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THE GENERAL MANOVA PROBLEM!

By TAKEAKI KARIYA
Hitotsubashi University

This paper treats a generalization of the classical MANOVA testing
problem. The problem is reduced via invariance considerations and a new
test statistic is proposed. This new test is shown to be a unique locally
best invariant test and locally minimax.

1. Introduction and summary. The problem considered in this paper is related
to the growth curve model described in Potthoff and Roy (1964). In a canoni-
cal form due to Olkin and Gleser (1970), the model is as follows:

(1.1) Z:mxp~N((':),Im®Z), VipXp~W,(ZE n); (n=p),
Z and V areindependent and X is positive definite.

Further, if © is partitioned as

Pr P2 P
(1.2) (:) — <®11 812 813> m,a m, 4+ m,=m
Oy Oy Oy/my p+p+p=p
it is assumed that ©;, = 0 and ©,;, = 0. Let
0 = (611 ®1z> .
821 @22

As usual, (1.1) means that the m rows of Z are independent p-dimensional
multivariate normal with a common covariance matrix X and ¥ has a Wishart
distribution with expectation nX. Under this model, the following testing problem
will be studied:

(1.3) H:0,=0 versus K:0,=+0.

This problem will be called the general MANOVA (GMANOVA) problem since
it reduces to the usual MANOVA problem when p, = p, = 0. Some of the
technical difficulties in studying the above problem are caused by the following:
(i) the sufficient statistic (Z, V) is not complete under K and, (ii) the restrictions
0,; = 0 and ©,, = 0 and the hypothesis H: ©,, = 0 are all nonlinear in the
natural parameter space of the distributions of Z and V' when these distributions
are written as exponential families.

In contrast to the usual MANOVA problem, very little work has been done
on the GMANOVA problem using invariance. References to work on this
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model prior to that of Potthoff and Rao (1964) and Roy (1965) can be found in
Rao (1967), Gleser and Olkin (1970) and the papers referred to below. Khatri
(1966) derived the LRT (likelihood ratio test) by using a conditional argument,
and proposed some other related tests based on similarities between this problem
and the usual MANOVA problem. Also Gleser and Olkin (1970) extended their
previous work (1966) and derived the LRT for the above problem using the
invariance principle. Kiefer and Schwartz (1965) briefly treated the problem
in the case ©,, =+ 0 and proposed a noninvariant Bayes test. When m, = 0,
their problem is identical with our problem, but their test is still noninvariant.
Recently Fujikoshi (1973) proved the unconditional monotonicity of the power
functions of the LRT and the related tests proposed by Khatri.

We summarize our work. In Section 2, following Gleser and Olkin (1970), a
group leaving the problem is chosen. Under very mild conditions the LRT is
always invariant under any group leaving a problem invariant (Lehmann (1959)
page 252 or Eaton (1972) Chapter 7). Hence the LRT is not discarded by re-
stricting attention to invariant tests. Based on this fact, Gleser and Olkin used
invariance to derive the LRT. In doingso they chose a convenient group under
which a maximal invariant is analytically tractable. As they mentioned, there
is a larger group which leaves the problem invariant, but a tractable maximal
invariant could not be found. In this paper we shall restrict our attention to
the class of tests invariant under the larger group. Let us call a test in that
class fully invariant and the group the full group. Since a maximal invariant
under the full group is not readily computable, the smaller group is utilized to
describe the class of fully invariant tests and to analyze the problem. Under
the smaller group a maximal invariant we choose consists of 4 random matrices
(T, Ty, Ty, T,), where the joint distribution of (7, T,, T,) does not depend on
any parameters. In Section 3, it is shown that the class of fully invariant tests
based on (7, T,) alone forms an essentially complete class among fully invariant
tests. The elimination of (T,, T,) not only makes it easier to study the problem
but also makes our problem analogous to the usual MANOVA problem so that
we can use some known results for the MANOVA problem with (and sometimes
without) modifications. In the subsequent sections the analysis of the problem
is based on the statistic (T, T},).

In Section 4, the LRT and the related’ tests proposed by Khatri (1966) are
reviewed. These tests are fully invariant tests based on T, alone, and when
m, = 1, the related tests are equivalent to the LRT. Giri (1968) has shown
that when m, = 1, the LRT is the unique UMPI (uniformly most powerful
invariant) test in the class of conditional level a tests. This class contains not
only all fully invariant tests based on T, alone but also some fully invariant
tests based on (T, T,). However, as has been shown in Giri (1961) (1962),
even in the case m, = 1, the LRT (or the related tests) cannot be UMPI in the
class of all fully invariant tests based on (7, T,). This fact is in contrast to the
case of the usual MANOVA problem in which the case m, = 1 reduces to the
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Hotelling T*-problem. The case m, = 1 in our problem has been called the
modified Hotelling 7*-problem by Olkin and Shrikhande (1954) and has been
treated in various forms. For example, Cochran and Bliss (1948) and Rao (1949)
treated it in relation to the covariate discriminant analysis, and Stein (1969),
based on the principle of conditionality, reported the results due to Giri (1961).

