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ON THE ASYMPTOTIC EFFICIENCY OF CONDITIONAL TESTS
FOR EXPONENTIAL FAMILIES

By R. MicHEL
University of Cologne

Let P,, 7 €0 X T C R X R, be an exponential family. It is shown that
the sequence of tests (¢¥),cn, Where ¥, n € N, is u.m.p. in the class of all tests
" similar with respect to the nuisance-parameter y for the hypothesis {Pg .y
y € I'} against alternatives Pg, , ), 6, > 8, n, € T, is asymptotically efficient in
the class @} of test-sequences which are asymptotically of level a (continuously
in the nuisance-parameter). Here, asymptotic efficiency of (¢}),<n means that
forally €T, ¢t > 0, the power of ¢ evaluated at local alternatives P(’;, 2y
asymptotically attains the upper bound given for test-sequences in ®3.

1. Introduction. The present study is an answer to the problem of determining
an exact asymptotic upper bound for the power of tests of Neyman structure for
exponential families, where the power is evaluated at local (contiguous) alterna-
tives. Let (¢¥),cn be the test-sequence such that, for every sample size n, @} is the
optimal test of Neyman structure, which is uniformly most powerful against
one-sided alternatives in the class of all tests similar with respect to the nuisance
parameter (for the representation of ¢} see formula (6) below). It is shown that
(@¥),en is asymptotically efficient in the class of all test-sequences, which are
asymptotically of level a (continuously in the nuisance parameter).

The starting problem of our research has been the following: when the number
of observations is large, do we lose power at local alternatives if we use the best
similar test instead of a test which is asymptotically efficient in the class of all
test-sequences which are asymptotically of level a? In Theorems 1 and 2 below we
show that the answer to this question is “No”.

To begin with let us fix some notations: Let (X, &, ») be a o-finite measure-space
and assume that P,|€,n = (6, y) €O X T, where ® C Rand T C R* are open, is
a family of probability-measures with »-densities of the form

p(x,m) = c("?)exP[osl(x) + Ef-lyj‘s}'+l('x)]
(@ will be the parameter under consideration, whereas y is a “nuisance-parame-

ter”).
Let

(1) 2("7) = (oij(n)),',j-]’ oL k41
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where o;(n) = Cov, (S, ), i,j =1, - -, k + 1. Let, furthermore,

)] A) = (Ay(m); e jrr = I

where I(n) = (I;(M)); jm1,... x+1 denotes the Fisher information matrix, which is
assumed to be positive definite (recall that I (n) = [(3/dn)log p(x, n) -
(3/3mplog p(x, m)Py(dx), i,j =1, - - , k + 1. It easily follows that I(n) = Z(n)).

The following partitions of 3 and A are needed in the proofs of the theorems: let
s =% 212 and A= (%0 AT
2y 2p AGD A2

where =,, and A®? are (k X k)-matrices, =,,, A®Y € R, and =, = 3}, AV =
A®Y (&' denotes the transposed vector corresponding to @ € R¥). Then we have
(see Steck, page 253),

3) o — 22"y, = AfL

® denotes the distribution function of the standard-normal distribution, i.e.,

®(t) = (2vr)_1/2f’ exp[—%rz] dr

and
N, = ® a), a € (0, 1).
For an @"-measurable function f: X" — R we write
PI(f) = [f(x)P;(ax), x=(xp ", %)

where P;|@" is the independent product of n identical component P,|@.

Given a large sample-size n, we are interested in testing the (composite) hypothe-
sis {Pg, ) ¥ €T}, where § € O is fixed, against (local) alternatives PG, ,,-12
t>0,y €T, atalevel a € (0, 1).

