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THE COX REGRESSION MODEL, INVARIANCE PRINCIPLES FOR
SOME INDUCED QUANTILE PROCESSES AND SOME REPEATED
SIGNIFICANCE TESTS!

By PraNAB KUMAR SEN

University of North Carolina, Chapel Hill

For the Cox regression model, the partial likelihood functions involve linear
combinations of induced order statistics. Some invariance principles pertaining to
such linear combinations of induced order statistics are studied and the theory is
incorporated in the formulation of some repeated significance tests (for the
hypothesis of no regression) based on these partial likelihoods.

1. Introduction. In the Cox (1972) regression model for survival data, it is assumed that

the ith subject (having survival time Y, and a set of covariates Z, = (Z.., - - -, Z,;,)’ for some p
= 1) has the hazard rate (given Z, = z.)

(1.1) h.(2) = ho(t)exp(B'z:), i=1..,n1=0,
where ho(t), the hazard rate for z, = 0, is an unknown, arbitrary nonnegative function (for
which [§ ho(t) dt = ) and B = (Bi, - - -, Bp)’ parameterizes the regression of survival time on
the covariates. We assume that ho(¢) is continuous in ¢ almost everywhere (a.e.), so that ties
among the Y; may be neglected, with probability 1. Let Q, = (Qi, «--, Qn)’, the vector of
antiranks, be defined by

(1.2) Yo, = Yu for i=1,...,n,

where Y, < ... < Y,, are the order statistics corresponding to Y, - .-, Y,. Then, following
Bhattacharya (1974), Zg,, - - -, Zg, are termed the induced order statistics. In the event of no

loss in the follow-up, the partial (log—) likelihood function when all the failures have been
observed (cf. Cox (1972, 1975)) is given by

(13) log Ln = Y1 {B'Ze, — log(-1 exp(B'Za)).

We consider here the following scheme where all the n subjects enter into the study at a
common point of time, so that the failures are observed in order. However, to incorporate
possible withdrawals (drop-outs) of subjects from the scheme, we conceive of a set of
withdrawal (censoring) times Wi, ..., W, where the W, are independent and identically
distributed random variables (i.i.d.rv’s) with a distribution function (df) G(¢), ¢t = 0. Then, the
observable rv’s are (Y7, &;, Z,) where Y{ = Y, A W, = min(Y,, W;) and §; = 1 or 0 according

as Y?is= Y,ornot, fori=1, ..., n. Note that by assumption the W; are independent of the
Y; and Z,. Also, for the Y?, the hazard rates are given by

(1.4) go(®) + hi(t),i=1, ..., n; go(t) = — (8/3n)log[1 — G(1)], t=0,
where the hi(r) are defined by (1.1). Thus, if Y3; < ... < Y9, be the order statistics
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corresponding to YY, ---, Y, and if Yo= Y3, i=1, -+, n, then the partial log-likelihood
function when all the Y7 have been observed is given by

log L3 = 1 (log[go(Y') + ho(¥2)exp(B'Za,)]
(1.5)
~ log(Z -l 8o ¥%) + h ¥S)exp (B Za, }])).

As (1.4) invalidates the proportionality of the hazard function, (1.5) depends on the unknown
8o, ho (as well as the ¥?7) and is of not much use. However, if T= {t; < - -+ < t,,} = {Y?: &
=1,i=1, ..., n} be the set of failure points (for which W, exceeds Y;), then a second partial
likelihood function may be defined as follows. At time #, — 0, there is a risk set %, or r;
individuals which have neither failed nor dropped out by that time, for j = 1, - -, m, so that
Rm C + -+ C A . Considering the risk set %; and the conditional probability of a failure at time
¢, forj=1, ..., m, we obtain on using (1.4) the partial log-likelihood function

(1.6) log L% = Y71 {B'Zg — log(Tie s, exp{B'Z})}.

where Q* = (Q%, .-+, Q%) is a (random) subvector of Q. This corresponds to the model of
Cox (1972), though Cox has primarily in mind the case of a staggered entry and a fixed point
of termination, leading to possibly different censoring times for the n subjects. In the sequel
we shall refer to the Cox model in the set up of this nonstaggering entry and random
withdrawal model. A discrete version of (1.6) has also been considered by Cox (1972) and we
shall refer to that in Section 3.

