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A CLASS OF NONLINEAR ADMISSIBLE ESTIMATORS IN THE ONE-
PARAMETER EXPONENTIAL FAMILY

By DAN RALESCU' AND STEFAN RALESCU

Indiana University

We are concerned with the admissibility of nonlinear estimators of the form
(aX + b)/(cX + d) in the one-parameter exponential family, in estimating g(6)
with quadratic loss. Our method will be reminiscent of that of Karlin who gave
sufficient conditions for admissibility of linear estimators aX in estimating the
mean in the one-parameter family. Our results generalize those of Ghosh and
‘Meeden who studied admissibility of aX + b for estimating an arbitrary function,
g(6). Particular cases of estimators of the form, ¢/X are studied and several
examples are given. We show that (n — 2)/(X + a), a = 0 is admissible in
estimating the parameter of an exponential density. We also discuss the case of
truncated parameter space.

1. Introduction. Let us consider X a random variable, whose density with respect to some
o-finite measure p belongs to the one-parameter exponential family: fy(x) = B(6)e®. The
natural parameter space © = {f: fe® du(x) < ®} is known to be an interval in R. The end
points of this interval will be denoted by @ and 4, respectively.

In Karlin (1958) sufficient conditions are given for the admissibility of linear estimators of
the form aX, in estimating the mean E,X. This result was generalized in several directions.
More recently, Ghosh and Meeden (1977) gave sufficient conditions for the admissibility of
estimators of the form aX + b, in estimating an arbitrary piecewise continuous, locally
integrable function g(8).

These sufficient conditions mentioned above, are expressed in terms of divergence of some
improper integrals.

There are, however, important examples when admissible estimators are naturally of the
form ¢/ X, rather than aX or aX + b. The presence of such nonlinear admissible estimators
arises especially in estimating a function of a scale parameter, e.g., in a gamma density (see
Ghosh and Singh (1970)). We shall see in this paper that Karlin’s method can be developed
to give sufficient conditions for the admissibility of nonlinear estimators of the form (aX + b)/
(¢X + d), in estimating an arbitrary function g(d), where X ~ f;.

The main theorem which is presented in Section 2 includes both the results of Karlin (1958)
and Ghosh and Meeden (1977) as particular cases. As a corollary, we give sufficient conditions
for the admissibility of estimators of the form ¢/ X.

In Section 3 we present several examples of admissible estimators of the form (aX + b)/
(cX + d) and c/X. These examples come especially from estimating a function g(\) in an
exponential density Ae ™I, «)(x) and 1/¢ in a normal density N(0, ¢2).

In Section 4 we derive admissible estimators of the form (aX + b)/(cX + d) + ¢(X) (where
¢(X) is a “correction”) in the case when the parameter space is truncated.

2. Admissibility of (aX + b)/(cX + d). Let us consider a function g(8) which is piecewise
continuous; further restrictions will be imposed later on g.

As in Ghosh and Meeden (1977) we first write (aX + b)/(cX + d) as a formal Bayes
estimator, with respect to some (generally improper) prior . For more details of this kind of
approach, see Zidek (1970). If 7(9) is the Radon-Nikodym derivative of the prior distribution
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with respect to the Lebesgue measure, we can write
.1 (ax + b)/(cx + d) = (I 20)B©6)e*n(©6) d0>/<J’ G () dH).
Integrating by parts, we get:

2.2 —a f e (Bm) di + b J’ e¥Br df = —c f (gBm) e df + df gBme®™ df

and, by the unicity of the Laplace transform,

2.3) : —a(B7n) + b(Bm) = —c(gBm) + d(gBm).
The above differential equation has the solution:

_ 1 “dg(t)— b
@9 O = BT — a1 P U )

where « is an interior point of ©.
Throughout the remainder of this paper, we shall make the following assumptions:

(Al) cg(@) —a>0, forany 6 € 6.

dg(t)—b .
(A2) J’ P (t) exists, for any [u, v]C ©.

et eﬂx
(A3) J’_w(—cx—_:d—)gdu(x) < 00,

The main result is contained in the following

THEOREM. Let X ~ fo(x) = B(0)e™, and 8, § be the endpoints of ©. Suppose that conditions
(A1)-(A3) are satisfied. Denote by

23) o(8) = m(6)B(O)(cg(®) — a)* f ) e™(cx + d)™ du(x),
where n(6) is given by (2.4). If

2.6) limv_,a‘fv 07'(0)df =,  lim,. J’v ') df =
then (aX + b)/(cX + d) is admissible for estimating g(0), with quadratic loss.