In Sections 5 and 6, local properties of tests are considered. For a discussion
of the local properties of tests, the reader is referred to Giri and Kiefer (1964).
In Section 5, we derive a unique LBI (locally best invariant) test:

tr (I + T a[Ts(I + T)"]— 1) > k.

Hence it is locally uniformly better than any other fully invariant test and so
is admissible among fully invariant tests. When the class of tests is restricted
to the class of fully invariant tests based on T, alone, Pillai’s test, tr [T.(I +
T,)™'] > k, is a unique LBI test in that class. In Section 6, the LBI test is shown
to be locally minimax. In this sense it will be an alternative test to the non-
invariant Bayes test proposed by Kiefer and Schwartz (1965). The arguments
here are similar to Giri and Kiefer (1964), Schwartz (1965) and Giri (1968).
For the representation of the probability ratio of the distributions of a maximal
invariant, a theorem due to Wijsman (1967) is used.

In this paper, R" denotes an Euclidean n-space, Gl(n) the group of n X n non-
singular matrices, <7(n) the group of n X n orthogonal matrices and ../ (n) the
set of n X n positive definite matrices. The symbol ~ following a random
matrix as in (1.1) reads “is (or be) distributed as.”

2. Invariance. Here the problem is reduced through invariance. Let

/4, 0 0
= Ay Ay O ) eGl(p)| A eGl(p,) (i =1,2,3)
‘A31 A32 A33
Pr P Ps
_— F, 0 O0\m
y:{F:mxp‘F:(“ ) 1}
F2l F22 O m2

7= {(’(’; £2>eﬁ(m)|Pieﬁ(mi) (i =12],

and consider the group & = @ x .o x . with the group operation defined by
(sz A27 Fz) °. (Ql, Aly F]) = (Q2Q1’ A1A2’ Q2F1A2 + F2)
where Q, 5), Aje %7, F e & (i = 1,2). Then & leaves the problem invariant
under the action
HZ, V)= (PZA+ F, AVA4) and  ¢©,Z) = (POA + F, A2 4),

where g = (P, A, F e ¥. Since an analytical tractable maximal invariant is
difficult to find under &, we consider a smaller group &% = % x &4, which
is isomorphic to the subgroup {/,} X .9 x .- of the group «. Hence 5# also
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leaves the problem invariant. Now partition (Z, V') as follows:

J2} P Ps
P P2 p3 m Vu Vm V13 pl
(2.1) z=(%n Za Za) N V=V Ve Vi
Zzl Zzz Z23 e
V31 V;n V33, P3

ProposITION 2.1 (Gleser and Olkin (1970)). A maximal invariant under the
group SFis S(Z, V) = (s(Z, V), s{Z, V') where

Ve Vi)™ ’
(2'2) SI(Z’ V) = (le’ Zl3) % > (Zm’ le)

32 33

z ZY

S(Z, V :( 5) V—1< OF
2N =12 "\,

Under .7, a maximal invariant parameter is y = 0,,X;'.0}; and under .2, a maximal

invariant parameter is the set of the ordered characteristic roots of v, say 0, =
0, = -+ = 0y, where 3 is partitioned in the same way as V is partitioned in (2.1)
and Zy, , = Zy — Z2323_:«11232'

In their statement of Proposition 2.1, Gleser and Olkin imposed the conditions
m < p, and m, < p,, but this is unnecessary.

Let (%) and (') be the classes of all level a tests invariant under .7~
and under . respectively, where 0 < a < 1. A test will be called “-invariant
(or S#-invariant) if it is in Z(&) (or Z(7)). An alternative maximal invariant
under .57 which is more convenient for our study is

HZ, V) = ((Z, V) tZ, V), t(Z, V), t(Z, V)

where

(2.3) T,=0(Z,V)=XVas X tm X my;
(2.4) X=(+T)HZy— Z3Vs'Vy):m X py;
(2.5) T,=t(Z, V)= Z,Vg'Zi;: m X my;
(2.6) T,=t,(Z, V)= ZyV5'Zi: my X my; and
(2.7) T,=1(Z, V)= Z,V3Zi:m X my.

