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UNBIASEDNESS OF THE LIKELIHOOD RATIO TESTS FOR
EQUALITY OF SEVERAL COVARIANCE MATRICES AND
EQUALITY OF SEVERAL MULTIVARIATE
NORMAL POPULATIONS!

By MiCHAEL D. PERLMAN

University of Washington
Random samples of size N, are taken from the p-variate normal popula-
tions N,(p@, 29), 1 < a < k, with u® and = unknown. Bartlett’s modifica-
tion of the likelihood ratio test (LRT) for the hypothesis H;: S0 = . . . = 3¢
rejects Hy for large values of |S|"/I|S®|%, where S =ZS®, n, = N, — 1,
n = Zn, and §® is the sample covariance matrix from the ath population. The
(unmodified) LRT for the hypothesis Hy: y® =« . . = y® 3D = . .. = 30
rejects H, for large values of |S + T|V/l|S@M, where N =3N,, T =
INLX@ — XX @ — Xy, X js the ath sample mean, and X(*) is the
grand mean. It is proved that each of these tests is unbiased against all

alternatives.

1. Introduction. Let {X(”, 1 < B < N,)} be a random sample of size N, from
the p-dimensional multivariate normal distribution N,(p®, @), 1 < « < k, with
unknown mean vector u® and unknown covariance matrix =@, assumed positive
definite. We take X and u® to be column vectors of dimension p X 1. The
sample mean and sample covariance matrix from the ath sample are

o 1
(@ = 9N, () (@) _—_S¥(a)
X =N Eem X N”(”a’ N Ea)’

S@ = S 1( Xl(?a) - X (a))( X — X (a))/ ~ W,(n, (@)

respectively, where n, = N, — 1 and W,(n, Z) denotes the p-dimensional Wishart
distribution with n degrees of freedom and expected value nZ. We assume that
each n, > p. We shall show that Bartlett’s modification of the likelihood ratio test
(LRT) for the hypothesis

HySW=...=3®
is unbiased, and that the (unmodified) LRT for the hypothesis

Hy: M(l) - . = “(k), SH=... =3k

is also unbiased. These two problems are discussed in sections 10.2 and 10.3 of
Anderson (1958). ‘
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248 MICHAEL D. PERLMAN

The (unmodified) LRT for H, rejects this hypothesis for large values of
|S|V/I1|S @|M, where S = =S§@, N = =N,. When the N, are not all equal, it is
well-known that this test is biased; cf. Brown (1939), Ramachandran (1958),
Sugiura and Nagao (1969), and Das Gupta (1969). Bartlett’s modified LRT rejects
H, if

Sn
(L.1) Alsxmw%-~,5®)5ﬁﬁ§az>c”

where |S| denotes the determinant of S, n = Zn, and c, is determined by the
significance level. Pitman (1939) established the unbiasedness of this test in the
univariate case (p = 1) by an elegant invariance argument. This case has also been
discussed by Brown (1939), Cohen and Strawderman (1971), and Carter and
Srivastava (1977). For the multivariate case (p > 2), Sugiura and Nagao (1968)
applied Pitman’s argument to prove unbiasedness of the modified LRT in the case
of two populations (k = 2); also see Das Gupta and Giri (1973) and Srivastava,
Khatri, and Carter (1978).

For the multivariate case with k > 3, unbiasedness of the modified LRT for H,
has remained an open question (cf. Sugiura and Nagao (1968), page 1689; Giri
(1973), page 58). Giri (1973) attempted to apply the Pitman-Sugiura-Nagao method
to prove unbiasedness against those alternatives such that S, ... 3® are
diagonal matrices (or, more generally, simultaneously diagonalizable by the same
nonsingular linear transformation) but his proof is in error—see Remark 2.5. The
Pitman-Sugiura-Nagao-Giri method does apply, however, when each =@ is of the
form o, ,, where o, is a scalar and 1, denotes the p X p identity matrix, as we show
in Section 2.

Theorem 2.1, the main result of the present paper, states that the modified LRT
for H, is unbiased against a// alternatives. To prove this, we first present two results
on the monotonicity of the power function, Lemmas 2.2 and 2.3, which reduce
consideration to the case where each =@ is of the form o,1,. This approach yields
additional information about the power function, e.g., monotonicity and Schur
convexity, even for the case k =2 where unbiasedness is already known—cf.
Proposition 2.4. Also, in Lemma 2.6 a monotonicity result of Carter and Srivastava
(1977) is extended to the multivariate case.