For testing the hypothesis of no regresson viz.,

(1.7) Hoy:Bp=0 vs. H:B#0,

Cox(1972) considered the test statistic

(1.8) Lt = Ulknd 3 Uk,

where

(1.9) U, = (8/3B)log L |p=0,  J%n = —(8*/0B3B")log L¥n|p=o,

and A~ stands for the generalized inverse of A. Cox (1972, 1975) argued heuristically that
under Ho, £ has asymptotically chi-square distribution with p degrees of freedom (DF). In
a variety of situations, relating to clinical trials and life-testing experimentations, one may be
interested in monitoring the study from the very beginning with the objective of an early
termination if Ho in (1.6) is not tenable. Such a plan is known as a progressively censored
scheme (PCS) (vis., Chatterjee and Sen (1973) and Sen (1976, 1979). Thus, in a PCS, instead
of making a terminal test at the mth failure t,, one may like to review the process at each
failure ¢, j > 1 and stop experimentation as soon as £ (defined as in (1.8)—(1.9), but, based
on UX and J}), leads to the rejection of H,, for some j =< m; if L,

.., L% are all insignificant, then Ho is accepted along with the termination of the study at
the preplanned time. Hence, a repeated significance testing (RST) procedure is involved in a
PCS. We may note that by (1.6) and (1.9),

(1.10) Ut =Sk (Zo; =1 Sien Z)  for k=1,.--,m,

and hence, these are all linear combinations of induced order statistics. We first study (in
Sections 2, 3 and 4) some invariance principles relating to these induced order statistics (under
the null as well as local alternative hypotheses) and in the concluding section, we incorporate
these invariance principles for the study of the (asymptotic) properties of some RST procedures.

2. Weak convergence of some induced quantile processes. For convenience of presenta-
tion, we first consider the uncensored case, and by analogy to (1.3), (1.6) and (1.9), we let for
everyk:l =k =n,

(2.1 log Lnx = Y51 (B'Zg, — log{ YL, exp{B'Zg,})},
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(22) Uni = (8/9B)log Lk | p-0
=20 {Zo— (n—j+ 1) T Ze),
(2.3) Juw = —(8°/9B3B")10g Lok | p=0

=Sha(—j+ D)= j)Sw, say,
where S,.. = 0 and
24 Sw=(m—j)" L (Zo—Z})NZg—Z}) for j=1,.-.,n—1,
.5) } Zy=(m—j+ 1) Y1, Zeg, j=1,n

Conventionally, we let Uno = 0 and J.o = 0, for every n > 1. Also, throughout this paper, the
covariates Z, ---, Z, are assumed to be stochastic vectors; there are some simplifications
when these are nonstochastic and these will be briefly considered later on. In the usual custom
of an analysis of covariance model, we assume that Z;, - - ., Z, are i.i.d. rv’s with p=EZ;and
I’ = E(Z; — p)(Z; — p)’, and assume that

(2.6) I" is positive definite (p.d.) with det I" < 0.

Note that the Z; are all observable at the beginning of the experimentation, 0, - --, O are
observable at the kth failure with }\ix Zg, = Yiv1 Z, — Y5=! Zg, is also observable at the kth
failure, and hence, there is no difficulty in computing the U, and J.. at the successive failures.
We are primarily interested in the asymptotic behavior of the partial sequences {Uy,z: 0 < k
=n} and {J.x:0 = k < n).

For every n(=1), we consider a stochastic process &, = {£,(¢), t € E = [0, 1]} by letting

@7 £.(t) = 372U npngs 0<r=<1,

where [s] denotes the largest integer contained in s and J;'/* = B, is defined by B,.J,..B,, = I,.
Then, £, belongs to the space D”[0, 1], endowed with the Skorokhod Ji-topology. Also, let
£ =(CGw@®), -, ta®), tEEand &, = {¢,)(0), t € E},j=1, ---, p be independent copies
of a standard Wiener process on E. Then the main theorem of this section is the following

THEOREM 2.1.  Under Ho: B = 0 and (2.6), &, weakly converges to £ = {§(t), t € E}.

The proof of Theorem 2.1 rests on a martingale characterization of {U ;) (and {S.:}) and
some invariance principles for such martingales studied by Scott (1973) and McLeish (1974),
among others. For this reason, first, we consider the following. Let B, = B(Z,, -+ -, L,; O,
-+ -, Q) be the sigma-field generated by Z,, -+, Z, and Qy, - - -, Qrfork=1, ..., nand let
Brno = B(Zy, -+, L,). Then, for every n(=1), B is nondecreasing in k(<n).

LEMMA 2.2. Under Ho: B = 0, for every n(>1), {Unx, Bni; 0 < k < n) is a martingale.
Proor. Note that by (2.2), for every k: | = k <n,
2.8 U = U1 =Zg,— (n—k + 1)7' Y7, Zg,.

Now, given %n.-1, under Hy, Q) can take on any one value in the set (1, - -+, n\(Q1, + - -, Qr—1)
with the equal conditional probability (n — k + 1)™", so that E(Zg,| Bus-—1) = (n — k + 1)~
[X=1 Zi = Y5 Zg] = (n — k + 1) Tk Zg,. Thus, E(Unk — Uk | Bukr, Ho) = 0 a.e., for
k=1 ...,n0

LemMMA 2.3. Under Ho: B = 0, for every n(=2), (Sur — I, Bur: 0 < k < n} is a martingale.

PrOOF. By the same arguments as in the proof of Lemma 2.2, under Hy,

(29) E{(Unk - Unk—1)(Unk - Unk-l),l gnk—l} = (n - k)(n —k+ l)_IS,,k Vk= l, cee, N,
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where the S, are defined by (2.4). Note that if we let
(2.10) ¢(a, b) = %.(a— b)(a — b)’, a,b € R?,
then, we have by (2.4),

-1
@11 snk=<""2‘“) Sheicizn 6(Zas Lg)  for k=1, .on—1.