Here (I + T,)"te .~(m,) satisfies [(I + T,)"]* = (/ 4 T,)~'. With this choice,
any S7“invariant test is a function of #Z, V') and in terms of #Z, V) the class
of “-invariant tests <7(.2) is described. Since % is a subgroup of &, any -
invariant test is ~#~invariant, so Z(¥) c Z(-#"). Consequently a Z-invariant
test is a function of the maximal invariant #(Z, V') and so any test ¢ in S/Z(‘rf)
can be written as

(28) (2, V) = $t(Z, V), t{Z, V), 12, V), 1(Z, V)
for some ¢, defined on the space of (T, T,, Ty, T,). Since for g = (P, A, F)e &
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p— <Pl 0> ’
0 P,
H9(Z,V)) = (Pit(Z, V)P, Pit(Z, V)P, Pyt(Z, V)P, Pit(Z, V)P/), it follows
immediately from Theorem 2 in Lehmann (1959) page 218 that the class of =~

invariant tests Z(%°) can be specified as the set of all tests ¢ in Z(%77) such
that whenever ¢ is expressed in the form of (2.8), ¢, satisfies

(2'9) ¢0(P1t1P1’, P1t2P1,’ P2’3P2,’ P1t4P2,) = ¢0(t1’ Iy, Iy, t4)

foranyt,e (i =1, - - -, 4)and for any P, € ©(m,)(i = 1, 2) where >/, denotes
the range space of T,. By the definition of 7', the ranges can be regarded as
7, = Rliwherel, = I, = my(m, + 1)/2,1; = my(m, + 1)/2and [, = m,m,. Hence
along with T'= (T, Ty, Ty, T,), () is the class of all level « tests defined on
the space .77, X .77, X .7, X .7, and Z(¥) is the class of tests ¢, in Z(#")
satisfying (2.9). Since the distribution of T depends on (©, Z) only through
the maximal invariant parameter y, the power function of ¢ in (") can be
written as 7(¢, 1) = E, ¢(T,, Ty, Ty, T,), and for ¢ in Z(¥) it can be written as
n(¢, 0) = E,§(Ty, Ty, Ty, T,) since 6 = (9, 0y, - - -, 0,,) is @ maximal invariant
parameter under .

and

3. Essentially complete classes. It is now shown that the class of ~#Zinvari-
ant tests based on (7, T,) alone forms an essentially complete class in (%)
and with this result, the class of Z-invariant tests based on (T, T,) alone forms
an essentially complete class in Z(:¢"). For this purpose, the relations among
the statistics X and T,’s defined in (2.3)—(2.7) are considered. First it is well
to recall

DEeFINITION. Let U,, U, and U, be random matrices. Then U, and U, are said
to be conditionally independent given U, if
P(U e A}, Uye 4,|Uy) = ][22, P(U; € 4| U))
for Borel sets 4,’s on the space of U;’s (i = 1, 2) where P(-
of conditional probability given U,.

U,)’s denote versions

LemMma 3.1. (1) Given (Zy, Vy,), the conditional distribution of X is N((1, +
Ty) %0y, I, ® 2,,5) and hence the conditional distribution of X given (Z, V)
depends on (Z,;, V) only through T,.

(2) Vs~ Wp2(222.3, ny) and V,, , is independent of (X, T,, Ty, T,) where V,, ; =
Vi — Vi ViV and np = n — p,.

(3) Given (Zy, Vy,), T, and (T, T,) are conditionally independent.

(4) The joint distribution of (T,, Ty, T,) does not depend on y.

The proof is straightforward and so omitted.

The next lemma, which is due to a referee, is essential to our main results
below. These results were originally established (Kariya (1975)) by a lengthy
conditional argument.
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LEMMA 3.2. The statistic (T,, T,) is sufficient for the family of distributions of T.

Proor. First it is shown that T, and (T,, T,) are conditionally independent
given T,. From (2) it sufficies to show that X and (T,, 7,) are conditionally
independent given T,. However, this follows easily from (1) and (3) in Lemma
3.1. Second, using the conditional independence of T, and (T, T,) given T,,
the conditional distribution of (7, T,) given (T, T,) is the same as the con-
ditional distribution of (7, T,) given T,. But the latter is parameter free by (4).
This completes the proof.

THEOREM 3.1. (1) The class of S#-invariant tests based on (T,, T,) only forms
an essentially complete class in Z(IF).

(2) The class of T-invariant tests based on (T, T,) only forms an essentially
complete class in 2(Z).

Proor. From Lemma 3.2 (1) is obvious. To show (2), we apply Theorem
3.1 in Hall, Wijsman and Ghosh (1965) page 600. To verify Assumption A
required in their theorem, regard the Borel field on the space ./, X 7, X
T, %X 7, of T as the o-field %/ in their paper, the Borel field on the space
7, x 7, of the sufficient statistic (T, T,) as . there, and the group &=
a(my) X é’(mz) as the group G there where ¢ acts on T by ¢(T) = (P,T,P/,
pT,P', P,T,P’, P, T,P/) for g = (P, P,) € 7. Then (i) in the assumption is
clear and (ii) follows from an application of Theorem 4 in Lehmann (1959)
page 225. This completes the proof.