In Section 3 we present a similar demonstration of the unbiasedness of the
(unmodified) LRT for H,. To our knowlédge, this problem has not been treated
before, even for the case k = 2.

Some of the methods in this paper are applied to related problems in Perlman
(1980).

2. Unbiasedness and monotonicity properties of the modified LRT for H,. The
power function of the test (1.1) is given by

@1 m = w30, - Z®) = Pya, L sw[A >
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Both the LRT statistic A; and the power function 7, are invariant under nonsingu-
lar linear transformations 4, i.e.,

22) )\1(3(1), e, 8M) = }\,(AS(I)A’, .. ,AS(")A’),
23) .,,1(2(1)’ cee, z(k)) = wl(AE(')A’, “ e ,AZ(")A’).
THEOREM 2.1. The modified LRT (1.1) for H, is unbiased, i.e.,

(2.4) ﬂ](z(l), A Y z(k)) > ﬂl(lp’ MY Ip)

Jor all ZO, - - . | Z®, where I, denotes the p X p identity matrix.

The first step of the proof of Theorem 2.1 is to show that

(2.5) 7 (ED, . 20 > g (DD, . .. DO,

where D is an appropriate diagonal matrix depending on = such that |D®)| =
|=@)| (see (2.26)). The second step is to show that

(2.6) (DD, - -+, DP®) > a(0yL, - - -, 0 l,),
where g, = |=@)|!/, The third and final step is to show that
(2.7) ﬂl(ollp, AP oklp) > ﬂl(lp’ oty Ip)’

For Lemma 2.2 partition any p X p symmetric positive definite matrix in the
following manner:

= X
(2.8) 2=(z” 212), Shilxl, ZSn:i(p-DXx((@-1),
21 22
and define
(2.9) 211.2 = 2" - 21222_21221 . l X 1.

Recall that if 2 represents the population covariance matrix of a normally distrib-
uted random vector (Z,, - - - , Z)), i.e., 2 = Cov(Z,, - - - , Z,), then
Zyp=Var(Z,|Z,, - - -, Zp)

(2.10)

222 = COV(Zz, AN Zp)’

Following Lemma 2.2 we will also need to consider the quantities

2,=Var(Z|Z, - --,Z):1x1

@.11) ’ ’ o .

2,=Cv(Z,---,Z):(p—j+)X(p—j+1)

where 1 <i <j < p. The formula for 2, in terms of the elements of I is
analogous to (2.9).
For any fixed = and 0 < ¢ < 1 define

(2.12) s = [Zua+ 2202 25)
! 2, 2,
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Note that

_ (22 O
and
(2.13) (21)11-2 =322

so Z, is positive definite with [Z,| = |Z|.

LEMMA 2.2. For every fixed set of population covariance matrices =V, - - . , =®),
the power function

(2.14) Com(EO, -, W)
is increasing in t, 0 < t < 1; it is strictly increasing unless

-1 -1
@15 M7= =R E)
In particular,

=P, o0 =M, o0
2.16) (V.- ,20) >4 2 AR B .
@16)  m( >\ (707 50 0 3
Proor. The proof is based on the decomposition
S,"(S11.2)"

@1 3, = —1Sal(S0a)

I | SEI(S11%)™

Since S = =S, the scalar random variable S,,, can be written as

(2.18) ‘ Sia = (Z,8(%) + A,
where
(2.19) A =3[ S - (3,50)(Zp58) ' s8]
X ()7 81 ~ (ZpS0)(Zp58) s8]
= YPY’
with
Y=(Y, -, %) 11X k(p — 1)
Y, = SQ(SE): : tIX(p— 1)
P=1L, - WWW)'w tk(p— D XKk(p—1)
W=W,--, W) D) XkKk(p-1
@3
W, = (852 tp—-DX(@-D

(Throughout this paper, if 4 is a symmetric positive semidefinite matrix then A3
denotes the symmetric positive semidefinite square root of 4.) The (random) matrix
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P is the orthogonal projection in R*®?~D onto the (k — 1)(p — 1)-dimensional
subspace orthogonal to the row space of W.

We shall show first that for all fixed values of S, - - - , S and every constant
¢, the conditional probability
(2.20) stl) """" zsk)[A > ClSz(g), 1<a< k]

is increasing in ¢, and if ¢ > 0 it is strictly increasing unless (2.15) holds. When the
ath population covariance matrix assumes the value =(%, then

- 1
(221) Y,|S$ ~ N,_l[tzﬁ‘i’(zﬁ‘i’) (5)2, ES‘:?zI,_l],
using (2.14). Therefore,
(2.22) YISE), MY Sg) ~ Nk(p—l)(tQ’ A),
where
02 ® = CEED DL 0@ (D) s 1x ke -
A = diag(=®,L,_,,- - -, Z0,I_, tk(p—1) X k(p = 1).

