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A NOTE ON OPTIMAL SUBSET SELECTION PROCEDURES

BY SHANTI S. GUPTA AND DENG-YUAN HUANG
Purdue University and Academia Sinica, Taipei

A result for constructing an “optimal” selection rule for selecting a subset
of k (> 2) populations is given. Attention is restricted to the class of rules for
which the infimum of the probability of a correct selection, over a subset of the
parameter space, is guaranteed to be a specified number. In this class a rule is
derived which minimizes the supremum of the expected size of the selected
subset.

Let 7, m,,- - -, m, represent k (> 2) independent populations (treatments) and let

Xi1>* + + » Xy, be n; independent random observations from =;. The quality of the ith
population m; is characterized by a real-valued parameter §;, usually unknown. Let
Q= {016"=(0,,"--,0,)} denote the parameter space. Let 7,; = 7,,(¢) be a mea-
sure of separation between 7, and 7, We assume that there exists a monotonically
nonincreasing function 4 such that 7, = h(7;). Let @, = {|7,; > 7, Vj #i}, 1 < i
< k, and €, = © — &, where & = U*_,Q,. For this problem, we assume 7, and 1,
as known with 7, > 7, for all i. Let 7, =min;_,;7,;, 1 <i < k. We define 7* =
max, ., ., 7 The population associated with 7* will be called the best population.
It should be pointed out that if § € Q;, then 7, > 7, for all j, since for some
JsJ # i, 7 = h(1;;) < h(7) < h(7;) = 7,; < 7. Thus if § € ;, then 7, is the best
population. A selection of a subset containing the best population is called a
correct selection (CS).

To illustrate the above notation, we assume that independent observations are
drawn from 7, which has a normal distribution with unknown mean §,(i = 1, - - , k)
and known variance 0. We define 7,, = §, — 0;; then 7, = §, — Oy if 6; < 8y, and
7, =0, — Oj4_yyif 6, = O}, where f};, < - - - < . In this case, 7;; = 0 for all i and
the population with the largest mean, 6y, is the best. If, instead, 7,; = 6§, — 6, then
the population with the smallest mean, 6}, would be the best. In the above
example, h(t) = —¢, which is a decreasing function.

Let the observed sample vector be denoted by X’ = (X{,- - -, X;) where X, has
components X;;,- -+, X,,,i=1,---,k. Let § = (§,,- - -,8,) be a selection proce-
dure where §,(x) is the probability of selecting w,(1 < i < k) based on the observed
vector X = x. As measures of goodness of a selection rule, consider two quantities
(cf. Lehmann [S]) R(8, §) and S(§,8). We define S(8,8) = P,(CS|d) and R(4,6) =
Sk R9(9,8,), where R(8,8,) = P{Selecting =,|8}. Thus R(8,8) is the expected

size of the selected subset. For a specified v, (0 < y < 1), we restrict attention to
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the class C of all § such that
(1) 5(8,8) >y for 9 €Q.

We are interested in constructing an optimal procedure §° in © which minimizes the
supremum of R(8,8) over € for all § € C, i.e.,

(2 sungQR(Q,'o‘o) = MinsceSupyeq R(Y,9).

ReMARK. For some basic results and the motivation of the subset selection
approach, reference can be made to Gupta [4]. Some (different) optimality results
assuming a slippage configuration are given by Studden [7] for the exponential
family. Recently Bjernstad [2] has obtained some results on the minimaxity aspects
of the procedures of Gupta [4], Seal [6] and Studden [7].

We restrict attention to those selection procedures which depend on the observa-
tions only through a sufficient statistic for 6.

Let the statistic Z;; be based on the n; and n; independent observations from =,
and m(i, j=1,2,---,k), respectively, and suppose that for any i, the statistic
Z',=(2Z,," --,2Z,) is invariant sufficient under a transformation group G and let
)= (7" +,7,;) be a maximal invariant under the induced group G. It is well
known (see Ferguson [3]) that the distribution of Z, depends only on 7,. For any /,
let the joint density of Z,;,V,j # i, be py(z;) with SIP. Let p,(z;) be denoted by
po(z;) when 7, = - - - = 7, = 7, = constant and by p,(z,) when 7, = -+ =17, =
79> 1 < i < k. In the normal means example, a choice of Z;; might be X, — X,
where X, = 1/n,2}+, X, and X, = 1/n3/_, X;. Let » be a o-finite measure on
R+ 1,

Now we state and prove a theorem which provides a solution to the restricted
minimax problem as stated in (1) and (2) (cf. Lehmann [5]).