As such, by the same technique as in the proof of Lemma 2.2, we have under H,,
(2.12) E(Suk| Bur-1) = Spe-1 ace., forevery k=1,...,n
Also, note that

-1
Su = <;> Yisi<jzn §(Zi, Z))

is a U-statistic of degree 2 (based on the i.i.d. rv’s Z;, - -+, Z,), and hence, ES,; = E¢(Z,, Z.)
= I. Thus, by (2.12) and the above, we have E(S,x — I'| Bur-1, Ho) = Spe_1 — ae., V k =
L, ....,n0

For a p X p matrix A = ((a,)), we let || A|| = max{|a,;|: 1 <i,j=<p}. Then, by Lemma 2.3,
we have for every n(=2), under Hy: 8 = 0,

(2.13) {ISnt — T'||, Bu; 1 =k =n—1} is a nonnegative submartingale.

LeMMA 2.4.  Under (2.6) and Hy: B = 0,

(2.14) MmaXi=e=n |07 (Jne — kT)|| =, 0, as n —co.

ProoF. Let {k.} be any sequence of positive integers (k. < n), such that
(2.15) kn— oo  but nki—>0 as n—owx.

Then, by (2.13), (2.15) and the generalized Kolmogorov-inequality for submartingales, under
Hy: 8 =0 and (2.6), for every ¢ > 0,

(216) p{maxlsksn_kn " S.: — I‘|| > I} = t_lE” Snn—k,, - FII,

2.17) P{max,—p, +1<k<n-1 || Snt = T'|| > 1} < 'E||Spu—s — T

Note that by Lemma 1 of Bhattacharya (1974), under Hy: 8 = 0, Zo=1f, ---,1Lo =17} are
iid. rv’s and Z} and Z, both have the same df. Hence, by (2.11), we have

-1
1
E"Snnvk_FI|=E|| <k; > le:<15k+l {¢(Z?‘,Z1*)_F}

(2.18)
=E|UZ}, -+, Zta) —T||  forevery k=1, ...,n— I,

where U(ZY, .-+, Z}) is a matrix of Hoeffding’s (1948) U-statistics, for every m = 2. Let €,
be the sigma-field generated by the unordered collection {Z¥, .., Z%} and by Z}.,, Z%.»,
- -+, 50 that %, is nonincreasing in m(=1). Then (cf. Berk (1966)). (U(Z¥, .-+, Z%), Gn; m
=2} forms a reverse martingale sequence, so that {|| U(Z¥, -+, Z%) — T'||, %n; m =2} forms
a reverse submartingale sequence, and hence, by the reverse submartingale convergence
theorem,

(2.19) E|U(Zt, ---,Z%) - T converges to 0 as m— .
Further,

maxi<e=n [ 07 Jux — n7'kT|
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=maxi<k<n |0 Tl (=D —i+ D Su—-T)+ (m—i+ 1)"'T}|
(220) = maxlsksn—kn " Snk - F " + n_lkn{maxn—kn+lsksn—1 " Snk - F "}
+IT N A{Z5) ™ /n.

Hence, using (2.16) (for t = €/3), (2.17) (for t = k,), (2.15), (2.19) and (2.20), we conclude that
for every € > 0, P{maxi=p=n |1 It — n'kT'|| > €} > 0asn — «.0

(221 n'Ju, —, I' andis p.d., in probability.

Let I(A) stand for the indicator function of the set 4 and let Z, = maxi<ik<n | Zr| =
max,<z<» (Z+Zx)"?. Then, we have the following

LEMMA 2.5. Under Hy: B = 0, for every € >0, as n — oo,

(222) ” n_l 7:1 {(Unz - Um-l)(Um - Um-l)/l(l Uru - Um-ll >€ \/;)I gmfl}) " —>p 0.

Proor. Note that by (2.8),
(223) maXi<k<n | Unr — Unp—1 I = 2{max15ks,, I Zkl} = 2Z~ n.
Also, by (2.6), |Z.|,i=1, -+, n are i.i.d. rv’s with a finite second moment, so that
(224 P{maxi<p<n |Ze| >€n"?} >0 as n— o Ve>0.
Finally, as in the proof of Lemma 2.2, the left-hand side of (2.22) is given by

[n ™t S (n = i+ 1) 5o (Zo, = Z¥)(Zo, — ZF)I(|Zg — ZF| > € Vn) |
(2.25) < (n"' Y, Trace[(n — i)n — i + 1)"'Su]} I(Zn > e € Vn)
= [Trace(n™' o)1 I(Z, > % € Vn).

