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CONDITIONAL PROPERTIES OF STATISTICAL PROCEDURES

By G. K. ROBINSON
University of Sheffield

During the last twenty years several results on the conditional properties of
statistical procedures have appeared in the literature. However, apart from
results linking conditional properties and Bayesianity, few general results have
been found. Here a systematic set of definitions of conditional properties is
given and a systematic investigation of their consequences is started. An

" analogy between interval and point estimation is used both to extend defini-
tions of conditional properties to point estimation and to extend the usual
definition of admissibility for point estimation to provide a new definition of
admissibility for interval estimation.

1. Introduction. Historically, interest in the conditional properties of statistical
procedures arose from questioning of the Neyman-Pearson and fiducial theories of
inference. Fisher (1956a page 55) claimed that the justification of the fiducial
argument lay in the conditional properties of fiducial procedures. Neyman and
Pearson, on the other hand, never claimed that their methods would ensure good
conditional properties, but interest in conditional properties has been shown by
their critics.

In terms of Neyman’s theory of confidence intervals, conditional properties seem
to be of interest because if, say,

Pl EI(X)] =« forall 6
while
P eIX)X EC]<a—¢ foral ¢

for some set C and some positive number ¢, then the use of « as a confidence level
for the proposition “§ € I(x)” seems rather dubious, particularly whenever x € C.
Several writers have discussed this difficulty. Fisher (1956b) criticized Welch’s test
for the two means problem in a way which Buehler (1959) has shown to be
equivalent to exhibiting a negatively biased relevant subset for a confidence
interval based on Welch’s test. Bartlett (1956), Neyman (1956) and Welch (1956) all
replied to Fisher’s criticism but did not discuss the major issue: whether or not they
regarded conditional properties as important. Jones (1958) and Cox (1958) have
made it clear they do consider conditional properties to be important. Buehler
(1959) gave some definitions of conditional properties which can be used to discuss
Neyman confidence intervals and that paper should be regarded as a landmark.
Savage (1962), Birnbaum (1962), Dempster (1964) and Hacking (1965) have all
made attempts to conceptualize the underlying weakness in Neyman’s theory and I
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believe that their ideas can be understood most easily using the terminology of
conditional properties.

Buehler (1959) suggested, in a manner calculated not to arouse too much
antagonism, that statistical inference could be viewed as a game between two
players. The first player suggests a statistical procedure and the second bets against
him. It is easy to see that anomalies stated in terms of conditional probabilities
could always be stated in terms of betting strategies but that some betting strategies
cannot be expressed in terms of conditional probabilities. Buehler’s definitions of
relevant and semirelevant subsets can be interpreted using either betting strategies
or conditional probabilities but here, following Pierce (1973), we shall formulate
more general definitions which do not necessarily have conditional probability
interpretations. However, we shall still use the expression “conditional properties”
to describe them.

Another restriction of Buehler’s definitions is that they are confined to interval
estimation and hypothesis testing. Brewster and Zidek (1974) seem to be aware that
an extension to point estimation is possible, but they have not formulated defini-
tions. Our definitions appear in Section 6.

The essential reason for investigating conditional properties of statistical proce-
dures in a fairly general context is the search for a rationale for non-Bayesian
inference. It seems natural to hope that statistical conclusions could be used for
some restricted types of betting and the question which must be asked is “What
sorts of betting should statistical procedures be able to withstand?”” The example of
Buehler and Fedderson (1963) and Brown (1967) indicates that to demand the
nonexistence of relevant subsets is too stringent a condition. Robinson (1976)
suggests that the nonexistence of negatively biased relevant selections is a condition
which is about strong enough. The absence of super-relevant betting procedures,
which is discussed below, is, perhaps, too weak a condition. The mathematical
investigation of conditional properties in this paper and Robinson (1979) is
directed towards answering the question.

2. Notation and terminology. We will use %X, x and X to denote a sample
space, a point in the sample space and a random variable. The symbols ® and 6
will denote a parameter space and a point in the parameter space. Integrals over %
and © will be written in the forms [y g(x, #) dx and [¢g(x, #) df, the measures
implicit in the definitions of such integrals generally being finite dimensional
Lebesgue measure.

All functions defined below (including 1(.)) will be assumed to satisfy ap-
propriate measurability assumptions which will not be discussed rigorously. The
distribution of X given # will usually be assumed to have a density, denoted f(x|9).
The notation used for characteristic functions of sets will be that for a set 4

x(8) =1 if te4
=0 if t&A.
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Some common statistical terms can cause confusion because they are used by
different people in different ways. There are three terms that I wish to clarify.