Within the framework of this paper the concept of asymptotic efficiency of
test-sequences deals with the following problem: a specified class ®, of test-
sequences (@,),cn is taken into consideration. First one concentrates on determin-
ing an upper bound B(¢, 4, v), say, such that for all (¢,),en € P, and all £ > 0,
yerl,

, Y)Y

lim supn—»ooP2‘0+ tn=1/2, y)(¢n) < B(” 0’ Y)

and then one attempts to prove that there does not exist a smaller upper bound,
i.e., one tries to exhibit a test-sequence (¢,),en € P, such that forallz > 0,y €T

limn—booP?0+tn"/2, y)(@n) = B(t9 09 Y)

The sequence (§,),en then is called asymprotically efficient in ®,,.

The adequate class @, for our further considerations is the class ®} of all
test-sequences (@,),en (depending on 8 and «a) which are asymprotically of level a
continuously in the nuisance-parameter v, i.e., for all y € T,

4 lim sup,_, ., Py, )(®,) < a, whenever lim, v, = .
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2. The result. It has been shown by Neyman and more generally by Lehmann
and Scheffé (1950) that a test similar for the hypothesis { P ,,: ¥ € I'} must have
what these latter authors call “Neyman structure”, i.e., its conditional expectation,
given 37 ,(S,(x), + + , Sg+1(x)) = u, is constant for all possible values of u €
R*. Furthermore, for every sample size n, there exists a best similar test ¢¥
(depending on # and a), where in this case “best” means that ¢ is uniformly most
powerful against alternatives P ., with 8, > 6 and v, €T.

With -
(%) Sl(n)(x) = 272151(x) and S(n)(x) =311(8(x), - - -, Sk+l(xi))’
we have
(6) P = lA,, + Ynla,,
with
4,={x € X" S{"(x) >c? (S7(x)}
@) B, = {x € X" S{"(x) = ¢ (S"(x))}

Ya = Yao(SP(X)) €[0, 1],

where the functions ¢! ,(#) and y? (u) are chosen in such a way that the
conditional expectation of @*, given S®™ = u, equals a for every possible value of
u € R-.

Let

(I); = nyel‘{((pn)nEN: P& v)(‘pn) =a,n€ N}'

Obviously, @7 is a subclass of ®%, the class of all test-sequences fulfilling (4).

The following Theorem 1 is due to Chibisov (1973) [see also Pfanzagl (1978)]:
Both authors give results on more general families of probability-measures, but
consider a slightly smaller class of test-sequences than ®*.

THEOREM 1. For every sequence (@,),cn € P* (see (4)), for all y €T and all
t>0,

lim supn—yooP?0+ tn~1/2 y)((pn) < (I)(Na + tAll(o’ Y)—l/2)
with A,,(8, ) given by (2). ‘
Theorem 2 below provides us with a lower bound for the asymptotic power at

local alternatives of (p¥),cn (Where @Y, n € N, is the optimal test of Neyman
structure), which coincides with the upper bound given in Theorem 1.

THEOREM 2. Assume that either the distribution of (S,, - - -, Sx.1) is a lattice-
distribution or that v|@ = N\|B**', where A is the Lebesgue-measure. Assume,
furthermore, in the latter case that there exists r > 0 such that

S relpy (1, 0)"A(dv) < o0
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Jor sufficiently small |u|, where e,(u,0), uER, v E R, denotes the characteristic
Junction of (S, + -, S¢4 1) Let (9F),en € O be the sequence of tests o, neEN,
given by (6). Then for every y €T and all t > 0,

lim inf, |  Pfos -1 n(er) > tI)(Na + tA,,(9, 'y)—l/Z),
where A,,(0, v) is given according to (2).
Hence, if we combine Theorems 1 and 2, we see that the upper bound given in

Theorem 1 is exact in the sense that it is impossible to prove a smaller one and that,
for the test sequence (¢}),cn in Theorem 2 and for all t > 0, y € T,

2
lim, n—»ooP(0+m_l/2, y)((pn) = (I)(Na + tAll(oi Y) i )’
i.e., (PN),en € O is asymptotically efficient in the larger class D,

3. Proofs of the theorems.

PrOOF OF THEOREM 1. Since the basic idea of this result, i.e., to choose as “least
favourable distribution” on the hypothesis the probability measure concentrated on
P, y+m-112355, y is due to Chibisov (1973, Theorem 9.1) we shall only indicate the
main steps of the proof.