THEOREM. Suppose that for any i,p,(z;)/p,(2;) is nondecreasing in z; and that
Dy(2) has the stochastically increasing property. If R(8, 8%) is maximized at =T =
constant, for all i, j, where 8° is given by

82z) =1 if plz) > polz),
=X, if pi(z) = cpo(2)),
=0 if p(z;) < cpo(z,),

such that ¢(>0) and A, are determined by [8%p,=vy, 1 <i < k. Then 8° =
(80,- - -, 82) minimizes supgeq R(0, 8) subject to infycg.5(0,8) > v.

Proor. For any & € C, § € Q implies § € Q, for some i, thus
8(8,8) = fai(Z_i)Pg(z_i)d"(z_i) > mjn1<i<kinfgesz,fsi(z_i)l’g(z_i)d”(éi)~
We have
infgeﬁ.S’(Q,S) = minl<1<kinfge§,f8i(z_i)l’g(z_i)d”(z_i)-
Hence for any & € C, infyegq, [6:(2,)Pg(2,)dr(2) > v, 1 < i<k, and by the
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assumption that [8%p; = v, it follows that
f(ai - 8:‘0)(171' —cpy) <0
which implies
/8%po < [8;Po-
By our assumption, 8 (z;) is nondecreasing in z;, hence
infyeg 5(0,68°%) = minl<i<kf8¢‘0pi =Y.
If R(,8°) is maximized at 7,; = 7, = constant, for all i, j, then
SngenR(Q’s) > S /8py > 2:;1.{8;'0]’0 = SngenR(Qaso),

which completes the proof.
As an application of the preceding result, consider the following example:

ExampLE. Let 7, m,,- - - ,m, be k independent normal populations with means
), - - ,6, and common known variance 02 = 1. The ordered 6;’s are denoted by
01y < -+ < O It is assumed that there is no prior knowledge of the correct
pairing of the ordered and the unordered-§,’s. Our goal is to select a nonempty
subset of the k populations so as to include the population associated with 8.

Let X,, 1 <i < k, denote the sample means of independent samples of size n
from these populations. The likelihood function of @ is then

Pg(’ﬁ) = Hf=1Po,(fi)’

where

Nl

n
(2m)’
Let7, =7,0)=0,—0,1<i,j<k1=4>0, Q= (810, — Ox—r) > A} and
Z,;= X, — X, 1<i,j<k Letz;= (2 " zy) Ti=(T" "> T then since
Z,, = 0 and 7, = 0, Vi, the joint density of Z,,, j # i, is given by

Pg(z_i) = (277)(,(_')/2'2’_%3’(1){ —(z;— Zi)lz_l(z_i - 'L')}’

Pe(%) = e~/ DG=0)7 1<i<k.

where
2 1
1 .

2(k—l)x(k—l) = n

1 2

is the covariance matrix of Z;;’s. Since

pi(z_i) -1 -1 —1 nA

PAED _ oip(zmin+ 457, — 4370) = exp{ B0 G+ o +2))
Po(2;) { } k : «
is nondecreasing in z,;, j # i, where A" = (4, - -, A). Hence

pi(z_i)
Polz)
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is equivalent to
- 1 -
xX; > Z_—lzj#ixj +d.

Since R(8,8°) = 3% | P(X, > 1/(k — 1)2#,..)-(;. + d} is the expected size of the
selected subset for Seal’s average-type procedure §° [6], the following result of
Berger [1] and Bjernstad [2] applies

SuPscq R(8,8%) = R(8,8°)iffinfycq 5(0,8%) > XL,
Since the right-hand side is equivalent to ®(((k — 1)/ k)inid) < 1 /k, the left-hand
side for every fixed A > 0 holds if and only if

y=1- Q((k—;l)%n%(d—A)) >1- @(@“(7‘1—) ~ (k; 1)%n§A),

where @(-) is the cdf of the standard normal. Therefore, if for A > 0, v is the
chosen in such a way that the preceding inequality holds, then the result of the
theorem can be applied.
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