(i) The word “confidence” will be used here in an intuitive sense, not as a
technical term implying a justification in terms of Neyman’s theory of confidence
intervals.

(i) A “Bayesian” point estimator will mean the posterior expectation of some
parameter. We will not be using loss functions in this context or referring to
estimators which minimize posterior expected loss.

(iii) An interval estimator of § will mean a function taking x into the ordered
pair {I(x), a(x)) where I(x) specifies a subset of ® and a(x) specifies a number in
the unit interval for every x in %. The interpretation of {I(x), a(x)> will be the
usual one that a(x) states a degree of belief or level of confidence in some sense in
the proposition that § € I(x) after X = x has been observed, but we will not
restrict I(x) to being an interval nor restrict a(x) to being independent of x. We
will call 7(x) a set function and a(x) a confidence function.

It should also be noted that the correspondence between interval estimation and
hypothesis testing appropriate for thinking about conditional properties is that of
the Bayesian school of statistics, not that of the sampling-theory school. For the
hypothesis § = 6, to be accepted with confidence a, the point set {f,} should be an
interval estimate for # when it is associated with its degree of confidence, a. With
this correspondence the conditional properties of interval estimators can be im-
mediately applied to tests of hypotheses.

3. Definitions of conditional properties for interval estimation. Like Buehler
(1959), we will state conditional properties using a betting game between two
players, Peter and Paul. The interesting thing is to see to what extent statistical
procedures can withstand criticism stated in terms of bets.

Peter must quote an interval estimator, {I(x), a(x)), for 8. Paul’s task is to bet
against that estimator and his strategy can always be expressed by a real-valued
function s(x) such that

(i) when s(x) > 0, he places a bet of size s(x) that § € I(x) at odds correspond-
ing to Peter’s quoted confidence, a(x), that § € I(x);

(ii)) when s(x) < 0, he places a bet of size — s(x) that § & I(x) at odds corre-
sponding to Peter’s quoted confidence, 1 — a(x), that § & I(x); and

(iii)) when s(x) = 0, he makes no bet.

For mathematical convenience, we define the size of a bet to be the sum of
Peter’s stake and Paul’s stake. Now a bet of size s on an event for which Peter has
quoted confidence B is such that either Paul wins 8s or Peter wins (1 — 8)s. Paul’s
gain from the above situation can therefore be written concisely as

{Xin(8) — a(x)}s(x).

We define six classes of betting procedures.
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(1) We say that s(x) is a wide-sense betting procedure if s(x) may be unbounded
but E[|s(X)|] is bounded. Betting where the expected total stake may be un-
bounded seems to be of no statistical interest since it is possible to win against
proper Bayesian procedures using such betting. (See Example 4.1). The class of
wide-sense betting procedures seems to be the most general class of betting
procedures which is statistically interesting, but we shall usually restrict our
attention to the next class.

(i1)) We refer to s(x) as a betting procedure, with no qualification, if it is bounded
as a function of x. By a change of scale we could take the bound on |s(x)| as unity
and interpret |s(x)| as the probability that a bet of unit size is made when X = x is
observed. The sign of s(x) would indicate the direction of the bet.

(iii) If 0 < s(x) < 1 we call s(x) a positively biased selection.

@iv) If —1 < s(x) < 0 then we call s(x) a negatively biased selection. Sometimes
k(x) = — s(x) is also called a negatively biased selection.

(v) If s(x) = x.(x) for some subset, C, of X, then we use the term positively
biased subset to describe both C and s(x).

(vi) If s(x) = — x (x) for some subset, C, of %X, then either C or s(x) may be
called a negatively biased subset.

A conditional property of a statistical procedure is to say whether or not Paul
can find a certain type of winning betting procedure when Peter adopts the given
statistical procedure. For the interval estimator {/(x), a(x)) the betting procedure
s(x) is said to be

(i) semirelevant if

E[ {xx)(0) — «(X)}s(X)] >0  forall @

and is strictly positive for some 8;
(i1) relevant if for some ¢ > 0

E[{X 1x)(8) — a(X)}s(X) — els(X)|]] >0  forall 6

and is strictly positive for some #; and
(iii) super-relevant if for some ¢ > 0

E[ {xix)(0) — «(X)}s(X)] >¢  forall 8.

