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INFLUENCE FUNCTIONS FOR CENSORED DATA!

By NaNcY REID

University of British Columbia

In this paper influence curves for censored data estimators are considered.
The influence curve of the Kaplan-Meier estimate of survival time is calculated,
and it is shown that the influence curve provides an alternative derivation of the
asymptotic variance of this estimate. A chain rule for influence curves is estab-
lished and is used to calculate the influence curves of censored data estimators
that are functions of the Kaplan-Meier estimate. The robustness properties and
asymptotic variances of these estimates follow directly. Some examples of this
approach to calculating variances are given. In particular, it is shown how the
theory developed for M-estimation and L-estimation can be extended to the
censored data case. The necessary differentiability conditions are verified in the
appendix.

1. Introduction. Let X7, X%, ..., X7 be independent, identically distributed random
variables with distribution function F°. These are the true lifetimes of the items under
observation. Associated with each X7 is an independent censoring variable Y,, and Y1, Ya,
..., Y, are assumed independent, identically distributed with distribution function G. The
observations are the n pairs (X1, 1), ..., (Xa, 0,), where X, = min(X?, ¥,) and §, = 1{ X, =
X?}. (Throughout, 1{4} is the indicator function for the event 4.) The distribution function
of the X/’s is F and satisfies 1| — F(t) = [1 — F°(¢)][1 — G(¢)]. Two subdistribution functions
F* and F° are defined as

FYt)=Pr{X, =18 =1},
and

F(1) = Pr{X,

IA

t, 8, = 0}.
The following relations hold:

(@) dF(1) = [1 = G()] dF°(1)
(i) F*() = Pr{6, = 1}, F°(x) = Pr{4, = 0}
(iii) F“(¢) + F°(t) = F(2).

Corresponding to each of these distribution functions is an empirical distribution function
based on the n observation pairs. These empirical cdf’s are indicated by a subscript n. For
example,

1
P)z(t) =;z¢=1 I{Xt = t}’
and ’

1
Fi() ==%ia {X,=1,8,=0}.
n

Because the random variables X, are thought of as lifetimes, it will be convenient to have
additional notation for the cumulative survival functions corresponding to the cumulative
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INFLUENCE FUNCTIONS FOR CENSORED DATA 79

distribution functions. For future reference, S(#) = 1 — F(¢) and S°(t) = 1 — F°(¢). The
subsurvival functions are S“(f) = Pr{X, > ¢, 6, = 1} and S°(t) = Pr{X; > ¢, 6. = 0}. The
empirical survival functions are subscripted with an n.

Kaplan and Meier (1958) suggested estimating the conditional probability of failure at time
t by the observed proportion of failures at time ¢, and combining these estimates in the usual
manner to obtain an estimate of the underlying survival distribution S°. This gives the
Kaplan-Meier estimate, denoted $°, and defined

n—i+1

. 5
~ " n—1
So(t) = l - Fo(t) = Hl.’X“)S[ <__————> N 1= X(,,)

=0, t> X,

where Xu) < X < .-+ < Xn and 8 = 1{X(» uncensored}. By convention, uncensored
observations are ranked ahead of censored observations with which they are tied.) Note that
by defining $°(¢) to be 0 for ¢ > X, we are treating the largest observation as uncensored,
whether or not it is.

The properties of the Kaplan-Meier estimate have been studied by Kaplan and Meier
(1958), Efron (1967), and Breslow and Crowley (1974). In particular, it is the maximum
likelihood estimate, it is strongly consistent, and asymptotically normal. Regarded as a
stochastic process, {$°(¢); £ = 0} converges weakly to a Gaussian process. In the presence of
no censoring, $°(¢) reduces to the usual empirical cumulative survival function. Efron (1967)
formulated the random censorship model used here, and Breslow and Crowley (1974) exploited
this formulation in proving weak convergence. Meier (1975) established weak convergence of
$°(-) when the censoring variables are arbitrary unknown constants. The Kaplan-Meier
estimate has been extended to the problem of competing risks by Peterson (1975) and Aalen
(1976).

The role of censored and uncensored observations in the construction of S$°(f) can be
clarified by a representation of the estimate in terms of the empirical subsurvival functions
S7(t) and S7(¢). This representation is due to Peterson (1977). He showed that the true survival
function $°(¢) can be expressed as a functional of the two subsurvival functions:

t
das“(s) SUsT) + Ss™)
1.1 S°(@) = — X szt N —e o
The region of integration is the union of open intervals of points less than ¢ for which $*(-) is
continuous, and the summation is over points s which are points of discontinuity of SH(). If
$*(-) is wholly continuous the second factor is identically 1, and if $*(-) is wholly discrete the
first factor is identically 1. The relation (1.1) is a generalization of the relation

dF°(s)
1 —F°(s)"

t

S°(t) = exp — J'

0

Peterson also shows that the Kaplan-Meier estimate satisfies

¢ u usg ot Cfot
(1.2) $°(t) = exp f _ASHS) _ ¢ exp Tpey In 2D * SHST)
, (Sn+Sh) Sa(s™) + Sa(sT)
(Even though the first term is 1, we leave it in for later calculations.) This functional form of
S°(7) will be the form suitable for deriving the influence curve.