Hence, (2.22) follows from (2.23), (2.24), (2.25) and (2.21). 0

We are now in a position to prove Theorem 2.1. By virtue of Lemma 2.2 and (2.25), we are
tempted to use invariance principles for martingales (viz., Scott (1973) and McLeish (1974)
and, for this purpose, we consider the following lemma which is a direct multivariate
generalization of Theorem (3.8) of McLeish (1974) (and hence, the proof is omitted). Let { X,
i=1, ..., my;n=1)} be a triangular array of random vectors, {k.(#)} be a sequence of integer

valued, nonnegative, right-continuous functions on E = [0, 1] (k»(0) = 0) and let W, = {W,(¢),
t € E} be defined by

(226) Wn(t) = Zzsk,,{t) Xnn tEE.

Let E,, denote the conditional expectation given Xz, k < i, for i > 0 and, finally, let § be
defined as in Theorem 2.1. ‘

LEMMA 2.6. Suppose that for every t € E and € > 0,
(227) Zzskn{t) Em—l {me ;LLI(‘ Xm ‘ > 6)} —>p 0;
(228) Ezskn(l) IEntf]xml —>p 0 and lek,,(lb Em—lxmx;u' —>p tlp-

Then, W,, converges in distribution to ¢ on D”[0, 1].

If we now let X, = n™2(Up— Upyy), i =1, « « -, n and k,(¢) = [nt], for t € E, then, we have
Sttty Enie1 XX = 1" Jupngg, V 1 € E. As such, (2.28) follows from Lemmas 2.2 and 2.4,
while (2.27) follows from (2.22). Consequently, Theorem 2.1 follows from Lemmas 2.2, 2.4,
2.5and 2.6.0
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Note that by virtue of the Courant theorem (on the ratio of two quadratic forms) and by
(2.14),

maxi<e=n |Unrdin Unk/Ure(nD) ' Ups — 1|
(2.29)
= max{|chi(n['Jz) — 1], |ch,(kTJ ) — 1]} >,0  as n— oo,

where ch; and ch,, stand for the largest and smallest characteristic roots. On the other hand, by
Lemma 2.2, under (2.6) and Hy: B8 =0,

(230 {n'UL " "Uns, Bu; 0=k <n} is a nonnegative submartingale.
Also, note that for every k:1 < k < n,
E{n'UnIl'Uni}
= E{n 'Trace[I' "' U,.U ]}
= E{n 'Trace[I’ "' J..]}
=n"' Yri (n—i)(n — i + 1) E(Trace[I" "sS,.])
=pn ' Yi(n—in—i+ 1) ' <pk/n, as ES,=T for i=1 ..., n

Therefore, by (2.30), (2.31) and Theorem 2.1 of Birnbaum and Marshall (1961), for any {a,,
2= =, >04,0<8<1,e>0,

(2.31)

P{maxi=r=(ns ankln_lU;LkF_lUnkl > €}
(2.32)
< YV (@ — Zukr1)pk/ne < pn= @m + - -+ aupns)) /€.

Thus, if ¢ = {q(?), t € E} be a nonnegative, nondecreasing and continuous function of ¢ such
that

(2.33) J [q()]™ di < oo,

then n7'(g7*(1/n) + «++ + g %([n8]/n)) = [ [g()]* dt, ¥V 0 < 8 < 1. By choosing 8(>0)
adequately small and using (2.33), it follows that the right-hand side of (2.32) can be made
small when a,, = ¢"(i/n), i =1, - - -, n. On the other hand, for ¢ > 8(>0), g%(t) < ¢ "%(8) <
o, 5o that for § < = I, the weak convergence of &, in the Skorokhod metric insures the same
under the sup-norm metric

(2.34) pq(x, p) = sup{| x() — (1) | /q(t), t € E}.
This leads us to the following

THEOREM 2.7.  Under (2.6), (2.33) and Ho: B = 0, the weak convergence in Theorem 2.1
holds in the sup-norm metric p,.

Let us now consider the censored case. Let ho(7) be defined as in (1.1) and let Fo(x) = 1 —
exp{—J5 ho(¢) dt} be the df of Y, under Hy: 8 = 0. Then, defining T and its cardinality m as
in before (1.6), we have

o

(2.35) m/n— 11 = J' Fo(x) dG(x) > 0, a.s.,

0

whenever the supports of the df F, and G are overlapping, as will be assumed in the sequel.
Thus, m a.s. goes to « as n — . We define %, rr, L% and U}, as in Section 1 (for k =
1, .-, m), and let % be the sigma-field generated by the risk set 2, k = I, .-, m. Since
under Ho, Y., W, and Z, are mutually independent and (Y., W,, Z,) are i.i.d. rv’s, defining the
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Q7 as in (1.6), we claim that under Ho, Q¥ has a uniform conditional distribution (given X))
over the set of r, realizations in 4;, so that

(2.36) E{Zqg,— 17" Yien Z,|B%) =0 forevery j=1,...,m.
Similarly,
E{(Zq, — 17" Bicw, L Za, = 17" Yicu L. | B%
(2.37) =1 Tiea[Zi = 17 Thew, LN L, — 17" Shew, 24
=ri'(r;— 1)Sk, say, for j=1,...,m.