All super-relevant wide-sense betting procedures are relevant and all relevant
wide-sense betting procedures are semirelevant. Broadly speaking, the existence of
a semirelevant betting procedure is a mild criticism of an interval estimator, the
existence of a super-relevant betting procedure is a severe criticism, and the
existence of a relevant betting procedure is a criticism on a level which seems to be
just serious enough to bother about.

We now have a two-dimensional array of concepts which can be used to discuss
the conditional properties of interval estimates. The dimension which distinguishes
between semirelevant, relevant and super-relevant is the more important one to
understand. The distinction between relevant and super-relevant betting procedures
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is clear enough: a super-relevant betting procedure achieves an expected return
which is bounded away from zero. The distinction between relevant and semirele-
vant betting procedures is more subtle. In terms of betting, a relevant betting
procedure manages to achieve positive expected return although paying a fraction ¢
of the total stake for the privilege of betting. In terms of statistical importance, a
relevant betting procedure is a more constructive criticism than a semirelevant
betting procedure as we now illustrate.

Suppose that s(x) is a relevant betting procedure for <{I(x), a(x)> with positive
constant ¢. Define

B(x) = a(x) — ¢ if s(x) < —1
= a(x) + es(x) if —1<s(x)<1
= a(x) + ¢ if s(x)> 1.

Then
{X10(0) = B(x)}5(x) > {X 15)(8) — a(x)}s(x) — e]s(x)]

so s(x) is a semirelevant betting procedure for (I(x), 8(x)>. Although B(x) may
not be an optimal confidence function in any sense, it does seem to be better than
a(x) in that the change from a(x) to B(x) is in the direction suggested by s(x).
Thus the relevant betting procedure s(x) has implicitly suggested an alternative
confidence function. This is what is meant by saying it is a constructive criticism of
the interval estimator.

The definitions given above are intended to be an essentially complete set. They
include all those given by Buehler (1959), Wallace (1959) and Pierce (1973) except
for the fact that our definitions do not demand that a(x) be a constant and some
differences in positivity conditions.

Stone’s (1976) definition of strong inconsistency corresponds, in our terminology,
to the existence of a super-relevant betting procedure such that s(x) = 1 for all x.
Bondar’s (1977) consistency principle III is, in our terminology, the nonexistence of
super-relevant subsets.

4. Interval estimation examples. The following examples are given to motivate
the definitions of the previous section. Further examples are given by Buehler
(1959).

4.1. An example to show why unbounded betting is not considered to be statisti-
cally interesting. Suppose that X is normally distributed with mean # and unit
variance. For the interval estimator {((x — 2, x + 2), a), where a is the Neyman
confidence level and also the improper Bayesian posterior confidence that § €
(x —2,x + 2) for a uniform prior, we consider unbounded betting procedure
s(x) = — x% Paul’s expected yield from betting is

J2{a = Xx(=2,2(2)}(0 + Z)Z(ZW)_%CXP (—%zz) dz

= [&{a — x(o,z)(z)}{(ﬁ + 272+ (0 - z)z}(27r)_%exp (—%zz) dz.
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This can be seen to be independent of § since (8 + z)* + (0 — z)*> = 202 + 222
and the 67 term vanishes on integration. Paul’s yield is strictly positive. As we show
in Robinson (1979), no semirelevant wide-sense betting procedure exists for this
interval estimator. Statistically it seems unreasonable to call —x? a super-relevant
betting procedure for this eminently reasonable interval estimator.

4.2. A situation where a semirelevant betting procedure exists but a relevant
betting procedure does not exist. This example is a special case of Buehler’s
Example 4.1. Again take X to be a normally distributed random variable with
mean # and unit variance. The set [0, o0) is a positively biased semirelevant subset
for the interval estimator {(— oo, x), 3> since

P[<X|X >0]>; foral 6.

However, no relevant betting procedure exists (See Section 2 of Robinson (1979)).
It seems that the confidence function a(x) =% is not completely satisfactory for
use in betting, but that its use as a degree of confidence that § € (— o0, x) is

defensible.