The influence curve of a statistic regarded as a functional is the first derivative of the
functional evaluated at some point in the space of distribution functions. Differentiation of
statistical functionals was originally proposed by von Mises in 1947, and a von Mises statistic
is a functional sufficiently regular to have a series expansion in functional derivatives. For a
thorough study of von Mises expansions, see Reeds (1976).

If T is a von Mises functional,
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(13) T(G)=T(F+G—-F)=T(F)+ j IC(T, F; y) d(G — F)(y) + higher order terms.

If the distribution function G is sufficiently close to F, the behavior of T(G) may be described
by the behavior of the first two terms in (1.3). This is the basis for the usefulness of influence
curves in calculating asymptotic distributions. Substituting F, for G in (1.3) we have

(1.4) T(F,) = T(F) + % ¥ IC(T, F; X)) - J IC(T, F; y) dF(y) + hot.

The higher order terms are o,(1/ Vn ) because F, — F'is of stochastic order 1/ V. The random
variables IC(7, F; X,) are independent and identically distributed with mean p =
[ IC(T, F; y) dF(y) and variance [ (IC(T, F; y) — u)® dF( ). It follows from the central limit
theorem that

Vn (T(F) = T(F)) =4 N(O,j (C(T, F; y) — p? dF(y)).

Considering (1.3) as an expansion of T(F + €(G — F)) evaluated at € = 1, about the point
€ = 0, we see that

(1.5) 4 I(F+e(G-F)
de

= f IC(T, F; y) d(G = F)()),

€=0

which gives us a simple method for calculating influence curves. (Some authors (e.g., Andrews,
et al., 1972, Huber 1977), define the influence curve to have mean zero. For our purposes
however the above definition is more convenient.)
Hampel (1974) exploited the use of influence curves as a tool in robust estimation. If the
distribution function G puts all its mass at the point x, G(y) = 8.( ), then
%T(FH(G—F)) =%T((l —€)F + €8)

€e=0 =0

_ f IC(T, F; y) d®: — F)(y)

=IC(T, F; x) — p.

This derivative measures the effect on the functional T of a small (infinitesimal) change in the
weight the distribution function F gives to the point x, that is, the “influence” on the statistic
of an additional observation at the point x. The shape of the influence curve provides
information about the robustness of a statistic. The sample mean is sensitive to large
observations and this is reflected in the fact that the influence curve is unbounded. In contrast
to this, the influence curve of the median is a step function. A statistical functional with a
bounded influence curve is not sensitive to extreme observations, so is robust in this sense. If
the influence curve IC(7, F; x) is continuous in F, the statistic T is robust to departures from
assumptions about the underlying form of F.' Such departures are often modeled as a
“contaminated” distribution; the true underlying distribution is F; = F + eH. Robust statistics
will perform well for such distributions. For a thorough discussion of the uses of the influence
curve in robust estimation, the reader is directed to Hampel (1974) and Huber (1977).

The statistic T(F) need not be a functional of only one distribution function. The
differential T is merely an operator on the appropriate space of functions, and can be defined
for functionals T(F, u), u € R (see Reeds, 1976, Section 1.6), or for bivariate functionals
T(F,, F;). The bivariate von Mises expansion is

(1.6) T(Gyi, G)=T(F, F>) + f IC(T, Fi, Fz; y) d(Gy — Fi)(y)

+ J IC(T, F\, Fz; y) d(G2 — F2)(y) + higher order terms.



INFLUENCE FUNCTIONS FOR CENSORED DATA 81

The two influence curves are defined by

F)
= T(Fi + &G = F), 2 + 8(G: = F2))

=f1c1(T, Fi, Fp; y) d(Gi — Fi)(p)

€=0;6=0

d
;'E T(F1 + €(G1 - Fl), F2 + 8(G2 - F2))

- J ICAT, Fi, Fa; y) d(Go — fi)().

€=0;6=0

Lambert (1979) has used bivariate functionals for calculating the influence functions of some
two-sample estimates.

2. The influence curve of the Kaplan-Meier estimate. The Kaplan-Meier estimate $°(¢)
jumps only at uncensored observations. The size of the jump at each uncensored observation
is a function of the number of observations and the pattern of losses occurring before that
failure. An additional observation will change all the jump sizes of the estimate. If the new
observation is uncensored, an extra jump will be introduced into S °(-). However, if the new
observation is censored, no such jump will be added. It is this essential difference in the effect
of new observations that makes it natural to consider two influence curves, i.e., partial
functional derivatives. We have already seen that $°(f) can be represented as a bivariate
functional of the empirical subsurvival functions of censored and uncensored observations.