Since P depends only on S, - - - , S&, when these variables are held fixed the
event {A < ¢} = {YPY’ < ¢} determines a circular cylinder in Y-space = R¥?~D,
the cylinder whose base is the sphere of radius ¢i in the (k—D(p — 1)
dimensional subspace orthogonal ‘to the row space of W. Since this cylinder is
convex and symmetric about the origin in R*?~ D, the theorem of Anderson (1955)
implies that the conditional probability of the event { YPY’ < c} is decreasing in ¢,
and if ¢ > O it is in fact strictly decreasing unless the conditional mean vector & of
Y is parallel to the axis of the cylinder, i.e., ®P = 0, which is equivalent to (2.15).
To complete the proof, note that (2.14) can be written as

(2.24) Ezsl) Esk)PESI) """" zsk)[A > C*Isl(i‘.)z, Sg); 1<a< k],

.....

where, from (2.17) and (2.18),

S e e e
B 1Spl" “

(2.25) c* — (Z.58%).
Since (A, S, - -, SY¥) is independent of (S{},- - -, S%)), the conditional
distribution of A given {S{%%, S§; 1 < « < k} is the same as that given {S{,
1 < a < k}. Therefore, by the result of the preceding paragraph, the conditional
probability in (2.24) is increasing in ¢. Furthermore, by (2.12) and (2.13), the
marginal distribution of {S&, S; 1 < @ < k} does not depend on ¢, so (2.24)
itself is increasing in ¢, hence so is (2.14). Finally, since ¢* > 0 with positive
probability, (2.14) is strictly increasing in ¢ unless (2.15) holds. This completes the
proof of Lemma 2.2.

In its present form, Lemma 2.2 states that the power function #, decreases
monotonically if the covariances between the first variate and the remaining p — 1
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variates decrease at the same rate in each of the k populations, with the conditional
variances 2{}, and the marginal covariance matrices 2 held fixed. Clearly, by the
invariance property (2.3), the same is true of =, if the covariance between the ith
variate and the remaining p — 1 variates decreases at the same rate in each
population, with the appropriate conditional variances and marginal covariance
matrices held fixed, for each i = 1, - - - , p. By applying this fact for i = 2 to the
right-hand side of (2.16), then for i = 3 to the right-hand side of the resulting
inequality, and so on, through i = p — 1, we obtain (2.5), where D@ is the p X p
diagonal matrix given by

(2.26) D® = diag(Z(Ds Zs, - -+, Z2, -y, ).

(Note that |[D®@| = |=@)].)

We remark that the diagonal matrices D®, - - - , D® satisfying (2.5) are not
uniquely determined, because a preliminary permutation of the p variates (take A
to be a permutation matrix in (2.3)) before application of Lemma 2.2 can lead to
diagonal matrices other than D®, ..., D®, In fact, by taking 4 to be an
appropriate orthogonal matrix (see (2.27)) in (2.3) with =® replaced by D therein,
and then applying Lemma 2.2, we will arrive at inequality (2.6), the second step in
the proof of Theorem 2.1, wherein the matrices D® are reduced to diagonal
matrices of the form o,7,. The details now follow.

Let d® denote the ith diagonal element of D®. For 0 < u < 1 define the
block-diagonal p X p orthogonal matrix 4, by

1 1
. 1 - u)? —u?
(2.27) A, = diag ( : ) W b2
uz (1 — u)?
Hence, by (2.3) and (2.16),
(2.28) .,,](D(l)’ cee, D(k)) = "f](AuD(l)A;» e ,AuD(k)A,")

> .n.l(Dl(‘l), ceey Dl(‘k))
for all 0 < u < 1, where
D = diag{d{*d{®(ud(™ + (1 — u)df)™",
ud(® + (1 — w)df®, df®, - - -, d™}.

Furthermore, note that the inequality (2.28) also holds if, in the definition (2.29) of
D, the pair of components d{®, d{” is replaced by any other pair d®, d®,
1<i#j<p.

It is now convenient to restate the inequality (2.28) in terms of the column
vectors

(2.30) 8@ =(8(",-.-,8) = (logd{®,- - -, log d®Y, v 1<a<k.