4.3. A situation where a relevant betting procedure exists but a super-relevant
betting procedure does not. Once more, take X to be normally distributed with
mean # and unit variance. Consider the interval estimator {((x — 1.96, x +
1.96), a(x)), where

a(x) =095 if x> 10°
=099 if x< 10

The selection

s(x) = -1 if x<0
= —1+10""% if 0<x<10°
= if x> 10

can be seen to be relevant with a little effort. However no super-relevant betting
procedure exists. (To see this consider a sequence of smooth proper priors which
give no prior probability to # < 10' and apply Proposition 7.4.) This illustrates the
point that the nonexistence of super-relevant betting procedures is a very mild
restriction on interval estimators; and con'versely, the existence of a super-relevant
betting procedure is a severe criticism.

5. Interval estimation viewed as point estimation. In this section we note that
interval estimation can be viewed as a slightly peculiar form of point estimation.
For an interval estimator {I(x), a(x)), we can regard the set function, I(x), as
fixed and regard the confidence function, a(x), as a point estimator of X;,,(6). The
function to be estimated depends on x, so we do not have point estimation of the
usual sort, but the analogy is useful nevertheless. The primary purpose of the
analogy is to enable conditional properties to be defined for point estimators using
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the definitions of conditional properties for interval estimators. In addition, it leads
to a new definition of admissibility for interval estimation.

Note. Most of the properties of interval estimators discussed in this paper may
be viewed as properties of the confidence function for a fixed set function. These
properties are referred to as properties of the interval estimator (rather than as
properties of the confidence function which would be more natural from a purely
mathematical point of view) because the interval estimator is the object of statisti-
cal interest. Properties of interval estimators which might be viewed as properties of
a set function for a given confidence function will also be referred to as properties
of interval estimators.

6. Definitions of conditional properties for point estimation. Using the analogy
between interval and point estimation of Section 5, reconsider Buehler’s betting
game between Peter and Paul. Peter quotes a point estimator, a(x), of the function
X 10x(0) and Paul tries to guess when a(x) is too high and when it is too low.

Peter and Paul can play a similar betting game for point estimation. Peter quotes
a point estimator, T(x), of some function ¢(#) and then Paul tries to guess when it
is too high or too low. We say that the betting procedure s(x) is semirelevant if

E[{¢(8) — T(X)}s(X)] >0 forall 8

and is strictly positive for some 6.

The definitions of relevant and super-relevant for interval estimation contain a
quantity & which is intended to be small but not negligible. The quantities x ,,,(6)
and a(x) are always between 0 and 1 so a small positive constant is small but not
negligible. For point estimation the situation is not so simple. If ¢(4) is a scale
parameter then a small positive constant would be negligible as ¢(f) — oo but
all-important as ¢(#) — 0. We therefore use ep(d) as the small quantity in our
definitions in this case.

For a point estimator 7(x) of a location parameter ¢(#), we say that the betting
procedure s(x) is relevant if for some ¢ > 0

E[{#(8) — T(X)}s(X) — e|s(X)|]] >0 forall 6

and is strictly positive for some #; and we say that s(x) is super-relevant if for some

e>0
E[{¢(8) — T(X)}s(X)] > ¢ forall 4.

For a point estimator T(x) of a scale parameter ¢(#), we say that s(x) is relevant if
for some ¢ > 0

E[{¢(0) — T(X)}s(X) — ep(0)|s(X)[] >0 for all @
and is strictly positive for some ; and we say that s(x) is super-relevant if for some

e>0
E[{#(0) — T(X)}s(X)] > ed(8) for all 4.

The classification of betting procedures into subsets, selections, etc., given in
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Section 3, can still be applied when the betting concerns point estimation, so a wide
range of concepts is again available.

For interval estimation the classification of betting procedures which was given
in Section 3 seems to be fairly complete. However, for point estimation, complete-
ness is more difficult to achieve. The essential thing is that a betting procedure is
semirelevant if it wins (in the sense of achieving positive expected return for all §
and strictly positive expected return for some #); relevant if it wins although paying
a nontrivial amount related to the frequency of betting; and super-relevant if it
wins a nontrivial amount unconditionally.

All these ideas can be extended from real point estimation to the multidimen-
sional case. However, instead of saying that an estimate is too high or too low, a
betting procedure must specify a direction in the Euclidean space containing ¢(6)
and T(x). Therefore s(x) must be allowed to be vector-valued and the definitions
above can be used provided that the product of ¢(#) — T(x) and s(x) is under-
stood to be an inner product.

7. Basic mathematical results. We now commence a survey of the conditional
properties of statistical procedures. We will concentrate on interval estimation and
leave many of the results on point estimation as conjectures. In this section we
concentrate on the definitions and their links with Bayesianity.