To calculate the influence of $°(¢), we first consider the influence curve of A°(r), defined
as A°(¢) = — In $°(¢). Writing A°(z) as a bivariate functional, we have

ds(s) Sr(s") + Sa(s")

AW =TS 850 =~ | ey 506 S + S )

+'Zsst_'h1

and the corresponding functional for A°(t)

4 u ug + cf ot
(st s n=— | 22O g 1nSE)IETE)

, (S“+ .89 S*(sT) + S(s7)
The functions S5 and S, are discrete, so the first term of T(S5, S5, -) is zero. We assume that
the true subsurvival functions are continuous, so the second term of 7(S*, S°¢, -) is zero.

For the functions F; and G, of equation (1.7) we substitute F“, the true subdistribution
function of the uncensored observations, and F the corresponding empirical subdistribution
function. Similarly F; and G. are replaced by F° and F;. Because there is a one-to-one
relationship between the subdistribution and the corresponding subsurvival functions, we
continue to use the more concise notation S, S, S¢, S».

T(S* + e(S — S*), ¢+ 8(S5 — S5°), 1)

[ d[(1 — €)S"(9)]

, [S"+ (57— §D](s) + [S° + 8(S% — §HI(s)
[S“ + e(Sk = S“)s") + [S° + 8(Ss = S)I(s7)
[S*+e(S%— S + [S°+8(Sh — S

_'Zsslhl

Here the integration is over 0 < s < ¢ because we assume S*“ is continuous and the summation
is over jump points of S5, which is discrete.
Now

ai T(S" + €(S% — S*), 8¢ + 8(S5 — 8°), §)
€

(0,0)

I AO) N (S5 — 8")(s) dS“(s)
), SUs) + S) [S%s) + ST

S4(s") — S¥(s7)
S“s) + S°(s)

Zsit

0

(We have used the fact that $* is continuous.) A similar calculation gives
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" (85— 5°)(s) dS™(s)
[S%s) + SO)F

d .
% T(S*+ €(Sn — S%), ST+ 8(S% — S, ) oo =

0

Writing —(S(s) — S*(5)) = j d(Sn — S*)(w),

J[Sii(s) 5“(5)] dS“(s) _ f j __d5W sn ey

(8" + 59%(s9) ($* + 8°)%(u)

where s A ¢t = min(s, ¢). Also

SusH) = Sus) _ [(dSi-5"%s) [ ds“(s)
S +8G) ), S+ S5 J, SO+ S0

- Zssl

We conclude, using integral representation (1.7), and recalling that d(S, — S“)(s) =—d(Fn
= F)(s),

SAL

ds“(u) + I{s=<1t}
(S*+ YW (5“+ SN

IC«(T, S, S¢ s)(t) =J
2.1 0
SAt
ds*(u)
ICy(T, S, S% 5)(1) *J T T ora -
b, (8" + S
To find the influence curves for the Kaplan-Meier estimate, we write S °(¢) as the functional
T°(S%, Su,1) =exp — T(Sk, Sy, t) (because S$°(¢) = exp — A°(¢)). Then

22) IC,(T°, 8% S¢ s)(t) = S°(t) ICi(T, %, S%; s)(¢)
ICy(T°, %, S¢ s)(t) = S°(DICH(T, S*, S%; s)(t)

Certain features of the Kaplan-Meier estimate are reflected in (2.1). The first term of ICy( 7,
S", 8¢ s5)(t) represents the change in the size of each jump in A° when a new observation is
added to the sample, and the second term in ICy( T, §*, S°; s)(?) represents the additional jump
introduced when the added observation is uncensored. The influence curve is constant for s
> t because a new observation at s >  affects A°(¢) only through a change in sample size. The
function f§"‘ (dS(u)/(S* + S°)*(u)) is decreasing in s until s = . Note that, for s < ¢

M dSH(u) L Ms=1)
, (8" + S (s" + S)s)

ds“(u) 1 - " d(S" + S°)(u) N 1 B
, (S“+ 89 (u) (S“+8)s) ), (S“+ 8V (5 +S8)s)

so IC(T, S% 8¢ s)(t) is = 1 for s < ¢, and is increasing in s. If both s and ¢ are large, with s
< t, introducing a new observation at the point s has a large effect on the cumulative hazard
at the point . This is not translated into a large effect on $°(f), however, because S°(f)
decreases to 0 as t — oo. Figure (2.1) sketches IC,(7, S, S s)(¢) as functions of s for fixed ¢,
when the underlying distribution F° is exponential. The censoring distribution G is uniform
in Figure 2.1.a and exponential in Figure 2.1.b.

In order to calculate the asymptotic variance of A°(¢), we substitute expressions (2.1) into
the asymptotic expansion (1.6).