As such, Lemmas 2.2, 2.3, 2.4 and 2.5 all hold for the censored case provided we replace the
Uk, Sne, Jne and Bux by Ui, Sk, J % and B %, respectively. For intended brevity and
similarity of the techniques, the proofs are omitted. Thus, if we define £% = {£* (1), tE E} by
letting &3 (1) = J %."*UMmy, t € E, then, parallel to Theorems 2.1 and 2.7, we have the
following.

THEOREM 2.8. The weak convergence of £} to ¢ holds under Hy:B = 0 (both in the
Skorokhod metric and the sup-norm metric).

3. Weak convergence in the discrete time model. As in Section 1, we conceive of m risk
sets #1 D - -+ D Rn where Z, has r, subjects whose survival times are = tk=1,0=t,<1,
< +++ <Im <lm+1 = ® and we denote by

3.1 D, =T[4, tj+1), j=0,... m.
Let there be s, failures in the interval D,, j = 0 and let
3D Q=IY.€D), Q=% for j=0,.ce,m i=1 --,n

Then, proceeding as in Section 6 of Cox (1972), we obtain the derivatives of the partial log-
likelihood functions (evaluated at 8 = 0) as

(33) Ut = S (T @y — Q3s/r)Z4), k=1, m,
(34 Jat = B I = D5 — ) T 205 — Z1)@.QF — ZY

=Y ls(i— s)/nISk say, k=1,...,m,
where
(3.5) ZY = (Y 2.9%)/r,  for j=1,-...m.

(The close relationship between (2.4)—(2.5) and (3.4)~(3.5) need not be overemphasized.) In
this case, we let BxF = B (Zy, -+, Zn, S1, +++, Sm, 11, ety @y, j<k,i=1, ..., n)for
k=1---,mwhile B2=B@Zy, -+, Zn,s1, - » Sm, 1, + + =, I'm). Then, by arguments very
similar to those in the proof of Lemma 2.2, we arrive at the following.

LemMMA 3.1. Under (2.6) and Ho:B = 0, for every n(=1), {Ux¥, Bl =k=m)is
a martingale.

Also, parallel to Lemma 2.4, we have under (2.6) and H,: B =0,
(3.6) MaXisksn [|[R (I X = Y1 505 — 5)r ' T)|—>,0  as n— co.
Now, to study the desired weak convergence results, we consider two different cases:

(I). m is fixed, so that as n — oo, 5, and r, both increase for every j(= 1, ..., m). This
situation arises when we have a given number of ordered categories, while n is large.
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(II). m = m(n) > o but maXig<mmn ‘s, = 0 as n — oo. This situation arises when the
width of D; (j = 1) is small, so that there are a large number of cells with small probabilities,
but the possibility of ties is no longer negligible.

In case (I), by virtue of Lemma 3.1, UX* — UX*,, k = 1 are all uncorrelated. Moreover,
given % *¥ ., the conditional distribution of

€X)) nTUR Ul ) = n V(T ZQu — seri ' Q4))

is generated by the r:! equally likely realizations of the Q. (over the set % = {i:Q% = 1}) and
by an appeal to the classical permutational central limit theorem (Hajek (1961)), we conclude
that this conditional distribution is asymptotically (in probability) multinormal with null mean
vector and dispersion matrix

(3.8) su(re — se)re' S =2 say, (k=1,...,m).

Thus, using a chain of conditioning (for k = m — 1, -- -, 1), it follows by some routine steps
that given Z%¢, the joint conditional distribution of {n2(UX# — UX%)), 1 < k < m} is
asymptotically (in probability) multinormal with null mean vector and a dispersion matrix
which is block-diagonal with the matrices ), K = 1, ..., m. This, in turn, insures the
asymptotic multinormality of {n "> U%¥, k=1, --., m} when (2.6) and H,: 8 = 0 hold.

In case (II), m = m(n) — o as n — . Hence, using Lemma 3.1, (3.6) and proceeding on the
same line as in the proof of Theorem 2.1, it follows that a similar invariance principle holds
when we replace Uk, Sne and J ., by U, S}* and J %, respectively.

4. Invariance principles under local alternatives. We like to extend the invariance prin-
ciples studied in earlier sections when Ho: 8 = 0 may not hold. We conceive of a sequence
{K.} of local (Pitman-type) alternative hypotheses, where

4.1) K.:B=Bwm=n""*X forsome A€ER?,

and desire to study the weak convergence results under {K,}. Let us define the rv Y? as in
Section 1 and let ¥(y) be the df of Y7 under Ho: B = 0. Then [1— ¥(y)] = [1 — G(y)]
[1 = Fo(»)], V y = 0, where G and F, are defined in Sections 1 and 2. Also, let ho(¢) and go(t)
be defined as in Section 1 and let #(z) = ho(r)/[ho(t) + go(?)] for ¢ = 0. Further let

¥ a)
“4.2) I(a) = j m(z) d¥(2), Va€e([o 1],
0

so that TI(1) = IT is defined by (2.35). Finally, let t* = inf{u:T1(u)/TI(1) = ¢}, t € E,
4.3) = (&) =T IIe*)CV°A = TTVAT YA, t € E}
and we define the processes §. and £ as in Theorem 2.8. Then, we have the following.