Let

= {x € X™: [,(x) > —NyAR2 = 12A7),

where
(x 0+ m~12y)
p(x;, 0, v,

and write P, = P . and P, = PG, -1 »
From Witting-Nolle, A 6.4, page 183, we immediately obtain

(8) 2(L,IP,) = N(—32A5", 2ARY).
This implies lim,_, P,(4,) = a. Hence, by Satz 2.15 in Witting-Noélle, page 56,
for all (g,),en € ®2,
® lim inf, , (P;(4,) — P,(¢,)) > O.
By Korollar 2.22 in Witting-Nolle, page 63, (8) implies
R(L,IP)) = N($ A5, PAGY).

with vy, =y + m~1/223'3,

l(X) 1—1

Hence,
(10) lim, . P/(4,) = ®(N, + tA;'/?).
Now (9) and (10) give the desired result.
PROOF OF THEOREM 2. (i) Let
(1)  S{P(x) = n='231_,(8,(x,) — E,S,)
»S—'(n)(x) = ”_1/227-1(52(?‘.') - Ensz, Tt Sk+l(xx‘) - EnSk+l)/
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and, for u € {S™(x): x € X"} C R,
(12) C,(u) = ¢, o(u,m)
= n"/zc,fu(n'/zu + n(E,Sy - -, EnSk+1)') - n'/zE,,Sl,

where c,ﬁ « 8iven according to (7) is the cut-off point of the test ¢*.
To simplify further notations let

Pn = P?o, Y) and P,; = P?0+,n—l/2’ )

S m ( 1 )
T,=|"" and d= _ .
(ST(n)) —325'%y

In Part (iii) of the proof we shall show that
(13) S{M—&,(§™) —d'T, - Aj"/N,

a

Let

in P,-probability.

Hence, Slutzky’s theorem implies that £(S™ — ¢,(§™)|P)) has the same weak
limit as £(d'T, + A[;'/?N,|P)). Therefore, in order to obtain a result on the
asymptotic behavior of P,(¢;), it suffices to look at the weak limit of £(d’T,|P))
(see (6), (7), (11) and (12)).

(i1)) From the expansion

log c(8 + ;=" y) =log c(n) — tn™'/?E, S,
—3tn 7oy (n) + o(n~")
(see, e.g., Witting-Nolle, A 6.4, page 183) we immediately obtain
(14) l,— hWT,— —3WZh in P,-probability
where & = (1,0 € R**! and

p(x,-, 0+ tn'/2 y)
P(xis 0, Y)

[(x) = Z7_log

Since £(7,,|P,) = N(0, =), (14) implies by Theorem 7.2 in Roussas, page 38, that
(15) £(T,|P)) = N(Zh, 2).

(Observe that the contiguity-condition in Roussas’ theorem is superfluous because
of his assumptions (7.3) and (7.4), i.e., these conditions yield that { P/} is contigu-
ous to { P,} (use, e.g. Satz 2.20 in Witting-Nolle, page 61)).

Now (15) implies

(16) £(d'T,|P}) = N(d'Eh, d’Sd) = N(tA};, ARY)

where the last equality follows from (3).
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From (6), (7), (11), (12), (13) together with the lines following (13), and (16) we
finally obtain our result
lim inf,_, . P,(p¥) > lim,_ P;{x € X" §((x) — ¢,(§"(x)) > 0}

n— oo n—oo" n

= lim {x € X" d'T,(x) > —Aj,'/°N,}

n—»ooPn
= ®(N, + 1A};'7).
The main device in proving this result is the stochastic expansion (13) of the
test-statistic S{” — ¢,(S™). Since the expansion is of the form

d

a(n)e )™ 0 g log )<+
1

n=V/2sn_ log p(x;, )
i la,,,'k.'.l gp( ?1)

where e, = (1,0, - -, 0) € R*¥*!, the result immediately follows from Pfanzagl
(1978). We have preferred to give a short outline of the proof, as our derivation
shows that one can prove the result under slightly weaker conditions by using
contiguity arguments. (Nevertheless in our special situation Pfanzagl’s assumptions
obviously are fulfilled).