T(S%, S5, 1) — T(S%, S°, 1) = f IC(T, %, 8¢ s)(t) d(S% — S*)(s)
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40

Fo(s)=1-e7°
G(s)=s/3.050<s < 3.05
20~ 1¢,(T, s s% s)(t)

20 1C,(T, 8" 8% s)t)

_40 —
Figure 2.1.a

Fo(s)=1-¢®

40 — -
Gl(s)=1-e 1.5s

IC(T, 8" 8% s)t)

20

(7]

_20 ICAT,s",s% s)(1)

-40 [—
Figure 2.1.b

+ f IC(T, S% 8¢ 5)(t) d(S5, — S°)(s) + higher order terms

1 1
= =5, Li=uo= IC(T, 8%, 8% X)) =~ Bleio-1 IC(T, 8%, 8% X,)(0)

- f IC(T, S S¢ s)(1) dS“(s) — f ICo(T, %, S 5)(t) dS°(s) + h.o.t.
The third and fourth terms of this expansion are the bivariate analogue of the term p =

[ IC(T, F; x) dF(x) in (1.4). We first show that for each fixed ¢, the sum of these two terms is
zero. From (2.1)

o SAt dSu ¢ dSu
J IC] dSu(S) + J ICz dSC(S) = J (f m%) d(Su + SC)(S) + (_Su+—.(si))—is—)

t

N O A ds*(w) ds*(s)
_J; J(; [d(S + S )(S)] (Su + SC)Z(u) + A (Su + Sc)(s)
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t t

—dS*(w) ds“(sy
) (S“+ 89w ), ($“+ S)s)

Then, disregarding the higher order terms,
E{T(S%, S5, t) — T(S%, S 1))2

1 1 :
= E[; Yicns=1 IC(T, 8% S X)) + n Yieis=1 IC(T, S%, S Xz)(t):l

1 1
=~ ICH(T, 8", §% 5)(0) dF“(s) +~ J' ICY(T, %, S; s)(t) dF(s).

The limit of E(T(S%, S5, f) — T(S% S°, 1))* as n — oo gives the asymptotic variance of the
estimate.

n X A. Var T(S%, S5, 1) =n X A. Var A°(r)

_ ([ s=n | dstw) \
ST+ 59%s) L (8 + 59w
Ws=ty (™ dS“w) .
"+ 590 J, (S"+S”)2(u)} aFs)

T oastw \ .
+J (J; —(S“+SC)()> dF*(s)

dF*(s) T dstwy N\, L.
f "+ 570 J (f (S“+s">2<u)> d(F"+ FXs)

Ws<t) (™ dS“)
, (S“+8)s) ), (S“+ 8w

+2

dF*(s).

The third term of this expression equals the negative of the second term. This is established by
integrating the second term by parts (see Miller, 1975). Recalling from Section 1 that dF“(s)
= [1 — G(s)] dF°(s) and S*(s) + S°(s) = 1 — F(s) = [1 — G(s)][1 — F°(s)], we see that the
asymptotic variance of A°(¢) is

_J’ dF°(s)
nJy [1 = F$)I1 = F(s)]”

which is equation (7.11) of Breslow and Crowley (1974).

The above calculation appears in Miller (1975) in connection with the use of the jackknife
for the Kaplan-Meier estimate. The jackknife and the influence curve approaches lead to the
same asymptotic calculation because the jackknife is a finite sample approximation to the
influence function. This approximation is defined by IC(d; X;) = § — ,, where § = T(F,) is
the parameter estimate and , is the ith pseudovalue. If IC(T(F,); y) converges to IC(T, F; ),
then the jackknife estimate of variance converges to the asymptotic variance given by the
influence function approach. For a fuller discussion of this point, the reader is referred to
Miller (1978) or Miller (1974). The function IC(T(F); y) is also related to Tukey’s sensitivity
curve, discussed, for example, in Huber (1977).

It is not possible to conclude that A°(¢) is asymptotically normal with the above variance
without examining the regularity conditions under which “higher order terms” in expression
(1.6) converge to zero as n — oo. The first condition is that the functional T(S* S¢, -) be
Frechet differentiable in each argument S* and S°. In order to check Frechet differentiability
it is necessary to specify a norm on the space of subdistribution functions. The second
condition is that S and S7 converge to $“ and S in this norm, at stochastic rate 1/ Vn. These
regularity conditions are verified in the Appendix.
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3. Functions of the Kaplan-Meier estimate. Parameters of the underlying distribution
function F° can be estimated using F°. For example, Kaplan and Meier (1958) suggested
estimating the mean of F° by i*™ = [ x dF°(x). The influence curves for the functionals
T°(S* S%t)=1— F°(t) and Ti(G) = [ x dG(x) are known. In this section we establish a
chain rule for influence curves, enabling us to find the influence curve and asymptotic variance
of fikm, and other estimators based on F°(r).