THEOREM 4.1.  Under (1.1), (2.6) and {K,} in (4.1), £} converges weakly to € + {*.

Note that if the W, are all equal to +oo, with probability 1 (i.e., there is no withdrawal from
the scheme), then #(f) = 1, V 1 = 0, so that {* reduces to { = {{(¢) = T''/2X, t € E}. Thus, if
we define £, and £ as in Theorem 2.1, from Theorem 4.1 we arrive at the following.

COROLLARY 4.1.  Under (1.1), (2.6) and { K.} in (4.1), £, converges weakly to & + ¢.

For the proofs of these results, we employ the concept of contiguity of probability measures
(as in Chapter VI of Hajek and Sidak (1967)). Let P, and P} be respectively the joint
distributions of (Y?, 8, Z,),i= 1, - - -, nunder Hy: B =0and K,. Then, as a first step for the

proof of Theorem 4.1, we consider the following.

THEOREM 4.2.  Under (1.1), (2.6) and (4.1), { P*} is contiguous to { P,}.
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ProOF. Let Ho(x) be a nondecreasing and nonnegative function defined by (d/dx)Ho(x)
= ho(x). Then, the conditional density of (Y7, &), given Z; is
4.4) [1 = G(YD)llexp{—Ho(Y)e?Zi}{ go( YD)} Pi{ho(YD)eP 2} i=1,...,n.
Since the marginal distribution of the Z, does not depend on B, we obtain from (4.4) that for
testing Ho: B = 0 vs. K,,: B = n”"/?A, the log-likelihood ratio statistic is
4.5) log 9 = n"V2Ym, (8 NZ, + H(Y)n'A(1 — e "Ny,

Note that by definition, 1 — ¥(y) = (1 — G(y))exp{—Ho(y)}, so that d¥(y) =
[exp{—Ho(»)}] - [(1 = G(»)) dF«(y) + dG(y)]. Hence, for every r > 0, under Ho: B = 0,
E[Ho(Y?)] < . Therefore, by the Khintchine law of large numbers, under Ho: 8 = 0,

(4.6) n”' Yo [Ho(Y,)) — E[Ho(Y)], as. as n— oo,
Further, by (2.24), uniformly in i(l <i < n),
@7 | nVA1 =" N £ NZ, 4+ nTVANLY | = op(nTVDNZ)  as n— oo,
Also, using the independence of Y7 and Z, [under Hy: B = 0] and the Khintchine law of large
numbers, we have under Hy,
@8) 1 X H(YD(NZ) — EH(YDEWNZZN) = EH(YDIN' (T + pp))A] as.
= 1%, say.
Finally, note that by (4.5) through (4.8), as n — oo,
(4.9) log %% = n"V2 Y, (NZ,)6, — Ho(Y?)) — %r’® + 0,(1),
where under Ho: B =0, for every i(= 1, ---, n),

0

E[Ho(Y))] = — f Ho(y) d[1 = ¥(y))] =f (L =¥ (] dHo(y)

(4.10) =f (1= G(y) dF(y)

= E[4.] = II, defined by (2.35),

o o

Ho(y)X(1 = G(y)) dF(y) =f Ho(y)[1 =¥ (y)] dHo(y)

0

E[8,H(Y))] = f

0

0

1 (" 1 1
4.11) =3 f [1 = ¥(y)] dHd(y) = 3 f Hi(y) d¥(y) = 3 E[H{(»)]-

Thus, under Ho: 8 = 0, E(8, — Ho(Y?)) = 0 and E(S, — Ho(Y?))* = ES; = IL. Also, by the
classical central limit theorem, under Ho, n** Y5y (N'Z:)(8, — Ho(Y?)) is asymptotically
normal with mean 0 and variance IIE(A’Z;Z}X). Since by (4.8), »* = IIE(X'Z,Z]), from
(4.9) and the above, we conclude that under Ho,

4.12) log #5 —o N (—%¥%, ¥®)  as n— .

By (4.12) and the corollary to Le Cam’s first lemma (cf Hajek and Sidak (1967, page 204)), we
conclude that {P*} is contiguous to {P,}. 0O

Let us now return to the proof of Theorem 4.1. By the same arguments as in the proof of
Theorem 2 of Sen (1976), we conclude that the tightness of {£%}, under Hoy, insured by
Theorem 2.8, and the contiguity of { P¥} with respect to { P,}, insured by Theorem 4.2, imply
that {£%¥) remains tight under { K.} as well. Hence, to prove Theorem 4.1, it suffices to show
that under {K,}, the finite dimensional distributions (f.d.d.) of {£*} converge to those of &
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+ {*. By using (4.4), we obtain by some standard steps that the conditional density of Z; given
Y = y and & = §, when K, holds, is given by

“.13) @)1 +n™%8 = Ho(y))@ = pYA + o(n™?)],
where /(z) is the marginal density of Z,. Thus, under K,,,
4.14) E(Z;|Y)=y,8=8=pn+n""}0 - Ho(y)TA + o(n™"2).