Let us denote by < (%) the class of “-invariant level a tests based on (7', T})
alone. By Theorem 3.1 (2), we can restrict our attention to the class €(¥).
However it is still difficult to find a tractable maximal invariant under (T, T,) —
(PT,P', PT,P") for Pe/(m,) and so (T,, T,) is used for the analysis of the
problem.

With (T, T,) eliminated, the problem is rather analogous to the usual
MANOVA problem although there is the additional variable T, which is related
to T,. If a value of T, is given, then the problem is exactly the same as the
usual MANOVA problem. Therefore conditional on T,, all the results in the
MANOVA problem can be applied whenever the corresponding tests are chosen.
The next lemma follows from Lemma 3.1 (1) but is important.

LemMaA 3.3. T, and T, are independent under the null hypothesis H.

4. The LRT and the related tests proposed. The LRT with the following
critical region .77, is due to Gleser and Olkin (1970).

I[ _I_ ZlS V3_312{3|
Vio  Vis\ 7!
Ly + (Zn Z0) () 7%) (Zin Zo)

32 33

@1y Nz V)= < k,.

By the definition of T, (4.1) can be written as
4.2) Ko WZ, VY =T+ T < k,.
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Hence in our terms the LRT is a Z-invariant test based on T, alone. It will be
shown that the class of “-invariant tests based on T, alone is not an essentially
complete class. Khatri (1966) proposed the following tests:

(i) Roy’s maximum root test with the critical region ~7:
277 ch (T) = ch (XVzLX") > k, .
(if) Lawley-Hotelling’s trace test with the critical region 7 ;:
5t (T) = tr (XVRhX') >k, .
(iii) Pillai’s trace test with the critical region 77:
Gt [Ty + T)7'] = tr [X(X'X + Vi)' X'] > Ky

where ch, (4) denotes the maximum latent root of 4. By Lemma 3.3, T, and
T, are independent under H and therefore the cut-off points k;’s (i =1, -+, 4)
can be taken to be independent of 7,. Consequently these are unconditional
Z-invariant tests based on T, alone. Let & (%) be the class of tests in & ()
which depend on T, alone and let

G(L) = (¢ € E () E[H(T:, T|Ts] < @, ae. Ty,

where E[. |T,] denotes the conditional expectation given T,. Clearly &(¥) C
EAZ).
The next theorem is a generalized version of the result in the Hotelling 7*-

problem and has been proved by Giri (1962).

THEOREM 4.1. When m, = 1, the LRT is a UMPI (uniformly most powerful
invariant) test in ‘& (&), and the power function is strictly increasing in y.

It is noted that when m, = 1 the tests .5%7’s are all equivalent. As will be
shown in Theorem 5.1, the LRT is not UMPI in the class < (¥) even when
m; = 1. In fact, there exists no UMPI test in &(¥).

5. Locally best invariant (LBI) test .97;. In this section we derive a unique
LBI test in &,(¥), the class of Z-invariant size « tests in Z(¥') and a unique
LBI test in &°,(¥), the class of Z-invariant size « tests based on T, alone.

For technical reasons, we consider the testing problem in terms of (X, Y, T})
where Y'Y = Vi, Y X py ~ N0, I, ® Zy, ;) and Y is independent of (X, T)).
Recall that given T,,

X~ NI+ T) 10y, 1, ®Zy,), and n=n—p,=p,-
The group G = &’(m,) X £’(n,) X Gl(p,) leaves the testing problem H: 0,, = 0
versus K: 0,, # 0 invariant under the action

9(X, Y, T,) = (QXB', PYB', QT,Q") for g =(Q,P, B)eGCG,
and a maximal invariant under G is a maximal invariant under . Thus the

class of size a tests invariant under G, say & ,(G), is equal to € ",(<). Let A =
A(0) = 3,0, where 6 = (0, 0y, - - -, 0,,) is the maximal invariant parameter
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in Proposition 2.1. The following theorems are main results here and the proof
of Theorem 5.1 is given later.

THEOREM 5.1. There is a Ay > O such that on the set {0 A(0) < A} the power
function of any test ¢ in & (&) is given by
(5.1) (¢, 0) = a + B(¢)A + o(d),
where
(52 B$) = 4 BT, T tr [(1 + T) @l + T — D)},
o(A) is uniform in ¢ € & (), ay, = (m, + n,)/p,, a, = (2m,)~* and E, denotes the
expectation under H. That is,
fim,_, sup, |[7(¢, 6) — a — B($)AJ/A| = 0.
Further the test with the critical region
Syt (I + Ty a, Tyl 4 Tt — 1] > ky
is the unique LBI test in & (') and so it is admissible in & ().