ProOOF. Suppose that (aX + b)/(cX + d) is not admissible; then there exists an estimator
& such that

2.7 J’ (O(x) — g(@))folx) du(x) = J’ [(ax + b)/(cx + d) — g(O)Tfo(x) dp(x).
We will show that 8(x) = (ax + b)/(cx + d) a.e. First, (2.7) is equivalent to:

2.8) I [8(x) — (ax + b)/(cx + d)Ffolx) du(x)

=2 J’ [(ax + b)/(cx + d) — 8(x)][(ax + b)/(cx + d) — g(0)]fo(x) du(x).
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Multiplying both sides by , integrating over [u, v] C 6, and using Fubini’s theorem, we get:

J’ ( f [6(x) — (ax + b)/(cx + d)]’B(8)e’ dp.(x))ﬂ(é’) di
2.9) =2 f [(ax + b)/(cx + d) — 8(x)]

X { f [(ax + b)/(cx + d) — g(@))B0)e*n(6) d0} du(x).

By using (2.4) and assumption (Al), the inner integral in the right-hand side of (2.9)
simplifies, after some calculations, to:

J’ [(ax + b)/(cx + d) — g(6)1B(0)e* = (6) df
@.10) J,

. “dg(t)—b “dg(t) — b
= (cx + d)” [exp(ux + ,L ?gg))——adt> - exp(vx + L c‘;%:—adt)}
Denote by 7(8) = §Z.[8(x) — (ax + b)/(cx + d)*B(8)e®* du(x); it is enough to show that T(0o)
= 0, for some 6.

By using (2.9), (2.10) and the Schwarz inequality, we get:

J' ' TOy6) a0
Szf:(iﬁifr Ox )>cx+d
-{exp(ux + f%g:_zdt> — exp (vx + J:)%gg;—:f:dt>} du(x)
< 2T1/2(u),8_1/2(u)< f_ : (—c% du(x))l/z exp< f ugg;—:s dt)

1/2 v
1/2 1/2 dg()— b
+ 2T (V),B / (V)(f ( T d) d[.L(X)) exp(£ cht)—? dt)

ux 1/2
= 2T1/2(u)'31/2(u)q7(u)(cg(u) —a) ( f (c—e+71? du(x))

1/2
@11 + 2ATEOB g () ~ ) (f CTY: u(x))
Let us consider the following cases:

Case 1. lim infu m(1) T *()B'*()(cg() = a)(J (¢**/(cx + d)F) du(x)"* > 0.
By using this and (2.11), we get:

1/2

@Q12) M@) = J’ T(@)m(8) df < Kn(v)T"*(v)B"*(v)(cg(v) — a)< f (7;1—‘1)2(1“@))

for v in some neighborhood ¥ of @, and K is a generic constant, possibly depending on u,
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whose exact value plays no role in the subsequent analysis. Then

vx 172
(2.13) M(v) = K[M'()m(v)]/*B*(v)(cg(v) — a)( f (_cxe+—d)"’ d.u(X))
or
M'©) _ 1
(2.14) ") =

Kn(»B(»)(cg() — a) J e O

Choose v1, v2 € ¥, v; < vo, and assume M(v;) > 0. Then
1 1 * M'(v)
— = Y
M) M) M?(v)

(2.15)

(ex + d)

Smce the left-hand side is bounded by [M(v;)]”' and the right-hand side equals
K™ [207'(v) dv we get a contradiction, by letting v, — 8 and using the hypothesis (2.6).

Case 2. lim inf.g7() T 2B *(v)(cg(v) — a)([ (e"*/(cx + d)?) du(x))"/? = 0.