Now, for every a € [0, 1], let us define
(A15)  Va@) =" Bistua) I = 1)(n — i + )7\ (n = D[Zgp = (n — i)' = Zap],
where the Q? are defined after (1.4). Then, by (4.14) and (4.15), we have
(@16) EVa(@|Kn) = 1™ istuy(n = i + 171 = HEALE (I(Bep = 1)Bap — Ho(¥%))
= (n = )7 T E{I(8qy = 1)(8qp —Ho( Y2))}],
where the Y3, are defined after (1.4). Note that for each i(= 1, - - -, n)
E{I(8qy = )(dqp — Ho(Y 1))}

1l

(417) n—1 B 1—1 n—t
=n(-r) f (1 = H)Im)¥D)]I 1 = ¥ ()" d¥(y),

and hence, using the moment-convergence (of continuous functions) of sample quantiles (cf
Sen (1959)), we claim that (4.17) is convergent equivalent to
(4.18) (¥ 76/ (n + D)1 = Ho(¥ '@/ (n + D))].

In a similar manner, it can be shown that (n — )™ ¥ - E{1(8q = 1)(8q — Ho(Y "))}
is convergent equivalent to

. . -1 00
) -7) |
n+1 n+1 1/ 1))

{{1 = Hi(»)]fo(yX1 = G(p)) — Ho(yX1 = Fo(»)g(»)} dy

s . -1 00
- ) -)
n+1 n+1 -1/n + 1)

4.19) {(1 = G(y)) dFo(y) — Ho(y) d¥(y)}
of i i Nr
= () (=) UL

(1 =¥ (p)] dHo(y) - j - Ho(y) d‘I'(y)}

¥-1(i/n+1)

(e () e (7))

Hence, (4.16) is convergent equivalent to

¥ a)
(4.20) | Y f m(2) d¥(z) = TI(a)TA.
0

Now, by (1.10) and (4.15), n=2U %, = Va(l). Let wi = inf {r: Y I(8gp = 1) =k}, for k = 1,
-+, m. Then, n "*U¥= Vu(n"'wx), k = 1, - - -, m. Also, adapting the proof of the Glivenko-
Cantelli lemma and using the fact that I1(z) is strictly monotonic in z(=0), it follows that
maXi=k=m |7 ~'we — II7'(k/(n + 1))| > 0, in probability, as n — co. Similarly, proceeding as in
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the proof of Lemma 2.4, we have n~'J %, —, II(1)I'. Hence, using the tightness property of
&* [under Ho], insured by Theorem 2.8, we obtain that for any (fixed) ¢(=1) and 0 < ¢,
< ... <ty =1, under Ho, max,s<, | £X(t,) — [17'*T 72V (t}) | =, 0, where I1(¢}) = ¢, II(1),
for j =1, ..., q. Because of the contiguity of {Px} with respect to {P.}, established in
Theorem 4.2, from the above, we obtain that

4.21) MaXg<q | EX(4) — IV’ 7V2V,(t1)| —»,0  under {K,} as well.

Thus, it suffices to show that under {K,}, {II "I ""2V,¢}),j=1, - - -, ¢} has asymptotically
a multinormal df with mean vector {{*(t1), - -+, $*(¢,)} and dispersion matrix ((#; A £/)) ® I,
where & stands for the Kronecker product of the matrices. Now, (4.16) and (4.20) insure that
under {K,}, the asymptotic mean of II"/*T""?V,(¢}) is {*(#), forj= 1, - -+, ¢. Also, under
H, and (1.1), Z, is independent of (Y?, &), so that the conditional distribution of Z, given
(Y?, &), does not depend on Y?{ and §,. Thus, using Lemma 1 of Bhattacharya (1974), we
claim that under H, and given 41, - - -, 8., VA(t} ) involve a linear combination of i.i.d. rv’s
and hence a version of a theorem of Behnen and Neuhaus (1975) and our Theorem 4.2 insure
that under {K.}, the asymptotic multinormality of {IT"°I'"V?V,(¢}),j =1, --+, q} holds.
This concludes the proof of Theorem 4.1. The Corollary 4.1 follows directly by letting 7(z) =
1 for all z € [0, o).

We conclude this section with the remark that similar weak convergence results hold for
the discrete time case treated in Section 3.

5. Asymptotic relative efficiency results and some RST procedures. Note that by virtue
of (1.8), Theorem 2.8 and Theorem 4.1, £} in (1.8) has asymptotically (under Ho: 8 = 0) chi-
square distribution with p DF, and under {K,} in (4.1), it has asymptotically a noncentral chi-
square distribution with p DF and noncentrality parameter

.1) A* = TI'TA), TT = TI(1) being defined by (2.35).