DErFINITION.  The betting procedure s(x) is nontrivial if E[|s(X)|] > O for some
6. Using this concept the following proposition provides an alternative definition of
relevant betting procedures for interval estimation. Similar statements hold for
relevant point estimators. All are easy to prove.

PROPOSITION 7.1.  The betting procedure s(x) is relevant for the interval estimator
{I(x), a(x)) if and only if it is nontrivial and for some ¢ > 0
E[{x 1x)(8) — a(X)}s(X) — ¢g|s(X)]] >0  forall 6.
The next three propositions show the extent to which proper Bayesianity is
sufficient to ensure that statistical procedures have good conditional properties for

interval estimators. Note that by proper Bayesian procedures we mean ones based
on prior measures which are probability distributions.

PROPOSITION 7.2.  There is no wide-sense relevant betting procedure for a proper
Bayesian interval estimator which is well-defined throughout the sample space in the
sense that

(7.1) [ef(x|0)dG(6) >0  forall x
where G(0) is the prior probability distribution function.

PrOOF. Suppose that the interval estimator {/(x), a(x)) for 8 is Bayesian with
respect to the prior distribution function G(#). That is,

(72) a(x) = [0 f(x]0) dG(8)/[o f(x]60) dG(6).
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Suppose s(x) is a nontrivial wide-sense betting procedure such that for some
e>0
E[ {xx)(8) — a(X)}s(X) — els(X)]] >0  forall 4.
From (7.2)

Je{x 1x(8) — a(x)} f(x|0) dG(6) = 0;
s0, using the properness of the prior and the fact that s(x) is a wide-sense betting
procedure to justify the change of order of integration,

0 <JoET{X 10x((0) — a(X)}s(X) — e|s(X)[] dG(8)
= o Jol{X 1(0) — a(x)}s(x) — e|s(x)||[(x]0) dG(6) dx
= —¢/x Jo f(x]0) AG(0)|5(x)| dx.

The nontriviality of s(x) implies that [« |s(x)| dx > 0; so, using (7.1),

JocJo S(x|0) dG(8)|s(x)| dx > 0;
in contradiction with the preceding inequality.

PROPOSITION 7.3. If an interval estimator {I(x), a(x)> is a proper Bayesian
confidence region for 0 then the following four conditions are sufficient to ensure that
no semirelevant wide-sense betting procedure exists.

(1) The prior distribution has a strictly positive density, say g(9).
(i) The density, f(x|0), is continuous as a function of .
(i) The measure of J(0)AJ(8") tends to zero as 6 — 0’ where JO) ={x e
X : 0 € I(x)} and A denotes the symmetric difference.
(iv) For any 0’ there is a neighbourhood, N(8"), of 8’ and a number M such that
| f(x|0) — f(x]|0") < M for all x € % and all § € N(9).

REMARKS. Although Theorems 2 and 3 of Wallace (1959) are incorrect, his
Theorem 1 did establish the essential links between proper Bayesianity and
conditional properties. Our Propositions 7.2 and 7.3 are similar to the two parts of
his Theorem 1, but our definitions of conditional properties are different from his
so we require different regularity conditions.

Condition (iii), above, is rather like a continuity condition on Xix(#)- To see that
it is necessary consider an otherwise well-behaved Bayesian interval estimator with
a single point #, adjoined to the confidence set for all x. The simple betting
function s(x) = 1 has zero expected return for all § except §, where the expected
return is strictly positive. Thus s(x) = 1 is a semirelevant betting procedure.

PrOOF OF PrOPOSITION 7.3. For an arbitrary wide-sense betting procedure,
s(x), consider the function of

A(9) = E[ {X1(X)(0) - a(X)}S(X)]-
Since
a(x) = [oX 1x(0)g(0)f(x]0) d8/ & 8(0)f(x|6) 48,
(73) foA(8)g(8) db = [o [o{X 1x(8) — a(x)} f(x]0)g(8) dB 5(x) dx = 0.
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Furthermore
|4(6) — 4(8")|
= [fac{X 10(8) = X 1(0") } s(x)f(x|0) dx
+ o {Xi0(8) — a(x) }s(x){f(x]6) — f(x|6")} x|
< Jadxa(0) = X 1(07)]s(x)f(x]6) dx + [,[f(x|0) = f(|6")]s(x) dx
-0 as 06’
by the dominated convergence theorem, the fact that s(x) is a wide-sense betting
procedure and conditions (i), (iii) and (iv). Thus A(#) is continuous, so (7.3) and

the positivity of g(#) imply that if 4(8) > 0 for some value of 4 then A(8) < O for
some other value of #. Hence s(x) cannot be semirelevant.

