = ®(— 140%) then

4.9) NYXTy—80)— (NV2YX, ICF(x)) — Yees(inf ICF + sup ICH)} —>py0  as N— .
PROOF. Analogously to (4.8) we have

°R(T; 6) Z supsSupc,, cy, lim supy Wag[fov < CH1 Y Wy J0iv > CH].

Thus, employing the notation introduced in (2.13), (2.14), (4.6), the assumption entails: for
each Oy € ¥ there exists a nullsequence nx such that for all N

j ¢l€,9~ dW&a,,N v J’ (1= ‘Plgﬂlv) sz’fl,om = az"\(/,oN + .
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Hence, by virtue of Lemma 3.3,
| :U';Gl,oN I(D;\I}’oN) = (elN + Dnw,

where [.Li’}foN = . Whioon — Whion D;’;”(,N = AngyA[Lng,> In], and Ang, = [NV*(Ty — ) >
0] or Ang, = [N*(Tn — 6n) Z 0]. Because Iy — 0 (Lemma 3.1, (3.5)) this further implies that

(Wﬁo‘w - W’z*v,y,N)(BN) -0 as N—oow

for every sequence of measurable subsets By of Dy, . We insert By =Dy, N [Ls,Z 1], and
By = D;’;’M N [Lyg,= — t], t > 0, and use the asymptotic normality of Lng, under W5,

(Lemma 3.1), in order to conclude that

WhanAnoyDl gy >0) >0 as N oo,

Now the asymptotic expansion of Ly, (Lemma 3.2), again the asymptotic normality of
HA(Lnoy| Wa,,)» and the contiguity of ( W3 sow) 1O (P?') (Lemma 3.4), can be invoked to the
effect that, for all sequences Oy = 0 + NV/? h, h € (—o0, ®),

PY(Ang ALy >h]) >0 as N— o,

where Ly = N™'2 YL, IC}(x)) — % €(inf IC} + supIC}). Thus (3.12), (3.13) are fulfilled for
this Ly and Sy = N'/*(Tn — ). The assertion of the theorem follows. [
Assume now that T is an estimator such that

(4.10) NYX(Ty - 60) — (N"V2 YN, ICH(x:) — Yeeo(inf IC} + sup 1Cy)} —>wy,, 0
as N-o

for all (Wyg,) € H,,, respectively (Wyg,) € ‘Hy,, Ov € . (Given (4.9), this is no extra
requirement in the contiguity-sub-model.) Then, as already employed at the beginning of this
section, the results of [15], [17] show that (4.10) is sufficient for 7(T: On) = ®(—7e0}), respectively
cr(T; On) = (—7907), for all Oy € Sy, i.e., for T to be locally asymptotically minimax at 6. As
for the construction of estimators that satisfy (4.10) for all § € 6, see the corresponding
discussion in [17].
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