In the uncensored case where the probability of withdrawal is O (i.e., the W; are equal to +o
with probability 1), the parallel statistic i Fnn = UpuJnnUse and under {K,}, it has
asymptotically noncentral chi-square distribution with p DF and noncentrality parameter A
= (ATX); naturally, under Ho, the asymptotic df is central chi-square with p DF. Thus, the
asymptotic relative efficiency (A.R.E.) of Z%,, test with respect to the test based on £, is

(5.2) e* = o(L*, ¥)=A*/A =TI =f [1 — G(x)] dFo(x).

This indicates that whenever I is close to 1, the A.R.E. of the censored case is also so, that is,
there is not much loss in information due to censoring—this result has been obtained for the
discrete time model by Efron(1977) from a somewhat different consideration.

Suppose now that we may not want to continue experimentation until all the failures have
occurred, but desire to make a terminal test based on the partial set (Y., 8qo, Ze,
i=1, ..., rwherer=[na] and « is some (fixed) number (0 < a < 1). In such a case, defining
m, =Y 27 I(8 = 1), we may construct a test statistic L%, = Uk, J*.'U%, . Under Ho: B
=0, Zn, has asymptotically chi-square distribution with p DF, while under {K,} in (4.1), it
has asymptotically noncentral chi-square distribution with p DF and noncentrality parameter
IT(a)(A'TA). Thus, the A.R.E. of this censored test with respect to the ideal test based on £,
(if the Y, were observable) is given by

(53) ex = e( g:ma, gnn) = H(a) = [H(a)/a]a,

where the first factor is bounded above by 1 and the second factor accounts for the intrinsic
A R.E. for censoring the experiment at the [na]th order statistic. II(a)/a represents the A.R.E.
of & }n, with respect to Zy(nq) and reflects the loss due the incorporation of withdrawals in the
scheme, when experimentation is curtailed at the [na]th order statistic Y.

A common feature of these tests is that they demand the experimentation be continued
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until all the m (or m.) failures occur. In the RST procedures, we like to update the picture as
successive failures occur and thereby consider some time-sequential procedures. These proce-
dures are based on the partial sequence { £ %, k < m} of partial likelihood ratio statistics.
Among other possibilities, we consider the following test statistic:

54 T = max{ L% [ne] = k =m)

where m is equal to Y ;-1 I(8; = 1) and € (0 < € < 1) is some prefixed (small) positive number.
If we denote by 7, the upper 100a% point of the null (under 8 = 0) distribution of T, then
operationally the RST procedure consists in computing &%, at each failure and curtailing
experimentation along with the rejection of the null hypothesis as soon as for some k:[ne] <
k = m, L% exceeds 7%; if no such k exists, then experimentation is continued till the end and
H, is accepted. If we define the vector valued Wiener process £ as in Theorem 2.1 and let

(5.5 £*(p) =sup{r 'EOITEDM]: p=t=<1] VpeE(O ),
then, by virtue of (2.35) and Theorem 2.8, we have under Hy: 8 = 0,
(5.6) T* —4 £XT17'(€) where II17'(e)= e Ve>0.

Though the analytical form of the df of £*(¢) is quite complicated, for various typical values
of ¢, the critical values of £*(e) have been studied by Majumdar (1978). Thus, if £*(¢) be the
upper 100a% point of the distribution of £*(e), then,

5.7 limputd = 73 < £X(e) forevery 0<a< and €>0.

Hence, a (somewhat conservative) large sample RST can be constructed using £*(e) as its
critical value. Theorem 4.1 can be used to provide an expression for the asymptotic power
function of this RST procedure when {K,} in (4.1) holds. The usual definition of the Pitman-
A.R.E. is not applicable to compare the RST with the earlier ones and extensive simulation
studies are needed to achieve this goal. These will be considered in a subsequent issue. We
conclude this section with the remark that for the RST procedure, one need not wait (for
accepting the null hypothesis) until the end of the experiment. We may prefix a positive
number y(0 < y < 1) and in (5.4), limit the range of k to [ne] < k < m,, where m, is defined
as in before (5.3). In such a case, in (5.5), we need to limit the range of £ to (p <t < y). In (5.7),
we need to take y£X(e) for the limiting critical point and the rest of the procedure remains the
same. Further, in (5.4), we have chosen € > 0. For ¢ close to 0, t '[£(¢)]'[£(¢)] does not behave
very regularly (in fact, it blows up, with probability 1) and also the weak convergence of
t'[£x(¢))'[£x(2)] for ¢ near 0 may not hold, as for ¢(t) = ¢, (2.33) does not hold. However,
exclusion of a small neighbourhood at the origin eliminates this problem and enables us to use
the invariance principles studied earlier for approximating the critical values by those of the
process derived from £. Finally, we have considered the case where the Z, are stochastic
vectors. For nonstochastic Z,, a somewhat different approach formulated in Sen (1979, 1981)
works out well.

6. Acknowledgments. The author is gratefiil to the referees for their critical readings and
most helpful comments on the manuscript.
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