PROPOSITION 7.4. If an interval estimator {I(x), a(x)) is such that for every
e > O there is a proper prior distribution G(8) such that

(74) fefw(e)f(xlo) dx dGe(a) <e

where
o) oy - L (x18) dG.(8) }
© {"E X ol =7 10y dG,0) |

then there is no super-relevant betting procedure for {I(x), a(x)).

PrOOF. Suppose that s(x) is a super-relevant betting procedure for an interval
estimator satisfying the condition of the proposition. For some ¢ > 0 (7.4) holds
and

(7.5) JodX 10(8) — a(x)}s(x)f(x|0) dx > e  forall 6.
Using (7.4),

JoSo{X 1x(0) — a(x)}s(x)f(x|6) dx dG,(8)
= [ vl o{X 105(0) — a(x)} f(x|0) dG(8)s(x) dx
+ fatvwieS o{X 100(0) — a(x)} f(x|8) dG,(8)s(x) dx
1 f(x]6) dG(8)
<et [oe) e{x«x)(é’) - f(a }(xl 5 dc6) " s] F(x|0)dG,(8)s(x) dx

<e.

However, from (7.5)

JoSoc{x 10(8) — a(x)}s(x)f(x|0) dx dG(6) > e.
This is the required contradiction.

For point estimation it seems that the conditional properties of Bayesian point
estimators are similar to those of Bayesian interval estimators. However, different
conditions are required. A condition which is usually required in order to prove
any conditional property for Bayesian point estimators is that the prior expectation
of the parameter to be estimated must be finite. We give one result on the
conditional properties of Bayesian point estimators.
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PROPOSITION 7.5.  Suppose that T(x) is a Bayesian point estimator of ¢(8) with
respect to a strictly positive prior density, g(8). Suppose $(8) is continuous and f(x|6)
is continuous as a function of 0. If [g|d(0)|g(8)dO is finite then there is no
semirelevant betting procedure for T(x).

Proor. For an arbitrary betting procedure, s(x), consider the function of 8
A(0) = E[{¢(9) — T(X)}s(X)].
Since
T(x) = [o9(0)8(0)A(x]0) b0/ [ £(8)f(x|0) df

and the existence of [g|¢(0)|/g(0) df justifies the change of order of integration,
we find that

JeA(0)g(8) db = 0.

That A4(#) is continuous and that, therefore, there is no semirelevant betting
procedure for T(x), can be shown as in the proof of Proposition 7.3.

For improper Bayesian interval estimators the change of order of integration
used to prove Propositions 7.2 to 7.5 cannot be justified by Fubini theorems and
conditional properties can only be established in special cases. This is a large part

of the subject of Robinson (1979).
It seems to be generally true that limiting Bayesianity of some form is necessary

for the nonexistence of the various types of betting procedures, but only Pierce
(1973) has made much progress in this direction. His Theorem 1 shows that for
finite parameter spaces only Bayesian interval estimators do not allow semirelevant
betting procedures. For general parameter spaces, his Theorem 3 shows that only
interval estimators which are “a-level weak Bayes in mean” do not allow super-rel-
evant, possibly unbounded, betting procedures. The condition “a-level weak Bayes
in mean” is equivalent to the condition imposed in Proposition 7.4 (Pierce’s
definition and theorem can be easily changed to allow a to depend on x), so
Proposition 7.4 is almost the converse of Pierce’s Theorem 3.

The final proposition in this section links relevant betting schemes and uniform
convergence. It is straightforward to prove.

PROPOSITION 7.6. If there is no relevant betting procedure for any interval
estimator {I(x), a,(x)) in a sequence, and a,(x) — a(x) uniformly in x as n— oo,
then there is no relevant betting procedure for the limiting interval estimator

I(x), a(x)).

8. The relationship between conditional and admissibility properties. No review
of admissibility results will be given here since these results are well known and
adequately reviewed by Zacks (1971). It is generally true that admissibility is a
property intermediate between the absence of semirelevant betting procedures and
the absence of relevant betting procedures. This link seems to me to be of help in
understanding both conditional and admissibility properties. In at least one case
the link is easy to establish.
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PROPOSITION 8.1.  For a point estimator of a location parameter, $(8), the absence
of wide-sense semirelevant betting procedures implies admissibility with respect to
squared-error loss, and admissibility with respect to squared-error loss implies the
absence of relevant betting procedures.