- J' vz dv
" Kn(v)BO)(cg(v) — a)2< J L—zdu(x))

Then, by using Fatou’s lemma, we get

1/2

(2.16) J; T(O)m(8) db =< 2m(u)T"*W)B""*(u)(cg(u) — a)( J’ (cx;:‘d)? dM(X))

If we denote by N(u) = || A T(0)m(0) db, we can write:

@17) N () = 2~ V') (u)(cg() — a)2< J (cx%d)— du(X)>
Thus:

—N'(u) - 1
(2.18) N =

2m(w)B(u)(cg(u) — a)2< f (—c-x‘:_—d)z du(x))

If N(uo) = 0 for some uo, then T(0)m(f) = 0 a.e. on [uo ], therefore T(6) = O for some 6,
and we are done.

If we assume N(u) # 0 for any u, then, by using the same argument as in Case 1, and the
second half of the hypothesis (2.6), we are led to a contradiction.

REMARK. The assumption (Al) can be replaced throughout, by cg(d) — a < 0 for any
€ 6.

Observe that the above theorem includes the result of Ghosh and Meeden (1977), if we
takec=0,d=1.
As a particular case of our theorem, we have the following

COROLLARY. Suppose that g(8) > 0 for any 0 € O, [}, (dt/g(t)) exists for any [u, v] C ©, and
[7 (€%/x) du(x) < 0. If:

(2.19) lim,,_,a‘J’ [g(ﬂ)J’ e /x? du(x)}_ . exp( f Wdt> df =
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v o -1 ]
(2.20) lim,‘_)_g_L [g(ﬁ) f_w e /x*? d,u(x)] . exp(c‘[ ﬁ dt) df = o,

then c/ X is admissible for estimating g(8) with quadratic loss.

3. Examples. The examples to be presented below are related to the estimation of a
function of the scale parameter in a gamma density.

ExaMPLE 1. Suppose that X;, Xa, - - -, X, are i.i.d with exponential density Ae M1 0.y (X),
where A > 0. We want to estimate g(A) = A.

Since X = Y7, X, is a sufficient statistic for A, we can consider estimators based on X. The
density of X is gamma, of the form

A
3.D filx) = D) X" e ™0 m)(X).
By changing the parameter into § = — A, we get:
—0)"
(3.2) Sfo(x) = ) X" eI 1gm)(x),

T'(n) 9<0

and we estimate g(6) = —6.

It is easy to see that conditions (2.19), (2.20) in the corollary above are satisfied for ¢ = n
— 2. Thus, if n = 3, the estimator (n — 2)/X is admissible in estimating A. This is a well-known
result (see Ghosh and Singh (1970)).

ExampLE 2. Consider again Xi, «-+, Xp ~ Ae ™I um(x), A > 0. We want to estimate
gN) =\,

It is easy to see that if X = Y, X, the estimator (n — 2)/(X + k) is admissible in estimating
A, for any k£ = 0.

This result does not seem to be known. Of course, Example 1 is a particular case, for
k=0.

Also note that the estimators (n — 2)/(X + k), k > 0, and (n — 2)/ X are not equivalent (i.e.,
the risk of (n — 2)/(X + k) depends on k), and, therefore, at some points A > 0, it is possible
to improve upon the risk of (n — 2)/X.

ExampLE 3. In this example we consider X1, X;, - - -, X, normally distributed with mean
0 and variance o2 > 0. The function to be estimated is 1/¢>.

Since X = Y1 X7 is sufficient for ¢, our admissible estimator will be a function of X.

It is well known that (Y1 X7)/0” is x2. If we denote by § = —(26%)™", then § < 0 and the
density of X is

(0"

(33) Sox) = T0/2)

e"‘x{ ‘"/2)_11(0,m)(x).

Also g(f) = —26 > 0. In looking for an admissible estimator of the form c/X, it is easily
seen that conditions (2.19), (2.20) are satisfied for ¢ = n — 4.

Thus, if n = 5, the estimator (n — 4)/(Y-1 X?) is admissible in estimating 1/0° in an N(0,
o?) population.

ExaMpLE 4. Let us consider again Xi, Xz, ---, X» ~ N(O, 0?) and we want to estimate
g(0®) = ¢ If X = Y7, X7, it is well known that X/(n + 2) is admissible in estimating o>

By applying the theorem above, we see that (X + k)/(n + 2) is admissible in estimating o7,
for any k = 0. We have here a surprising property, showing that even if X/(n + 2) is admissible,
we can strictly improve upon its risk, on “almost the whole parameter space.”