THEOREM 5.2 (Schwartz (1967)). Pillai’s test i, is the unique LBI test in
G0 C)-

Proor. Since the conditional problem given T, = t, is exactly the same as
the MANOVA problem and since tr (/ 4 #,)~* < m,, the result follows immedi-
ately from Schwartz’s (1967)-

In the case p, = 0 where T, vanishes, the LBI test .5 in Theorem 5.1 is
reduced to Pillai’s test ¢, and in the case p, = p, = 0 where our problem is
the MANOVA problem, both 27 and % are naturally reduced to Pillai’s test
in the MANOVA problem. The reader is referred to John (1971) and Sugiura
(1972) for the LBI tests in other problems.

In order to prove Theorem 5.1, some lemmas are needed. LetT = #X, Y, T,)
be a maximal invariant under G. Let f(x, y, t,|0,,, Z,,;) be the conditional
density of (X, Y) given T, = 1,, that is,

(5:3) Sl )5 1310, Ty ) = C(Tiny) etr [—323,75(X"x + ¥'y)
+ Zph0u( + 6)7hx — 30,2500,/ + 1,)7] .
Further for ¢ = (Q, P, B) € G and with M = m, + n,, define
(5.4) H(x, y, 1, O, Ty 5) = $6 f9(X, s 1) [ O, Ty )| BB " u(dyg)
where v(dg) = v,(dQ)v,(dP)v,(dB) and v,, v, and v, are left invariant measures on

c(m,), C(n,) and GI(p,) respectively such that v (<7(m,)) = 1 and v(Z7(n,)) = 1.
The next lemma is an application of Theorem 4 in Wijsman (1967).

LEMMA 5.1. The probability ratio of the distributions of T under the alternative
and the null hypotheses is given by

Pngt| 0Oy, Zs) (1(x, y, 1) = H(x, y, t,| 0, Z,, ;)
P (dt | 0, 222.3) H(x’ ¥ b 0, 222.3)

where PT(dt| @, X, ,) is the distribution of T under (0, Z,, ;).

(5.5) P=
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ProoF. From Theorem 4 in Wijsman (1967), it is sufficient to show that the
space of (X, Y, T,) is a Cartan G-space. From Proposition 1.3.3 in Palais (1961)
it is sufficient to show that the space, say 2/, of Y is a Cartan G/(p,)-space under
y — yB' where Be Gl(p,) and y € 2. The space 2/ can be restricted to the set
of n, X p, matrices (n, = p,) that are of maximal rank, excluding a set of
Lebesgue measure 0. For any ye 7/, since y is of maximal rank p,, yB' = y
implies B = I. That is, no Be Gl(p,) except the identity leaves any y fixed.
Hence it follows from Theorem 1.1.3 in Palais (1961) that 2/ is a Cartan GI(p,)-
space. This completes the proof.

Now choose 4, € G,*(p,) such that A'Z,, ,4,°= I and let & = 0,,4, so that
0,,2;,,0], = &£, where G,*(p) denotes the set of p X plower triangular matrices
with positive diagonal elements. Then the distribution of 7 under (8,,, X, ;) is
the same as under (&, /), so the ratio R in (5.5) remains unchanged when
(©13, Z,y5) is replaced by (&, ). Let B, e G,*(p,) such that By(x'x 4 y'y)By =1
andlet g, = (I, I, B,). From the left invariance of v, substituting gg, = (Q, P, BB)
for g in (5.5) leaves the ratio R the same. Then after cancellation of constants,
the numerator of R with this substitution can be expressed as

(3-6) Voupy | BB'["* etr (—4BB')vy(dB) § (), etr [§'QuB’
— $§'0(1 + 1,)7'Q"€]v,(dQ)

in which v = (I + 1,)"*xB/. To evaluate R near A(d) = 0, the next lemma is
used.

LEMMA 5.2. (James (1964) equations (22) and (23) with k = 1). Let 4 and B
be p X p matrices and let v be the invariant probability measure on ¢’ (p). Then

§ . tr AQBQ'v(dQ) = tr Atr B/p and § . (tr AQ)Yu(dQ) = tr AAL'[p .

LEMMA 5.3 Let v = (I + t,)"*xB;. Then the ratio R in (5.5) is evaluated as
(5.7 R =1+ [(2m,p,)~Y(m, + n) tr v'v — 2m,)~ tr (I 4 1,)"']A + o(4A)
where o(A) is uniform in (x, y, t,) and A < A, for some A,.

ProoF. We first evaluate the numerator in (5.6) of the ratio R. Write the
integrand of the inner integral in (5.6) as F, F, where F, = etr (§’QvB’) and F, =
etr (—3&'Q(I + t,)7'Q’¢). Then F, can be expanded as

Fy=1— 3t &Q( + 1)7Q'6 + o(tr £Q(I + 1)7Q%) .

Since tr &’Q(1 + 1,)7'Q"¢ < Atr (I 4 t,)~' < Am, from tr Es’iz A,

(5.8) F,=1—1tr&'QU + t,)7'Q’¢ +-0(A) =1 + G, + o(4), say,

where o(4) is uniform in (x, y, t,) and |G,| < m,A. For F,, expand it as
F, =14 tr&'QuB + L(tr &QuB’) + o((tr §’QvB’)’) .