Proor. If s(x) is a relevant betting procedure for an estimator, T(x), of ¢(8#)
then for some ¢ > 0

E[{¢(8) — T(X)}s(X) — ¢|s(X)|] >0  forall 6,
and is strictly positive for some 6. Defining R(x) = T(x) + es(x),
E[{9(8) — T(X)}*] = E[{#(8) — R(X)}’]
= E[2e¢(0)s(X) — 2eT(X)s(X) — €’(X)*]
> 26E[ {$(0) — T(X)}s(X) = e|s(X)]]-

Hence the estimator 7(x) is inadmissible with respect to squared error loss.
For arbitrary estimators 7T(x) and R(x) of ¢(8),

E[{#(6) = T(X)}*] - E[{(6) — R(X)}’]
= 2E[{¢(8) — T(X)}{R(X) — T(X)} - {T(X) = R(X)}’]
< 2E[{(8) — T(X)}{R(X) — T(X)}].
If T(x) is inadmissible then there must be an estimator R(x) with smaller risk and
so the wide-sense betting procedure R(x) — T(x) must be semirelevant.
It is natural to ask whether a similar result is true for interval estimation. To
answer this question we must first formulate a new definition of admissibility for
interval estimation. We say that the interval estimator {(I(x), a(x)) is admissible

with respect to squared-error loss if there is no other confidence function, (x), such
that

E[ {xix(®) — a(X) Y] > E[ {xsx)(8) = B(X))]

for all  with strict inequality for some 6.

As well as being the definition which enables a result like Proposition 8.1 to be
proved most easily, this definition is the natural result of applying the analogy of
Section 5 between interval and point estimation to the usual definition of admissi-
bility for point estimation. If we think of a(x) as a point estimator of x ,,(f) then
its squared error loss is {x ;(8) — a(x)}%.

Godambe (1961) gave a definition of admissibility which is substantially diffe-
rent from the one used here. Essentially, he says a confidence region is inadmissible
if there is another confidence region which is smaller but which has a higher
probability of covering the true parameter value. Godambe’s concept is concerned
with the size of confidence regions, not with the correctness of the confidence
function for the given set function. Proper Bayesian interval estimators which do
not quote highest posterior density regions for the parameter are inadmissible in his
sense. With our definition only regularity conditions are required for admissibility
of proper Bayesian interval estimators.
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We now state the relationship between conditional and admissibility properties
for interval estimation.

PROPOSITION 8.2.  For an interval estimator {I(x), a(x))> of a parameter 8, the
absence of semirelevant betting procedures implies admissibility with respect to
squared-error loss, and admissibility with respect to squared-error loss implies the
absence of relevant betting procedures.

PrOOF. If s(x) is relevant, define B(x) = a(x) + es(x).

E[ {x10n(0) = a(X)}*] = E[ {x 1x)(8) = B(X)}’]
> 28E[{x,(x)(0) - a(X)}s(X) — els(X)[].

Hence {I(x), a(x)) is inadmissible.
If {I(x), a(x)) is inadmissible, note that

E[{x 100(8) = «(X)}*] = E[ {x 1x)(8) — B(X)}?]
< 2E[ {x1x0)(8) — a«(X)H{ B(X) — a(X)}].

The betting procedure B(x) — a(x) is semirelevant.

One way of viewing the relationship between admissibility with respect to
squared-error loss and conditional properties for interval estimation is to consider a
concept which includes both of them. Suppose that for some y there is a number
€ > 0 and a betting procedure s(x) such that

E[{X 1x)(8) = a(X)}s(X) — e|s(X)["] > 0

for all # with strict inequality for some 6. For y = 0 we have the condition that s(x)
is super-relevant. For y = 1 we have that s(x) is relevant. For y = 2 we have that
{I(x), a(x)) is inadmissible with respect to squared-error loss (since 8(x) = a(x)
+ s(x) has smaller squared-error loss). For y = o, interpreting this to mean that
|s(x)|" = 0 whenever |s(x)| < 1, we have that a semirelevant betting procedure
exists. The generalisation seems to have little statistical interest other than in these
special cases.
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