The chain rule follows directly from the chain rule for differential operators. Let % be the
space of bounded positive measures. We suppose that there are two functionals, T1: 4 — R
and To: # — 2. Then V = Ty(T) is a functional from % to R. The differential of T1,
denoted dT,, maps # to R and is defined by

dTi|rop = J IC(Ty, F; t)p{dt}.
Here | » means evaluated at the point F. Similarly d7> maps # to % and is defined by
(dTz|ceor)(t) = f IC(Ts, G; s)(t)v{ds}.

By the chain rule, dV|¢ = dTi|1,6) ° dT2|¢. Substituting, we find

dV)c= f IC(Ty, To(G); 1)(dTz| g N){dt}
= J IC(Th, T>(G); t)f IC(Tz, G; s)({dt})A {ds}
= J’ J’ IC(T1, To(G); HIC(T:, G; s)({dt})A {ds}

A J' IC(V, G; s)A\{ds}.
Hence
IC(V, G;s5) = f IC(T1, T2(G); HIC(Tz, G; s)({dt}).

The extension to bivariate functionals is again straightforward. If To: 4 X # — % then
V= Ti(T:) maps # X % to R and has two influence functions:

IC\(V, F, Fz; 5) = J IC(Th, Ta(F, Fo); )IC(Te, Fr, F; s)({dt})
3.1
ICZ( V, Fl, Fz; S) = J IC(T], Tz(Fl, Fz); t)ICz(Tz, Fl, Fz; S)({dt})

Integrating (3.1) by parts we obtain

3.2) IC(V, Fi, Fs; 5) = f IC(Ts, Fr, F»; s)(t)[% IC(Th, Ty; t)] dt, i=12
which is valid as long as IC,(Tz, Fi, F2; s)(t) X IC(Ti, T3; t) vanishes at 1 = —o0 and ¢ = .
Using the relations (3.2) we can calculate the asymptotic variance of any functional of the
Kaplan-Meier estimate as long as the influence curve of that functional is known. In this case
S°(t) = T°(S%, S5, t) and V(S%, S) = Tu(S°) = T(T°(S%, S5, -)). Let g(t) = (d/dt)
IC(T\, T; t). From (2.2) we see that IC,(T°, S*, S S)(¢) is zero at both endpoints ¢ = 0 and

t = o, Then
- o sat ds*(u) 1{s=<1)
’ (t)Uo "+ 590 T 5 s%)) g

IC(V, S“, S¢ ) =j

0

(3.3)
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* O dSH(u)
IC2(V, S, Sc; S) =j So(f)(f —u_—T> ([) dt.
A L 5+ 508

From the asymptotic expansion (1.6),

nX A.Var. V= J’ ICI(V, 8% S 5) dF*(s) + f IC3(V, 8%, 8% 5) dF°(s)
0

0

_ ® o . sAt ds® (u) I{SS t} 2 )
—.J(; {J’ 5O <J; (S“+ 8¢ ) () + (S* + S“)(s)) g() dt} dF*“(s)
ds*(u) -

+f {f S (t)j 5" + 5 )g(t)dt} dF(s)

¢9 - f °° { Jr $°0) g 8O dt}2 dF*(s)
o Lo (8 + 8°)s)
2 f {r 5°0) g 80 dt}
(8% + S)(s)
ds*(u) .
{J' S (’)J’ 5"+ 5V )g(t) dt} dF*(s)

S*(u) s e
+f {f S(t)J' (S“+S“)()g(t)dt} d(F + F)(s).

We write the third term of this expression as [ xdy where
0 SAL 2
das*
= Se(t —g(t) dt

y=—(8“+ 89,

and

and integrate by parts. The third term of expression (3.4) is
ds*() : -
— d u c §=OO
(f s (t)f T sy & r) (8 + S)(9) 1155

A
+ 2f (S“+ Sc)(s)f S°(t)f F+—.S('l:;%g(t) dt

" o s t} e

_ S*(u)
2] {f (s (t)f (SM+S)()g(t)dt}

o I{s=1} u
'{L S (t)mg(t) dt} ds (S)

This is precisely the negative of the second term, and we are left with a relatively simple
expression for the asymptotic variance of any functional of the Kaplan-Meier estimate:

2

(3.5) A. Var. V(S‘°)=; f U_—mﬁf{ f S°(1) g(t) dt} dF*(s).
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The influence function approach can be used to prove the asymptotic normality of V. The
functional ¥ will be Frechet differentiable when T and T° are Frechet differentiable. (In fact,
to prove asymptotic normality it is sufficient that V" be compactly differentiable, a slightly
weaker requirement.) Differentiability of T° is discussed in the Appendix. The functionals T,
in all the examples that follow are known to be differentiable. (See, for example, Reeds, 1976,
Chapters 5 and 6.)