Express the power function in terms of the 8 by defining #, as follows:

(2.31) #H(OD, - -+ 8®) = 7 (DW, ... D®)

(2.29)
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We now require a concept from the theory of majorization (cf. Hardy, Littlewood,
and Polya (1952)): for indices 1 < i <j < p and for 0 < @ < 1, the T-transform
TJ is defined to be the p X p doubly stochastic matrix given by

(232 Tf = 0L, + (1 — 0)R,,
where R; is the permutation matrix which interchanges the ith and jth coordinates,
leaving the others fixed. Inequality (2.28) now can be restated as follows:

(2.33) # (8D, - - ., @) > ﬁ,(T,,'j,,)'o‘(‘), - 7},1%,,)8(")),
where
0 (u) = 0(u; 8{*, 85)
8(” — log[ u exp{8{*} + (1 — u)exp{8{*}]
8{01) — 82(01)
=1 if §{0 = §{®

(recall that 8 = log d(®). Again, inequality (2.33) also holds with any pair of
variables i, j substituted for 1, 2.

if 8(®) # 8§

(2.34)

LeMMA 2.3. Let T = Tj be an arbitrary T-transform. Then there exist T-trans-
forms T® = T,;Z ,2 < a <k, such that

(2.35) ,;1(3(1)’ cee, 3(’6)) > .,;](Tg(l), T®§? . . .| T(k)g(k))_

Here 0,,, and hence T, depends on 0, 8, 8, 81, and 8. Furthermore, the role
of 8 may be taken by any other §®,2 < a < k.

Proor. Taking (i, ) = (1, 2) for simplicity, (2.35) follows from (2.33) and the
fact that 8,(u) strictly decreases from 1 to 0 as u increases from 0 to 1, provided
that 8§V = V.

We digress to note that Lemma 2.3 immediately provides a new monotonicity
property in the two-population case. When k = 2 the invariance property (2.3)
implies that

(2.36) m(ED, 2P) = 7(1,, diag(d,, - - - , ) = #,(0, ),

where dy, - - -, d, are the characteristic roots of (Z)7'Z®, § = (5, - -, 8,),
and §, = log d;. Then Lemma 2.3 implies that

(2.37) #1(0, 8) > #,(0, T8)

for every T-transform 7. A fundamental result in the theory of majorization states
that a vector » is majorized by a vector § (i.e., » = Q8 for some doubly stochastic
matrix Q) if and only if » can be obtained from & by a finite number of
T-transforms, i.e., iff v = T, - - - T,T,6 for some mand T, - - - , T,, (cf. Hardy,
Littlewood, and Polya (1952), page 47). Thus (2.37) implies that #,(0, 8) > #,(0, »)
whenever » is majorized by 4, i.e., #,(0, 8) is a Schur-convex function of 8. This is
summarized as follows:
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PROPOSITION 2.4. When k = 2, m,(E®, =®) is a Schur-convex function of the
logarithms of the characteristic roots of (EM)™1=®.

We now apply Lemma 2.3 to obtain inequality (2.6) for the general case k > 2.
Pute = (l,- - -, 1) : p X 1 and define the scalars § and o, by

= 1 1 1 1
238) §@W=—¢6@==3F_ 5§ =—log|D®W| = —1og|=@| = log g,.
(2.38) > 0= 2 g| D) 7 g|=)| = log o,

Since §Me = (p~lee)d® and p~lee’ is a doubly stochastic matrix, §®e is
majorized by 8. Therefore, Lemma 2.3 and the subsequent discussion imply that

(2.39) # (8™, 89, . . . [ §4) > ,;l(g Mg, y@, . .o, ,Y(k))’

where each vector y@ is of the form y®@ = Q 8@, for some doubly stochastic
p X p matrix Q,, 2 € a < k (the product of T-transforms is doubly stochastic).
Next, since §@ = ¥® and Te = e for any T-transform 7, this procedure can be
repeated to obtain

240)  #(5We, Y@, YD, . . . y®) > 7 (§We, §De, ¢®, - - -, ),

where ¢ is again of the form @ = R §® for some doubly stochastic matrix R,
3 < a < k (the product of doubly stochastic matrices is doubly stochastic). Con-
tinuing this procedure k — 2 times more, we obtain

(2.41) #F (8D, - -+ 80 > 7 (§We, - - -, §Re),
By (2.31) and (2.38), (2.41) is identical to (2.6).