Since for any matrices 4 and B such that 4B is square, (tr AB)* < tr A4’ tr BB',
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(tr§QuB')’ < AtrvB'Bv' < A trv'v tr B'B holds. With v = (I 4 1,)"#xB/,
tr v'v = tr Byx'(I + t,)7'xB,) < tr xB)B,x" tr (I + 1)~
= mytr By(x'x + y'y)B/ = m, tr 1, = mp,.

Hence (tr ’QuB’)* < m, p,A tr BB’ holds and it follows that
(5.9) Fy =14 tr§QuB" + §(tr &QuB’)* + o(A) tr BB’
=1+ G, + o(Ad)tr BB, say.

Here o(A) is uniform in (x, y, £,) and |G,| < cA¥(1 + tr BB’) for some constant ¢
provided A is bounded above. Therefore we obtain from (5.8) and (5.9)

FiF,= (14 G, +o(A)tr BB')(1 + G, +0(A) =1+ G, + G, +G,, say.
It is easily shown that
YWerpxemy |Gl |BB'["/ etr (—4BB' )y (dQ)vy(dB) = o(A)

uniformly in (x, y, 1,). Since the integration of the first term in G, over <7'(m,)
vanishes, the inner integral of the remaining terms is by Lemma 5.2,

(5:10)  Somy [1 + 3(tr §QVBY — § tr #Q(I + 1,)7'Q'E]y,(d0Q)
=14 (2m) tr vBEEBY — (2m) A tr (I + 1,) .

Now to integrate this over Gl(p,) with respect to |BB'|"/* etr (—4BB')v,(dB), we
write B = SC with vy(dB) = v,(dC)v,(dS) where C € Z(p,), S € G,*(p,) and v, and
u; are left invariant measures on &(p,) and G,*(p,) respectively with v(7(p,)) =
1. (See, for example, Wijsman (1967) page 398 or Eaton (1972) pages 6.31-
6.35.) Then the second term of the right hand side in (5.10) when integrated
over 7(p,) becomes (2m,p,)~'tr v'v tr £’6SS’ by Lemma 5.2. Therefore the
numerator (5.6) becomes

(5.11) N = Sa;%; [1 + (2m,p,) ' tr v/ tr §6SS" — (2m,) A tr (I + 1,)7Y]

X |88 etr (—£8S")vy(dS) + o(D)
since |BB'|"?etr (—4BB') = |SS'|"* etr (—18S’). On the other hand, the de-
nominator, say D, of the ratio R is obtained by setting & = 0 in (5.6) and so
D= Sa‘;m2) |SS’|"/* etr (— 1S58’ )y,(dS). Note that
(5.12) D-1 Sa; (tr 6'SS")|SS| M etr (— 188" vy (dS) = M tr &&

(pg)
since the left hand side can be expressed as E(tr §§'W) with W ~ sz(l, M).

Thus the ratio R = N/D is evaluated from (5.11) and (5.12) as (5.7), completing
the proof. -

PRrROOF OF THEOREM 5.1. Let ¢ € & ,(¥) = < ,(G). With a maximal invariant
HXx, y, 1), write ¢(x, y, ;) = @,(#(x, y, t;)). Then, using Lemma 5.3 and x(x'x +
y'y)'x' = T,(I 4+ T,))™*, the power function of ¢ is for A near zero

(¢, 0) = § (R()P7(d1|0, I) = & + B($))A + 0(4)
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where R(7) is the R in (5.7) and B(¢,) is given by (5.2). Applying the generalized
Neyman-Pearson lemma and maximizing B(¢,) with respect to ¢, € (%) yield
a unique LBI test 27 given in Theorem 5.1. (See Lehmann (1959) page 83.)
This completes the proof.

6. Local minimaxity of the test .7 ;. It is proved that the test .57 is locally
minimax in the sense of Giri-Kiefer (1964). In Giri-Kiefer Lemma 1 states the
conditions under which a given test is locally minimax as follows. Let (.2, £%)
be a measurable space where 2 C R' and <#'is a Borel o-field. Let p(.: 4, §)
be a density with respect to a o-finite measure p where J is a real parameter, &
is nuisance parameter and the range of £ may depend on ¢. Consider a testing
problem H,: 6 = 0 versus H,: 6 = A(2 > 0).

LeMMA 6.1 (Giri and Kiefer (1964)). Under the following Assumptions the test
@* is locally minimax for testing Hy: 6 = 0 against 6 = 2 as 2 — 0.

AssUMPTION 1. There exists a statistic U(x) such that Uis bounded and positive
and has a continuous distribution function for each (9, §), which is equicon-
tinuous in (4, §) for < d,, and such that ¢*(x) = 1 if U(x) > ¢ and ¢*(x) = 0
otherwise.