ExampLE 1. The Kaplan-Meier mean: i*™ = [{ $°(¢) dt. The appropriate functional is
T.(F) = [T tdF(t), with influence curve IC(Ti, F; t) = ¢ 1{t = T}. Writing V(S%, S5) =
T:i(T° (S%, Sk,+)), it follows that

o 1{s <1} M dS*(u)
S (t) {(Su + Sc)(s) +J:) (Su + Sc)Z(u)} dt,

ICy(V, S% 8% 5) = J'

0

the influence curve of the mean is the mean of the influence curve. From (3.5)

AKM __ l ’ 1 ’ o ’ u

A. Varu —;J; W(L S ([) dt) dF (S),
which (except for the upper limit T) is the result given by Breslow and Crowley (1974,
equation 8.2). The upper limit 7 must satisfy 7 < o and S(T) > 0. The condition T < o is
required for the function (d/dt)IC(Ti, T°; t) of (3.2) to be integrable and the condition S(T")
> 0 is required in the proof of differentiability of the functional T°. Susarla and Van Ryzin
(1979) have generalized the result to i, = 6™ S°(¢) dt, where M, 1 ® as n — o.

ExaMpLE 2. The Kaplan-Meier median: 721%™ = inf {m: F °(m) = %}. Let m be the median
of the underlying distribution F° which we suppose has a density f°. The appropriate
functional 71(G) is defined by G(T1(G)) = '%. The influence curve is an indicator function
and

_(t—-m)
fom) °
where 8(x) is the Dirac delta function. Writing V(S%, S5) = ™™,

S°(m){J’“"’ as‘w . l{s=m) }

g

IC(V, 8% S¢ 5) =f°(m) (S + S)Yw) (S“+ S))

1 o qu ge.
=WIC1(T,S,S,S)(”')

v L7 1 "sewse=m 7
A.Varm™" = ”fo = FOT {£ 7o dt} dF“(s)

_L(m 1 (seemP
njo = fror [omP &

m

and

1 dF“(s)
na[femy |, [1-F@F’

This formula was derived by a different method in Sander (1975a).

ExampLE 3. Kaplan-Meier L-estimators. An L-estimate is a linear combination of order
statistics § = (1/n) Y%1 aw Xy, where a, = J(i/n + 1) for some bounded differentiable
function J(-) on [0, 1] satisfying J(0) = 0. The estimate 6 can be written as a functional of the
empirical cdf as T1(F,) [xJ(Fn(x)) dFu(x). The corresponding Kaplan-Meier L-estimate is
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defined as T1( £°). The influence function for this functional is
t

IC(Ty, F5t) = j J(F(s)) ds,

0
SO
gW) =J(FQ).

The functional T, has been shown to be Frechet differentiable by Boos (1979). The conditions
Boos imposes on J are weaker than those given above.
Defining V(S%, S») = TW(T°(S=, Sz)), we have

sAt

ds*(u) + I[s<1}

T
IC(V, $* $%9) = J S°(r)J<F°(r»{ f S rsm T Gt Sc)(s)} d

0

0 T 2
A Var V=1 f L { J S°(t)J(F°(t)) dt} dF*(s)

n-Fer
_1 (" o
3.6) f —[‘1—_7,(7)]7[ j SOOI (F()S°(w)J(F°(u)
s =1t} 1{s = u} dt du dF¥(s)
g0 o o dF*(s)
——J’ j @J(F°()S°(w)J(F°(u ))J’ T=FOT dt du.

As in Example 1, T< o and S(T') > 0. Expression (3.6) was derived by a different method in
Sander (1975b), with the same restriction on 7.

A special example of an L-estimate is the p-trimmed mean. Let i*™(p) = 1/(1 — 2p) [5
F°7Xt) dt. This is Ty( F°) with J(¢) = 1/(1 — 2p) X I{p =t =1 — p}. Here 2p is a number
between 0 and 1 representing the proportion of extreme observations excluded from the
calculation of the mean. The influence curve for the trimmed mean is a combination of those
of the median and mean, and reflects the fact that new observations in the middle of the range
of the data affect the statistic in proportion to their value, but extreme observations have a
bounded effect on the statistic.

IC(Ty, F;1)= (1 =2p)" ' F7\(p), t<F7(p)
= (1 —2p)_lt, F_l(p)$t<F_l(l -p)
= (1 —2p)"1F‘1(l -p) t>F'(1 -p).
~ KM dF“(s)
A.Var i~ (p) = 2p) J' J S°)S°(u )J — )]2 dt du,

where

x=FYp), y=FT(1-p).