Now that the matrices =) each have been reduced to the form o,1,, a direct

extension of the Pitman-Sugiura-Nagao method, as in Giri (1973), yields the final
inequality (2.7). We sketch the details. Put 7, = 0,/0,, 1 < a < k, so that

1-m(oL,- -+, okIp) =1- w,(Ip, Y AN 'rkIp)

(2,42) =M- f{hl <e)) [H';_ l,,-—pn../2| S(“)l(”n')" l)/2]

X exp{ — $tr[ SD + Tk _,77 IS @] Ik, dS@,

where M is a positive constant. Make the transformation U, =
(SM)~1§@(SM)~3 2 < @ < k, as in Theorem 3.1 of Olkin and Rubin (1964) (the
Jacobian is | §®|P*+D¢=D/2) integrate out SV, and then make the transformation
V, = 17'U,, 2 < a < k. This yields

v,
(243) 1-m(L, oy, - -, L) = M'[ mV)n')f(V)H'Z-zW

where ¢’ = ¢ %, M’ is another positive constant, and
(244 SV =Wy -+ Vi) = L + Zona Vo TPV,

V)Y =1V - - - s T Vie)-
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Hence
(L, (7Y SN wl) = m(L,- -, 1)

arv,
— ’ k
= M'[[imrsesfery = Jisamsesom] A V)Ha-2|Va|<p+in/z‘
rAL! k dVa
(2.45) > M'[ [ qrysesaevy — Sisavysesmn]® Ha-2W

ar,

a

— — . k —_——
= M'[[ismy>er = Jism>en] H“'2|Va|(p+l)/2

=0,
since the measure II|V,|~?*V/2 gV, is invariant under the transformation ¥V, —
7, V,. The second-to-last equality in (2.45) requires that

arv,

k
(2.46) Jinvyse, f(‘rV)>c')Ha-2Wp:.a_|72' < oo,
which is true since this integral is bounded above by

1 av, 1
(2.47) ?‘f(f(l’)w’)f(V)H,;:-2 |V, |e+D/2 M [1 =l ’Ip)]°

Thus, (2.7) is established, and the proof of Theorem 2.1 is complete.

REMARK 2.5. Giri (1973) attempted to use the argument of the preceding
paragraph to combine (2.6) and (2.7), i.e., to prove in a single step that

2 (DD, -, D®) > (L, -, 1)

when the D@ are diagonal. However, when k > 3 the step from (2.42) to (2.43) is
not valid if the matrices 7,1, are replaced by D (®, since in general

tr DS US? # tr D ~'US.
(In Giri (1973), page 59, the quantities P’ and P on the second line of his
expression (2.7) should appear in the reverse order. When this correction is made,
the subsequent equality is no longer valid.) When k = 2, though, one can take
D® = I without loss of generality, and the step from (2.42) to (2.43) can be
accomplished—see Sugiura and Nagao (1968).

The above proof of the inequality (2.7) gives no indication of the behavior of
71(011,, * * * , 6, 1,) other than that its minimum occurs when 6, = - - - = ¢,. The
proof may be modified, however, to obtain the stronger result given in Lemma 2.6
below, which extends a univariate result of Carter and Srivastava (1977). This result
is a monotonicity property which provides some information as to the relative
distances of alternatives of the form (0,l,, - -+, 0,J,) from the null hypothesis
0, = - - - = g, (with respect to the modified LRT).
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LEMMA 2.6. Assume that o; # ojfor at least one pair i, j. If max{o,, - - -, oﬂ} <
min{og, - - -, 0}, where 1 < B < k — 1, then

\P(A) = Wl(ollp, MY OBIP, AOB""]IP’ MY Aaklp)
is strictly increasing in X for A > 1.
Proor. It suffices to show that ¢(A) > y(1) when A > 1. Without loss of

generality assume that ¢, = max{o,,- - -, 05}, and put 7, = g,/0, as before.
Then, as in (2.45),

(248) () - ¥(1)
dv,

a

— ’ k
= M'[ [ jevysesfomryy = J o) s | ‘f(V)Ha-z'lzl'(;T,)/‘z'

where f(V), f(1V') are given by (2.44) and where
f(A’TV) Ef('Tsz, ey, TBVB, ATB"'IVB"'I’ ey, A’Tka).