ASSUMPTION 2. E(¢*|0,§) = a and E(¢* |2, &) = a + h(2) + g(4, §) where
9(4, §) = o(h(4)) uniformly in &, A(2) > 0 for 2 > 0 and A(2) = o(1).

AssUMPTION 3. There exist probability measures 7, ;, 7, ; on the sets {6 = 0}
and {0 = 2} respectively for which

VpOxs 2 ) a(d€)/§ p(x 2 0, E)m,(d6) = 1 + A(D)[g(2) + Ux)r()] + B(x, 4) ,

where 0 < ¢, < r(4) < ¢, < oo for Asufficiently small, g(1) = o(1)and B(x, 2) =
0(h(4)) uniformly in x.

Following the notation used in Section 5, we verify these conditions for the
test .2%,. Instead of the group G in Section 5, the subgroup G, = @(m,) x
G1(p.) is chosen, leaving the problem invariant under the action g(X, Y, T,) =
(QXS', YS', QT,Q")and g(0,, Z,, ;) = (00,5, SZ,,,8") for g = (Q, S) € G, where
G,(p) denotes the set of p X p nonsingular lower triangular matrices. As is well
known, G,(p,) satisfies the conditions in the Hunt-Stein theorem, and so does
G,. Let ©,(G,) be the class of G -invariant size a tests. By the Hunt-Stein
theorem, a test which is locally minimax in % (G,) is locally minimax. Under
G,, without loss of generality, (0,,, Z,, ;) can be replaced by (&, /) where & =
0,,4, as defined in Section 5. Now we choose (4, &) as (d, &) in Lemma 6.1
where A = tr £§’. To verify Assumption 1, define

(6.1) U= Ux,y, t,) =tr (I 4+ t,)7'[byx(X'x + y'y)™ %" — b,I] + 1

where b, = (m, + n,)/(2m, p,) and b, = 1/2m,, and write the test %", as ¢*(x, y, 1,) =
1if U> ¢, and ¢* = 0 otherwise. Then U is positive and has a continuous dis-
tribution function for each (4, ). For A < some 4,, (5.1) implies that this
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distribution can be written as

FU(c|A, ) =1 — E($,|A,8) =1 — a(c) — B(¢,)A + o,(d)
where ¢ (U) = 1if U > cand ¢, = 0 otherwise and a(c) = Ey(¢,). Here, writing
the remainder term o(4) in (5.7) as o(4; x, y, t,), the last term o,(A) above is
expressed as § ¢, (U(x, y, t,)) o(4; x, y, t,)P(d(x, y, 1,)]|0, I'). Since from Lemma
5.3 |o(A; x, , t,)] £ KA for some K > 0 and A near zero, for ¢/ > ¢ |o,.(4) —
0,(8)] < KA[E(¢,) — Ey(9..)] for A near zero. Hence we obtain

[F7(c" |4, §) — FU(c| A, §)|
< la(e) — a(e)] + [B(4) — B(4.)IA + |a(c) — a(c)[KD .
Since a(c) and B(¢,) do not depend on (4, £) and since these are uniformly
continuous functions of ¢, the equicontinuity of FU(.|A, §) for A < some 4,
follows.

For Assumption 2, take ¢, = @ in (5.1). Then n(¢,, §) = a implies B(¢,) =
0 from (5.1). Since the test %7 or ¢* is the unique maximizer of B(¢) with
respect to ¢ € &,(), ¢* dominates ¢, = a strictly for 0 < @ < 1, implying
B(¢*) > 0. Further from (5.1)

E($*]4,8) = a + B$*)A + o(d).
Hence with A = 2, h(2) = B(¢*)A and g(2, ) = o(tr £§') = o(A), Assumption 2
is now satisfied.

To verify Assumption 3, we first consider the probability ratio of a maximal
invariant, say T = #X, Y, T,), under G,. Then, as in Lemma 5.1, the ratio is
given by
(62) R, = [P7(d1] &, 1)[P™(dt] 0, )}(K(x, y, 1))

= K(x, y, 4,|&, I)/K(x, y, 4,0, I)
where P7(dt|&, I') denotes the distribution of T under (&, 7) and

(6.3)  K(x,y, 616, 1) =\ mpxarey 9y, 1) |, D)|SS'[*7,(dQ)7(dS)

with f given by (5.3). Here 7, and 7, are left invariant measures on &7(m,) and
G,(p,) respectively with 7,(¢”(m,)) = 1. This is because G, is a subgroup of G
and hence the space of (x, y, #,) is a Cartan G,-space with the relative topology
(see Palais (1961) and Wijsman (1967)). The ratio R, is the density of 7' with
respect to P7(d¢|0, 7). In the same way as in the proof of Lemma 5.3 (see
(5.11) through (5.13)), the ratio R, is evaluated as

(6.4) Ry =1—(2m)Atr (I 4+ ;)7 + I(v, §) + o(4), _
where o(A) is uniform in (x, y, t,) and with Dy = {5, [SS'|* etr (—$55")7,(dS),
(6.5) I(v, €) = Dy apip, (2my) 71 tr 0876768V SS' |72 etr (—$S5S8")7,(dS) .