ExaMpLE 4. Kaplan-Meier M-estimates. An M-estimate is defined as the solution to

: =1 \I/(X, év) = O,

for some given function y(-). If y(z, 6) = /36 log f(z, 6), where f'is the density of the random
variables X, - - -, X,, then 6 is the maximum likelihood estimate. The appropriate functional
form is [ (¢, Ti( F)) dF(t) = 0. The influence curve of T; is

v, Ty(F))
V'@ T(F) dF(t)’

IC(Ty, F; t) =
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where {’(t, §) = (8/00)Y(t, 8). The influence curve is directly proportional to the function
that defines the estimate. Thus M-estimates with influence curves of a desired form are easy
to define. Huber (1964) proposed M-estimates as a generalization of maximum likelihood

estimates, with desirable robustness properties. Two important examples are Huber’s M-
estimate,

Y(t) = —k t<-—k
= —k=st<k
= k k<t

and Tukey’s biweight

W=t =2, =1

=0 [¢] > 1.
These y-functions were suggested for the problem of locating the center of a symmetric
listribution, in which case the defining equation becomes [ Y(x — T(F)) dF(x) = 0. In
ipplying M-estimators to survival data, it will usually be appropriate to transform the
sbservations (possibly by taking logarithms) in order to symmetrize the underlying distribution.

In addition, in practice it is usually necessary to estimate the scale parameter of the underlying
listribution, but this will not be considered here.

For the Kaplan-Meier estimate, V(S75, S7.) = Ti( F°) is defined implicitly by
J Wit — Ti(F°)) dF°(t) = 0.
“rom (3.3) and (3.5)
SAt

. e "o, . dS*(u) I{s =<1}
Ic1<V,S,s,s)=f0 S =¥t = T(F )){fo (SM+SC)g(u)+(Su+SC)(S)}dt,

2

T o, .

vhere

a= J Y'(t — T(F°)) dF°().

APPENDIX.

In this section we give sufficient conditions for the asymptotic expansions of Section 2 to
e valid.

A von Mises expansion of a functional T is analogous to a Taylor expansion of a function
with the successive derivatives of f replaced by the successive differentials of 7. In order to
xpand T in such a series it is necessary to check that T is k times differentiable, where k is
etermined by the nature of the problem. For expansions like (1.3), kK = 1; higher values of k
ould be used for Edgeworth expansion results.

Let B,, B; be normed topological vector spaces, and let T: B, — B, be a given functional.
iiven F € By, let dTr be a linear transformation from B, to B;. Define R: B — B, by T(F
“H)=T(F)+ dTr-H + R(F + H).

DErFINITION A.l. The functional T is Frechet differentiable at F iff
| R(F+ H)|s,/I| H|ls, > 0 as || H||5,— 0.

In order to verify definition A.l it is necessary to specify a norm on B; and B,. If
F. — F |5, is O,(1/vn) then the limit law of T( F,) may be deduced from the limit law of the
1st two terms of its von Mises expansion, T(( F) + dTr( F, — F). Thus (1.4) can be expressed

3

T(F,) = T(F)+JIC(T, F; x) d(F, — F)(x) + op(|| F. — F||B,)
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and we conclude

Vn (T(F,) — T(F)) —=aN(O, J (IC — ErIC)? dF(x)).

In what follows we will show that the functional 7(S¥ S°¢) of Section 2 is Frechet
differentiable with respect to the sup-norm. It is well known that || F, — F ||.. = O(1/vn) (see,
e.g., Billingsley (1968, Section 16)) and hence || S% — S*||. = 0,(1/vn) by definition of S7.
From this the asymptotic normality of T(S7, S7.) follows directly. In addition it is easy to get
a law of the iterated logarithm for T(S7, S7) by using the fact that Vn | S5 = S|« = O((log
log n)"/?) w.p. 1. Our approach is in the spirit of Boos and Serfling (1979). For many statistical
functionals that are not Frechet differentiable, the approach of Reeds (1976) via compact
differentiability can be used to obtain limit theorems of the same type.

Let # be the space of subsurvival functions, i.e., the space of decreasing left continuous
functions: R* — [0, a], where a < 1. Let || W1 — S1 |« = sUpo=z<a | Wi(x) — S1(x)].

THEOREM A.l. The function T(S, S2) defined by (A.1) is Frechet differentiable at S, €
B, S2 € B with respect to | - ||~ in each argument S, and S, for each fixed t < « satisfying S:(t)
> 0, S2(t) > 0. The differential dTs, s,(W1 — S1, S:) is given by (A.2).

Proor. Let
Cr = {continuity intervals of a survival function F}
(A1) Dr = {jump points of F}
dSl(S) S1(S+) + S2(5+)
T(S1, S2) = —_ 4+ In = .
( 1 2) J’Cs [0.0] (Sl + SZ)(S) EDS‘[OV o Sl(s_) + SZ(S )

We first consider differentiability with respect to the first argument, S,

T( w1, Sz) J’CWI[W] ( Wi+ S, )(S) + ZDW,[O.H Wl(s_) + Sz(s_)

aw, = S)s)

dTs, 5,0 (W1 — S1, S2) = J (S1+ S2)(s)

(A2) Concornon
_ j (W1 — $1)(5)dS\(s)
Cs,nc,

(81 + S2)(s)

o)

* Lsuny { (S1+ 82)(s™)  (S1+ S2)(s7)

(For convenience, we have assumed that W, and S, do not jump exactly at ) Expression
(A.1) is a valid representation of the cumulative hazard only when S, and S do not jump at
the same point (Peterson, 1977), so Sa(s*) = Sa(s”) in all the expressions above.