Since

(249) J1V) > ¢ o f(7) > e le t ZamataVal”
|IP + zﬁ-ZValn/z

where 7/ = [I¥ _,r.#")/2 it follows that
YQA) — Y(1) > T M'[ [ jarysesiorryy = Jisoevysesievy ]
1L+ 2k ama Vol I av,
R A N AR
(2.50) = TM'[ [ jovy>ey = [s0avy>ey ]
) |7, + S o Vo I"? dv,

., =
|Ip + 2I¢51-2I/o:|n/2 * |Va|(p+l)/2

I, + Sk, V|2

a=2

|Ip + zﬁ-ZValn/z

=TM [ javy>ey

Sy AV |
_ _ L
L, + S8V, + ATISk VI | T et 02

dvy,

a

(if B =1, the sums 3#_, are vacuous). The last equality in (2.50) is obtained by
making the transformation Vg, , —->)\“VB+,, -+, V> A"V, in the second in-
tegral of the preceding expression, while the validity of the first equality in (2.50)
follows from an argument similar to the one involving (2.46) and (2.47). Finally,
since 7, <1,---,7,<1 and 75, > 1,---,7 >1 with at least one strict
inequality, the integrand on the last line of (2.50) is strictly positive by Lemma 2.7
which follows. This completes the proof of Lemma 2.6.
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Lemma 2.7. Let U,, U,, W,, W, be p X p symmetric positive definite matrices.
Assume that U, — U, and W, — W, are positive semidefinite and at least one
difference is not the zero matrix. Then

U, + W,
(p*( t) = I 1 l|
|U, + W)
is strictly increasing in t for t > 0.

PROOF. Set 4; = Lg‘%Wj U- %, Jj =1,2, where U}% is the symmetric positive
definite square root of U,. Then ¢*(?) is proportional to
|1+ 24,  TE_\[1+ tch(4,)]
|1+ tdy| T \[1+ tch(4)]’
where ch(4) > - - - > ch,(4) denote the ordered characteristic roots of 4. Since
W, — W, and U! — U, ! are positive semidefinite and at least one is nonzero,
two applications of the Courant-Fischer theorem (cf. Bellman (1970), Theorem 3,
page 117) show that
(2.51) ch(A4,) > ch(A4,), 1<i<p,

with at least one inequality strict. From this the result follows easily.

o(t) =

3. Unbiasedness of the LRT for H,. The LRT for testing H,, the hypothesis of
equality of k normal populations, rejects H, if

G.1) A= AED, .. F®; O 60y = HL_i l;(z;llz > ¢
where

§=3_S@
32) T=3k_N(X@ - XH)X@ - x®y,

X = Iivz’;_lzva)?(“’;

cf. Anderson (1958, Section 10.3). Anderson suggested a modified LRT for H,
based on |S + T|"/II|S®@|™. In this section, however, we show that it is the LRT
itself, not the modified LRT, that is unbiased for testing H,.

Denote the power function of the test (3.1) by
(3.3) 7y =m(p®, - - -, p®; SO, L L 30
= P,m ):(")[}‘2 > ca].

..........

Both A, and 7, are invariant under nonsingular affine transformations, i.e.,

(34) MXD,. .. T®; O ... §0) = A (AXD + b, -+, AX® 4 b;

ASD 4/ - .. ,AS(")A’)
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(3.5) m(u®, -, u®; 3O . SE) = (4uD + b, - -, 4p® + b
ASOL, . o 4300 47
for all p X p nonsingular matrices 4 and all p X 1 vectors b.
THEOREM 3.1. The LRT (3.1) for H, is unbiased, i.e.,
Wz(ll(l):' ce L, u®; ZM L 3E) 5 (0, - -, 05 L,--- ’Ip)
for all p®, - - - p®, 3O ... 36,

The proof of Theorem 3.1 follows the same pattern as that of Theorem 2.1, but
there are several nontrivial differences. First, an analog of Lemma 2.2 will be
established. For 0 < ¢ < 1, define 2, as in (2.12). Also, for any p X 1 vector u
partitioned as p = (p;, pz)’ With pgy 2 (p — 1) X 1, define p, = (1), pyy)'.

LemMa 3.2. For fixed p®, - - -, u®, 2O . . . 30 the power function
(36) w0, -+ w0 ZD, - -, 30)
is increasing int,0 <t < 1.