(iii) It now remains to prove (13). From (6), (7), (11), (12), and the paragraph
following (7) we obtain for all u € 4,(n) : = {S™(x): x € X"} c R,

PS> &, (um)I§™ = u) <a
and

PH(S™ > ¢, J(u,)|S™ =u) > a.
Hence, by Theorem 2.4 in Steck (1957, page 256) for every R > 0,
(17) liInn—»oosupuEIQ,(’!',R)Ia - P(X > c—n,a(u’ 'I'])IY = u)l = O’

where K,(n, R) = {u € 4,(n): ||lu|| < R} and where the joint distribution of
(X,Y) is a (k + 1)-dimensional normal distribution with mean-vector zero and
covariance-matrix 2(n). Hence,

(18) P(X > ¢, (u,)|Y = u) = ®(d, ,(u, 7))
with
(19) dn,a(“’ n) = All("l)l/z[zlz(ﬂ)zzz(’?)_l“ - En,a(u’ "l)]

(here we have used the fact that Aj;' = 0,, — £,,2,,'Z,, (see (3))).
From (17) and (18) we obtain that for every R > 0,

limn—»oosupuel(,,(n, R)Ia - q)(dn,c((u’ n))l = O‘
This immediately implies that for every R > 0,
(20) limn—»cosupuEK,(n,R)INa - dn,a(u’ "7)| = 0.
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Now given positive functions f,, n € N, such that for all R > 0, lim,_, ., f,(R) =
0, there exists a sequence (R,),cn Of positive numbers with lim, | R, = co such
that lim,_, _ f,(R,) = 0. (Hint: for every k € N there exists N, € N such that for
every n > N,, f,(k) < 1/k. W.lo.g. we may assume that N, <N, ,,, k € N. Let
k(n) =1, if n <N, and k(n) = max{k: N, <n}, if n > N. With R, = k(n),
n € N, we then obtain lim,_, R, = oo and, for alln > N,, f(R,) < 1/R,.)

Therefore, there exist constants R,(), n € N, with lim, | R, (1) = oo such that
(20) holds true with R replaced by R, (7). Since (15) implies

lim, . P;{x € X": IS > R,(n)} =0

(recall that S™ represents the last k components of T,), (13) follows from (20)
(with R replaced by R,(n)) and (19).

4. Concluding remark. Having shown that the sequence (¢}),cn Of optimal
tests of Neyman structure is asymptotically efficient in the class ®%, i.e., first order
efficient, the problem remains to be investigated whether (¢}),cn is second order
efficient in the class @** C ®* of all test-sequences (¢,),n With the property that,
forall y €T,

lim sup,_, ,n'/*(Pfy, .\ (9,) — @) <0,

whenever lim,_, v, = y. (For the definitions of first and second order efficiency
see Definition 7.1 in Pfanzagl (1978)).

Here our main problem is whether it is possible to prove an asymptotic
expansion for the conditional distribution of S(™ given S, i.e., whether in
Theorem 2.4 of Steck (used in part (iii) of the proof of Theorem 2) the accuracy of
the normal approximation can be improved by adding the n~!/%term to the
limiting distribution.

Acknowledgment. The author is indebted to Professor J. Pfanzagl for drawing
his attention to the considered problem. Furthermore, he wishes to thank Professor
H. Witting for suggestions on the proofs, which led to considerable improvement in
presentation.

Note added in proof. In the meantimé these problems have been solved by the
present authors in two papers to appear in Journal of Multivariate Analysis (1979).
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