To make this more precise, let us denote by Y, = (X + k)/(n + 2), k = 0. The risk of Y,
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(with quadratic loss) is
k% — 40’k + 2(n + 2)0*

(3.4 R(Y, 0%) = TP

and the risk of the classical estimator Yo = X/(n + 2) is R(Yo, 0%) = 20*/(n + 2). Therefore we
see that R(Yy, 0) < R(Y,, o?), if 0% > k/4.

Informally speaking, if k goes to 0, then the set on which R(Yx, 0°) < R(Yo, ¢®) will
“approach” the whole parameter space (0, ). Thus X/(n + 2) is “almost inadmissible.”

ExXAMPLE 5. Suppose that Xi, - .., X, is a sample from the gamma density:
B
(@)
g(B) = B. Since X = Y=, X; is sufficient for 8 and X is also gamma with parameters na and
B, by using the same technique as in Example 1, we find that (na — 2)/X is admissible for
estimating 8. If a = m (integer) and n = 1, we get the estimator (m — 2)/ X obtained by Ghosh
and Singh (1970).

x'e™P*I0,)(x), where a > 0 is known, and 8 > 0 is unknown. We want to estimate

ExaMPLE 6. In this example we consider again Xi, - -+, X, ~ Ae M0 (x), A > 0, and we
want to estimate gA) = A — 1)/(A + 1).

We shall find here two admissible estimators which have the most general form (aX + b)/
(cX + d). We denote again by X = Yi-; X,, § = —A. The density of X is given by (3.2), and
g(6) = (6 + 1)/(6 — 1). We claim that, if n = 3, the estimators

3.5) [1-X/(n— D1+ X/(n— D]
(3.6) [1-X/(n—2]1+ X/(n—2)]"

are both admissible in estimating g(f) with quadratic loss.
It is easy to see that assumptions (A1)-(A3) are satisfied. Consider the estimator (3.5), and
the integral

(3.7) T =] i
) __(cx +dy uex) , x+n—1y '
Clearly
* e’ * T'(n—-2)
(3.8) f — x"ldx = J’ x" Pt dx = ————=.
, (x+n—1y A -0

By using this inequality, it is easy to show that the hypotheses (2.6) of the theorem are satisfied.
The estimator (3.6) is handled in a similar way.

4. Truncated parameter space. By using the same prior (2.4) we can give an explicit
formula for the admissible estimator, in the case of truncated parameter space.

Let us suppose that § € ©p = {6 < 6,} C O. Then the generalized Bayes estimator with
prior (@) is

" dg(ty - b
8(X) = (@X+b)/(cX+d)+ (cX+ d)_lexp<00 + f L dt)
cg(t) —a

a

(2 9 -1
1 —_
. ——exp| X + Mdt do| .
_.c80) —a . 80 —a
In obtaining formula (4.1) we need the following fact: if f € LY(R), f is absolutely
continuous on any interval of R, and f’ € L'(R), then lim,_,+.f(x) = 0 (see Benedetto (1976)).

@.1)
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]
- dg(n —b
In our case f(0) = exp<0x + fa Wt)—_adt
that the quotient in the right-hand side of (2.1) exists.

It can be shown, as in the proof of the previous theorem, that (4.1) is admissible in
estimating g(#), § < 6.

This result can be seen as a generalization of a corresponding result of Ghosh and Meeden
(1977) who found admissible estimators of the form aX + b + ¢(X) (where ¢(X) is the
“correction” due to the truncation). Also (4.1) generalizes a theorem of Katz (1961).

Note that in proving the admissibility of (4.1), only the second condition in (2.6) is needed,
due to the truncation of the parameter space.

) satisfies these assumptions, since we supposed

ExampLe. Consider X, - - -, X, i.i.d with density Ae *I(o.)(x). For the natural parameter
space © = (0, «), the estimator (n — 2)/X is admissible in estimating g(\) = A, as in Example
1 above.

If we know that A = 1 and want to estimate the same function g(A) = A, then the admissible
estimator is:

00 -1
8(X) = " ;2 + (Xexf tr3emX dt) .
1
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