PrOOF. Write A, as

A = S5 + Tol"[(S + T11.2]"
LI S"( 1) ™

where the partitioning is in accordance with (2.8) and (2.9). The p X p matrix T
can be written as

(3.7)

— — | X,BX| X,BX;
(3.8) T=XBx'=|_"_" 7772,
X,BX, X,BX,
where
Y y (D Yy () = "7‘
(3.9) X=X®,... x®)="
X2
~with X;: 1 X k and X,: (p — 1) X k, and where
(3.10) B=Dy,—-N"'NN'":kxk
with Dy = diag(N,, - - - , N;) and N = (N,, - - - , N,). Therefore,
(3.11) (8 + Ty =3k_ S, + A+ X,EX],
where
(3.12) E = B — BX,(X,BX;)” X,B,

(3.13) A=[S5_,SE(SE)”'SIP + X,BX(X,BX;) X,BX]
a=1

— (Sk_ S + X,BX;)(Zk.,S8 + X,BX;)™'(Sk.,S§° + X,BX])

and (X,BX})~ is the Moore-Penrose generalized inverse of X,BX.
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Now define S®*D = XBX" and write (S*Y)~7 to denote [(S*")~]z. From
the properties of a generalized inverse and the argument at the top of page 523 of
Rao (1973) it follows that

Sg+l)(sg+l))_ S2(§+l) = (S£I£+l))
(3.149) SEED(SHETD)T SHFTY = SFrD
1 -1
(S§§+l))2(sgc+l)) 2Sgc+l) = S{{c+l).

Thus, A again can be written as in (2.19), where now the range of summation is

1, - -,k + 1and where (S&*)~ is substituted for (SE*P)7!, so
(3.15) A = YPY',
where now
Y=(Yy, -, Y41 IX(k+1)(p—1)
Y—S)(S("‘)" IxX(p-1
) w(WwW"~'\w tk+Dp-DX(E+DP-1
W=(W,- -, W) p-DXEk+D(p-1
W, = (S§): c(p—DX(p—1.

Since Y, = X,BXz(XzBXz)" (3.15) shows that with X, and {S. ("‘)Il <a <k}
held fixed, A + X,BX] is a positive semidefinite quadratic form in X, and Y, =

SE(SE)~2, 1 <a <k. When the population mean vectors and covariance
matrices are given by y® and =, 1 < a <k, the conditional distribution of

(Y), - - -, Y}) given X, and {S{|1 < a < k} is again (2.22), while the conditional
djstributlon of X, is
(3.16) X,|X, ~ N, (tF, Q),
where
(3.17)
-1 — —_ —

F=(pf+30ER) (X0 - uB), - - -, uf + ZHER) (X - u®))

(1 Xk
Q = diag(N; =Ry, - - -, N 12(E) tk X k.
Thus, the conditional distribution of (¥}, - « - , ¥, X,) given X2 and S, 1 <a <

k, is of the form N(t®*, A*), where ®* and A* depend on X, and S, u®@, =@,
1 € a < k, but not on ¢. Therefore, by Anderson’s Theorem, for every constant ¢
the conditional probability

(3.18) Sl) ..... ’k) 251) ...,ZS")[A + XIEX’ > Cle, ), 1<a< k]

is increasing in ¢ for ¢ > 0. Lemma 3.2 now follows readily.
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By an argument similar to that which led to (2.25), Lemma 3.2 implies that

(3.19) 7]’2( [.l.(l), e, M'(k); 2(1)’ cee E(k))

>ﬂ(0)“.(0). s, o) (=, o
) BV o =9/ Lo =p

>m(0,---,0; DM ... D(k))
Eﬂg(D(l), e D(k)),

where D@ is the diagonal matrix defined by (2.26) and where p{) denotes

(5, -+ -, p™Y. (Note that the proof of (3.19) requires p steps, whereas the proof

of (2.5) required only p — 1 steps.) Thus, the analog of (2.5) has been established.
To establish the analog of (2.6), note that the function

(3.20) aI(ZD, . .. [ 3R)) = 70, -+ ,0; M, .. .| =0)

satisfies the same properties as 7,(Z,- - -, =®) in Section 2, in particular
properties (2.3), (2.16), and therefore (2.28). Thus, if we define 75 in the same
manner as 7, i.e.,

(321) 78D, - - -, 80) = 7DD, . . ., D®)
(cf. (2.30) and (2.31)), then #) satisfies the same properties as %, in particular
(2.35), (2.39), (2.40), and (2.41). Therefore 7} satisfies

(3.22) 73(DD, - -+, DP) > oL, - - -, o.1,),

where o, = [D@|'/? = [=@)|!/? which is the analog of (2.6). (We remark that if
k =2, then #Y(0, §) satisfies (2.37) and hence 79 satisfies Proposition 2.4, i.e.,
73(ED, =) is a Schur-convex function of the logarithms of the characteristic roots
of CM)~13@)