First, assume S is continuous and W is a (left-continuous) step function. The expressions
simplify to

(W1 = S)(is™) _ (W — Sl)(s‘)} ‘

dSl(s)
(S1 + S2)(5)
Wi(s*) + Sa(s)
Wi(s™) + Sa(s)
dSis) [ (Wi = S1)()dS(s)
, (S1+ 826 ), (S1+ 529
Wils™) — Wi(s™)

(S1+ S2)(s)

T(S1, S2) = j
0

T(W,, S2) = Zle[o’n In

t

dTs,,s,°(W1 — 81, 82) = —

+ Ele[o,n
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(This last expression is derived in Section 2.)

T(Wh, S2) — T(S1, Se2) — dTs,,s,o( W1 — S1, S2)

t

o WisH) + S ], [ = S0 dSi(s) _ dW(s)
) = Zsenup, Wi(s™) + Su(s) L (S 8)6) |, (S1 + S2)(9)

+o(|| W1 — Sill)
where we have used the fact that
Wi(s™) = Wi(s7)| -
Wi(s™) + Sos) |~ | Sa(0)]

The first term simplifies to [ (dWi(s)/( W1 + S2)(s)), so

= “(W1 = S1)(s) dSi(s) ¢ 1 _ 1
(*) - J(; (Sl + S2)2(s) + J; <W1(S) T Sz(s) SI(S) T SQ(S)) dWl(S)

+ ol Wh = Sil»)

I W= Si]|a.

t

_ (= S)(s) dSi(s) (W1 = S1)(s) dWi(s)
Ty S+ 8)%s) , (Wi + S2)(s)(S1 + S2)(5)

+o(| Wi = Sill).

It remains to show that the first two terms of this expression are o(|| W1 — Si | «).
t

" (W1 — S1)(s) dSa(s) _ (W1 = S1)(s) dW(s)
(81 + S2)%(s) ) (W1 + S2)(5)(S1 + S2)(5)

0

“L(W + S2)(s) dSi(s) = (S1 + S2)(s) d(Wy — S1)(s)
o (S1+ S2)* () (W1 + $2)(s)

=

L (W1 = S1)(s) Wi(s) dSi(s) — Si(s) dWi(s)]
A (S1+ S2)’(s)( W1 + S2)(s)

(W1 = $1)(5)Sa(s) d(S1 — Wi)(s)

* 1+ SO(Wh + S2)6)

0

To show that the first term is o(|| W1 — S1||»), we use the following:

J (W= S)(s) Wi(s) dSi(s) —f (W1 = 51)(5)S1(s) dSi(s)

()

= Wi = Sillel| Wi = Sillw| S1(t) — S1(0)]

f (Wy = S1)(s) dS\(s)

By a similar argument we have:
t

f (W1 = S1)(s)S1(s) dWi(s) — J' (W1 — S1)(5)S1(s) dSi(s)

0

(®)

= || Wi — S “Zo S$1(0).

To show that the second term is o(|| W1 — S1||») we apply equation (b). This concludes the
proof of the theorem for the first argument, S;, and the case S; continuous, W, discrete.
Differentiability with respect to S is straightforward and will be omitted.

To show (*) is o(|| S1 — Wi|l») when S,, W, are arbitrary members of £ (composed of
discrete and continuous parts) involves essentially the same argument, with some additional
analysis to show that the (S1) measure of sets of the {Dw, n Cs,} goes to zero as || S1 — Wi ||«
— 0. The calculations are somewhat more tedious than the above and will not be presented
here. In fact, as Boos and Serfling (1979) emphasize, for the asymptotic distribution results of
Section 2 it is sufficient to establish that () is O,(|| W1 — S1]|) for the special case W; = Sy,
the empirical survival function associated with S.
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It is also possible to show Frechet differentiability by establishing that the Gateaux
differential dTs,, s, (H1, S2) is continuous in S, in the sup norm, for all H,. (This is Proposition
A.2.3 of Reeds, 1976.) Such a verification involves calculations essentially similar to those
presented above.

In the proof of Theorem A.2.1, bounding the expression (*) is simplified by the fact that we
are integrating over the finite interval [0, ¢]. The condition that Su(¢) be strictly positive is
natural in the context of the censored data problem. In this case S, represents the subsurvival
function for the censored observations. It makes sense to require that the support of the
censoring distribution extend beyond the point at which the survival function is being
estimated. For a fuller discussion of this point, see Breslow and Crowley (1974).
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