In Section 5, the integral in (6.5) was over Gl(p,) instead of G,(p,) and hence
resulted in I(v, §) = (2m,p,)~*(m, + n,)A tr v'v for arbitrary £&. This is not true
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now, but if we can show that there is a special value of ¢ for which the same
result holds, then for 2 < some 2,,

(6.6) Ry =1 + AU(x, y, 1) — 1] + o(4)

follows from (6.4) and the definition of U(x, y, t,). Therefore putting the prob-
ability measure » on that particular §, Assumption 3 is verifield with A(1) =
B(¢*)4, g(A) = — B(¢*)™', r(2) = B(¢*)~*and B(x, ) being the last term in (6.6).
This observation and the next proof for the existence of such a special value of
§ are due to a referee. Kariya (1975), using an argument similar to that in
Schwartz (1967), found a measure 7 for which the same result holds.

Now what is left is to show the existence of & such that

I(v, §) = (2m,p,)"*MA tr v'v
for any v where A = tr §§’. For any p, X p, matrices 4 and I, define
(6.7) h(A, T) = Dy (g, (tr ISAS)[SS'|*? etr (—$S5")7,(dS) .
Let I' = (7,;), A = (a;;) and S = (s;;). Then tr 'SAS’ = Y, ., 74:5:,;a;, 5, but

ii 451

the integration of s,;5,, gives O unless i = kand j = [. Thusonly },.,7.a,;s};
remains in the integration. Define for i > j,

c;; = Dyt § s2,|8S8"|"* etr (—388")7,(dS) (> 0).

Let C be the lower triangular matrix with elements ¢,; and let &’ = (u;, -+ -, u,,)
with u; = 7,,. Then

WA, T) = Xizjuias;¢; = L, (Dizs #:Ci5)a55 -

In order that this be proportional to tr 4, }},.;u,c;; = const. = ¢,, say, is
necessary and sufficient. Thatis, w’'C = ¢,1’ where I’ = (1, ..., 1), and so &’ =
¢, 1’C~" since |C| # 0. With this choice for u, h(4,T) = ¢,tr 4 and in par-
ticular A(I,T') = c,tr I = ¢,p,. But as in (5.12) A(/,T) = Mtr". Therefore
¢, = Mp, " tr I and finally A(A4, ') = Mp,~*tr " tr 4 provided the ith diagonal
element of I' is proportional to the ith element of I'C-'foralli =1, ..., p,.
Taking I' = £’¢ and 4 = v'v proves our claim.

Thus we have verified all the assumptions required in Lemma 6.1 under the
action of the group G,. By virtue of the Hunt-Stein theorem we obtain

THEOREM 6.1. For 0 < a < 1, the test .27 is locally minimax with respect to
the contour {(©y,, Xy, ;) | tr ©,2;40], = 2} as 2 — 0.

We just proved the local minimaxity of the test %} on the contour
tr 0,,2;,0], = 2. In the MANOVA problem Schwartz (1967) defined a local
family of contours containing such a contour as we used. His argument is appli-
cable to our case to prove the local minimaxity of the test 2% for a wider class
of contours. Secondly it is remarked that if any fully invariant (“-invariant)
test is to be locally minimax, it must be the one which is locally best invariant.
Hence Pillai’s test, which is locally minimax in the MANOVA problem, cannot
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be locally minimax in the GMANOVA problem. The above result shows that
the test .7 is an alternative test to the noninvariant Bayes test proposed by
Kiefer and Schwartz (1965).

7. Remarks on admissibility. It has been shown that the test .97 is admissi-
ble in the class of all L-invariant tests &Z/(¥'). Here we briefly discuss the
admissibility of the test x’s (i = 1, - .-, 4)in &Z(¥’). The class of Z-invariant
tests based on T, alone does not form an essentially complete class. Hence from
the viewpoint of the power of a test, there is no reason to restrict our attention
to that class. As has been remarked, conditionally on T, = 1,, our problem is
exactly the same as the usual MANOVA problem. From Schwartz (1967a),
the tests #7’s (i = 1, - - -, 4) are conditionally admissible. However, without
completeness the conditional admissibility does not imply the unconditional
admissibility in general. (See Matthes and Truax (1967) for certain special cases.)
For the Bayes method, the problem is the same. That is, it is very difficult to
find the prior distributions that yield the test 77’s. Of course, conditionally
the argument in Kiefer and Schwartz (1965) holds. Thus, the usual methods,
which are powerful in many problems, turned out to be not so powerful in our
problem. The admissibility of these tests is an open question.
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