We now apply the Pitman-Sugiura-Nagao-Giri method to obtain the analog of
(2.7) for 3. The presence of X in the statistic A, requires some preliminary
manipulations. Define

where N = Dy N = (NI%, SEIEIN Nk%)’. The matrix B is a symmetric idempotent
matrix of rank k — 1, so there exists a k X k orthogonal matrix ¢ such that

Byl Oy =y,

where ¢ = (,, Y,) with §;: k X (k — 1) and y,: k X 1. For later use, note that
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YiY, = I,_,, and that we can choose ¢ such that y, = (N'N )‘EN Lastly, define

Z = Xy = (Xyy, X¢n) = (2, 2)),
so that
T =XBX' = XBX' = 2,Z].
When p® =0 and =@ = g,1, 1 < a <k, the p rows of the p X (k — 1) random
matrix Z, are independent and identically distributed, each having the nonsingular

normal distribution N, _,(0, ¥;D,¥,), where D, = diag(e,, - - - , 6;). Thus the den-
sity of Z, is given by

(3.23) @) <Dy Dy | %exp{ — 3t Z,(¥; D) T Z1 )
Now let 7, = 0,/0,, ] < a <k, and let D, = diag(l, 7,, - - - , 7). Then
1-a)(oL,- -+, 0.L)=1—=n)(L, L, -, nl,)
(3.29) =M- f(x2<c,)|‘P1D ‘P1|_p/2[ﬂk —pn./2|s(a)|(n.—p l)/2]

-exp{ — 1tr[ S5 17 1S@ + Z,(WiD¥,) "' Z{]} dZ TTk ., dS@.

Make the transformation R = (S™)~3Z,, U, = (S®)"iS@(SM)~1, 2 < a < k,
and integrate out S®. The Jacobian is | S P|P*+2*=D/2 5o (3.24) becomes
(3.25)

M,f(f(Uz, » Uks R)>0)|‘Pl ‘r‘Pll ~p/2. II +2a-27_lU + R(\Pl 'r‘l/) lIzl (r+k=1/2
[Hk TP/ U |(emP=D/2 U, ] dR,

where ¢’ = c; ¥ =D/2N apd

(326) f(Uy---,U, R) =[|I + zk_zu + RRzl—N/ZHk_ |U IN,/z](N-l)/zv

(note that n+ k — 1= N — 1). Now let Q = R(Y1D, ¢,)" and V, = 'r“U
2 < a < k, so that
(327) 1- 31, <o, md)
-M] AV, Q)T Ve orav| T, —DVe | 4o,
{f(rV,7Q) > ¢’} a=2 "-2|V I(p+l)/2
where
(3°28) f(V’ Q) Ef(Vz, T Vk’ Q)

1
[V, 1Q) =f(1,Va - -+ s uVio Q¥iD1)?)-
Hence, arguing as in (2.45) and (2.50),
7Tg(lp’ T Tk ) '”g(lp’ R Ip)
= M'[[(qv, 0)>e >, 700 — J(frv, 1@y > >4V, 0)) ]

SV, QI _,| V,|NamN)/2N TTE av,

o

AR dQ
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(3.29)

dv.
’ ’ — k N,—N)/2N @
> M'[ [ qv.0)>e) = S sav,n0y> ey Mamal Vel =~/ H§-2|Va|cp+u/z dQ

o H/;_zT(N—N,)/N p/2
e fmw[‘ - (e

av,
. TTk (N,—N)/2NTTk «
Ha-2| Val H“-2|Va|(p+l)/2 dQ’

Therefore, the proof will be complete if it can be shown that
(3.30) [WiDy| > T 7V N/

for all positive 7,, - - - , 7 (recall that , = 1). Since ¢ = (¥, ¥,) is orthogonal, we
have
, ¥\ D¢
(331 I 7, = |D,| = |¢'D,y| = Bl
‘P2D T l"’2

Thus, since ¥, = (Z%_,N,) "N =N "N,

N
(6:2) A b ey ] (L)
so the desired inequality (3.30) is equivalent to

N
(333) 2';_,(7“)% > T _ p /",

where », = 7!, which is true by the concavity of 4(x) = log x. Therefore (3.29) is
nonnegative, which establishes the analog of (2.7) for #3. The proof of Theorem 3.1
is complete.

Acknowledgment. A referee deserves thanks for carefully reading the
manuscript and suggesting improvements in its presentation.
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